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Abstract We extend the free-energy formalism recently introduced for homo-
geneous Fokker–Planck equations to a wide class of inhomogeneous nonlinear
Fokker–Planck equations, providing sufficient conditions for the equation coeffi-
cients to obtain a free-energy that does not increase with time. Some properties of
the stationary solutions of these Fokker–Planck equations are discussed.

Consider a Fokker-Planck equation (FPE) in (1+1) dimensions, i.e., a continuity
equation for the probability density ρ(x, t)

∂ρ(x, t)
∂ t

=−∂J[x,ρ(x, t)]
∂x

, (1)

with a probability-current density given by

J[x,ρ(x, t)] := A(x)Ψ [ρ(x, t)]−D(x)Ω [ρ(x, t)]
∂ρ(x, t)

∂x
. (2)

We assume the following boundary conditions ∀t ≥ 0:

lim
x→±∞

ρ(x, t) = lim
x→±∞

∂ρ(x, t)
∂x

= lim
x→±∞

J[x,ρ] = 0. (3)
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Moreover, we assume that, ∀x ∈R, 0 < D(x)< ∞ and that Ω [ρ]> 0 almost every-
where. We search therefore for a trace-form free-energy-like functional

F(t) :=
∫

∞

−∞

f [x,ρ(x, t)]dx (4)

f [x,ρ(x, t)] := ϕ(x)ρ(x, t)−Θs[ρ(x, t)], (5)

where f is a free-energy density, ϕ is an effective potential, s is an entropy density
such that s[0] = s[1] = 0, and Θ > 0 is a parameter that plays the role of a tempera-
ture. Evaluating the time derivative of F , and imposing Eq. (1), we obtain

dF(t)
dt

= −
∫

∞

−∞

ΘD(x)Ψ(x)
[
−A(x)

D(x)
+

Ω [ρ]

Ψ [ρ]

∂ρ(x, t)
∂x

]
×

[
1
Θ

∂ϕ(x)
∂x

− d2s[y]
dy2

∣∣∣∣
y=ρ(x,t)

∂ρ(x, t)
∂x

]
dx.

We assume, without loss of generality, that Ψ [ρ] is positive. The integrand is non-
negative, i.e., the free energy is non-increasing along the entire time evolution, if

1
Θ

dϕ(x)
dx

=−A(x)
D(x)

,
d2s[ρ]
dρ2 =−Ω [ρ]

Ψ [ρ]
. (6)

The relations above have been obtained for the first time in Refs. [1, 2] for the
homogenous case D(x)≡ D = constant.

One may wonder whether the structure of J presented in Eq. (2) and adopted in
Eq. (1), might be substituted by a more general structure, like

J[x,ρ(x, t)] = Ψ̃ [x,ρ(x, t)]− Ω̃ [x,ρ(x, t)]
∂ρ(x, t)

∂x
. (7)

It turns out that the structure of our free-energy functional as defined in Eqs. (4) and
(5) is not compatible with the structure of the above probability-current density un-
less Ψ̃ [x,ρ(x, t)] = A(x)Ψ [ρ(x, t)] and Ω̃ [x,ρ(x, t)] = D(x)Ω [ρ(x, t)]. If we instead
do not specify the structure of f [x,ρ], we can still write down a set of equations
such that dF(t)

dt ≤ 0 which, in turn, constrain the pair Ψ̃ ,Ω̃ as follows

∂ 2 f [x,ρ]
∂x∂ρ

= Ψ̃ [x,ρ]
∂ 2 f [x,ρ]

∂ρ2 = Ω̃ [x,ρ]

⇒ ∂Ψ̃ [x,ρ]
∂ρ

=
∂Ω̃ [x,ρ]

∂x
, (8)

where the implied condition is not satisfied a priori.
Let us now come back to the factorized probability-current density in Eq. (2). It

can be shown [3] that, if a stationary distribution of Eq. (1), ρst(x), exists, then it is
unique, coinciding with the limit distribution ρst(x) = limt→∞ ρ(x, t), and it can be
written in the form

ρst(x) = exps[−Θ
−1

ϕ(x)+ c], (9)
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where, given g(ρ) := ds(ρ)
dρ

, exps(x) := g−1(−x) is a deformed exponential asso-
ciated with the (generalized) entropy density s and c is a normalization constant.
Hence, even for a fixed entropic form, one can obtain a wide class of stationary
distributions by an appropriate choice of the argument of the deformed exponential,
and in particular of D(x).

Observe that (A,Ψ ,D,Ω) and (γA,γ−1Ψ ,δD,δ−1Ω), with γ,δ 6= 0, lead to the
same FPE. Therefore the quantities Θ−1∂xϕ and s are given up to a common mul-
tiplicative constant, unless additional information is available. In particular, the pa-
rameter Θ can be only fixed on the basis of the specific properties of the model under
consideration. Supposing ϕ fixed in this way, and evaluating the second moment of
the stationary distribution

∫
∞

−∞
x2ρst(x)dx, the following identity can be written

Θ =
−
∫

∞

−∞
x3 dϕ(x)

dx

(
d2s[z]
dz2 |z=ρst (x)

)−1
dx

3
∫

∞

−∞
x2ρst(x)dx

. (10)

Summarizing, we have extended the free-energy formalism introduced in [1, 2],
to a wide class of inhomogeneous nonlinear Fokker–Planck equations. The connec-
tion with q-statistics (and its associated nonadditive entropy Sq) can be straightfor-
wardly obtained as a particular case. A more complete analysis of the formalism, ad-
dressing properties of the free-energy functional, entropy production in the process
of relaxation towards the equilibrium, derivation of the stationary solution, accom-
panied by a proof of the existence of a unique limit distribution, is being published
elsewhere [3].
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