
Spontaneous Undulator 
Radiation



Vector definitions
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Lienard-Wiechert Retarded Fields

( )[ ]

222

223
0

))(())(())(()(

1(
),(

),(

1
4

),(

tyytyytxxt

s
c

t
t

cRRs
e

t

c
Rt

c
Rt

c
Rt

−+−+−=−=

⋅−=
×

=
















 ×−×

+
−

−=

−

−

−

xx

x
x

x

R

)b

bbb

n
n

nnn

E
B

E


γπε

Unbounded Solution of Maxwell’s Equations in vacuum for a single electron
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Radiation LW Fields
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Electron trajectory in a planar 
undulator
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Maximum Undulator LW Fields on 
undulator plane 
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Far Electric Field on x-z plane
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Angular distribution on undulating 
plane  (β = 0.5)
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Instantaneous radiated power by a 
single electron
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Spontaneous radiation power by a 
beam of electrons
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Undulator radiation wavelength
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Radiation Wavelength
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For small angles θ and β near 1
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Undulator radiation spectral 
distribution

Radiation pulse 
on undulator 
plane at fixed 
angle θ

time

Nλ

Frequency

N2
1

≅
∆
ω
ω

Angular 
Frequency 
spectrum

ω



Angular and spectral distribution of 
undulator radiation
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UH/CBPF undulator radiation

λu 8 mm

au 0.14

N 150

L 1.6 m

γ < 5

Radiation Cone angle 1/γ < 200 mrad

Fractional spectral BW 0.66 %

Beam current 0.3 A

Spontaneous radiation power 5 µW



Coherent spontaneous radiation

If Ne electrons are located within one bunch whose 
dimensions are much smaller then the radiation 
wavelength then the coherent radiation power is given by

sec PNP 2=

The angular and spectral characteristics of the radiation 
are similar to those of a single electron



Coherent spontaneous radiation from 
a periodic bunched beam 
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 The coherent radiation cone  angle is smaller than 
the single electron radiation cone



 The coherent radiation fractional  bandwidth is 
smaller than that of single electron
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Undulator Radiation in a Parallel 
Plate Waveguide



Undulator radiation in a parallel plate 
waveguide

Undulator electron trajectory on the mid-plane between 
parallel conducting plates
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TEn waveguide modes
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Electric and Magnetic fields
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TE1 Mode

Lines of Electric field Electric field density plot

Strong coupling  to electron beam



TE2 Mode

Lines of Electric field Electric field density plot

Weak coupling  to electron beam



TE3 Mode

Lines of Electric field Electric field density plot

Strong coupling  to electron beam



Spectral and Angular Distribution of 
Radiation
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Peak frequency at a fixed angle φ
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UH/CBPF FEL Data

g 2 - 4.5
lu 0.008 m
au 0.15
Nu 180

a < 0.03
b 0.004 m
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Angular Dependence of radiation 
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Frequency Spectrum
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Frequency spectrum on axis (n = 1)
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Angular and Spectral Distribution of 
radiated energy 
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Maximum number of modes filled by 
spontaneous undulator radiation

FEL  UH/CBPFtheFor  421
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