Computational Physics
with PYTHON

Tobias Micklitz
Linnev Holanda
Carsten Hensel

Disclaimer

* We're not a computing engineers nor

computing scientists. p g t O n

OUTLINE

* Why?

* |ntroduction to Python

* Python basics

* Ditferences to other programming languages
* Applications in Physics

* Sumwmary/Qutlook

Why Cowmputational Physics?

* Doing physics without computers is basically impossible
nowadays:

* From information exchange over monitoring experiments
and simulations to complicated calculations.

* Cowmputers became an integral part of physics (or research
for that matter).

* Now, if we want to (have to) use computers in our daily
work life we need to learn to communicate with thewm.

]

Why PYTHON?

* Python is easy to use, powerful and versatile.
* Perfect for beginners and experts alike.

* Python’s readability makes it a great first programwming
l[anguage.

* |t allows you to think like a programmer and not waste
time understanding mysterious syntax.

b

Which Programming Languages Po You Know/Use?

I'MTW lLL
HAVE NO ING.

* Gor G+

* Java
* Perl
* Schewe
* Fortran
* Python
* Matlab

Infroduction

.v
» "‘

‘ 5

‘ Guido van Kossum&

What Kind of Programwming
Lanquage is PYTHON?

Compiled Interpreted

Explicitly Explicitly Implicitly Purely

compiled compiled compiled iInterpreted

to machine to byte to byte

code code code

C, C++, Java, C# Python Shell,
Perl

Fortran

I—

PYTHON

open source general-purpose language
objected oriented, procedural, functional
easy to interface with C/0bjCAava/Fortran
easy-ish to interface with C++ (via SWIG)

great inferactive environment

10

The Zen of PYTHON

* Beautiful is better than ugly.

* Explicit is better than implicif.

* Simple is better than complex.

* Complex is better than complicated.

* Flat is better than nested.

* Readability counts.

* Special cases arent special enough to break the rules.

* Although practicality beats purity.

* In the face of ambiguity, refuse the temptation to guess.
* There should be one -and preferably only one-obvious way to do it.
* Now is better than never.

* Although never is often better than *right* now.

* |f the implementation is hard to explain, it's a bad idea.

* |f the implementation is easy to explain, it may be a good idea

11

Python Basics

Starting to Program in Python

pgl t!on

I — —

* The following is an overview of the language basics.
* [{’s not meant as a language tutorial.

* We will cover everything in detail in the next part of the
lecture.

* So, lean back and relax for now!

13

Which Version of PYTHON?

* ‘ecurrent’ version is 2.7.X

* ‘new’ version is 3.6.X

* 2.7X will be last stable release of PYTHON 2.
* Differences seewm to be subtle for a beginners.

* |f you start writing PYTHON code, you might want to stick
with PYTHON 3

14

Running PYTHON

* We will assume that PYTHON is installed on your system.
* |t comes pre-installed on Linux and Mac-0SX.

* For Windows please see the instructions (and binaries) on
www.python.org

* We highly recommend the anaconda Python distribution.

* Easy to install and everything you need.

19

http://www.python.org

Running PYTHON - The PYTHON Interpreter

* interactive interface to PYTHON

Big- Bang ~ carsten$ python .
Python 2.7.11 |Anaconda 4.0.0 (x86_64)| (default, Dec 6 2015, 18:57:58)

[GCC 4.2.1 (Apple Inc. build 5577)] on darwin
Type "help", "copyright", "credits"™ or "license" for more information.
Anaconda 1is brought to you by Continuum Analytics.

Please check out: http://continuum.io/thanks and https://anaconda.org
>>2>

* interactive interface to PYTHON:

>>> 3%(7+2)
27

>>2>

* exit with CTRI-P

16

Running PYTHON - Running Programs

* execute your program like this

17

1
2
3
4
>
0
/
8

34 — 23

"Hello"

3.

y
|

"World"

18

* assignment with = and comparisons with ==
* for numbers +-*/7% as expected
* gpecial use of * for string concatenation
* gpecial use of Z for string formatting
* |ogic operators are words (and, or, not) not symbols
* basic printing command is print
* first assignment of a variable creates it
* variable types dont need to be declared

* Python figures out the variable type on its own

Pasic Pata Types

* |ntegers

* Floats

At this point we need to talk about

* S’HV\QS how Python treats variable names.

19

Understanding Reference Semantics

* 0ther lanquages have variables

&

——— ——

* assigning to a variable puts a value into a ‘box’

* box a’ contains now value 1’

* assigning another value fo the sawme variable replaces the
contents of the box

assigning one variable to another variable makes a copy
of the value and puts it into a new box
* box ‘b is a second box with a copy of the value fromboxa” ‘ ‘_

20

* Python has names

* in Python a name or identifier is like parcel tag
* here an integer 1 object has a tag labelled &

* reassigning moves the tag to another object

* assigning one nawme to another adds another tag

* here the name b’ is just a second tag attached to
the same object

21

Understanding Reference Semantics

et
!
G2%

—— —

Understanding Reference Semantics

* [oes it matter?

* For simple built-in datatypes assignments
hehave as expected.

* However, mutable datatypes behave differently! ey

22

Sequence Types: Tuples, Lists and Strings

* Tuple

* a simple, immutable ordered sequence of items

* jtems can be of mixed types, including collection types
* Strings

* immutable

* conceptually very wuch like a tuple
* List

* wutable, ordered sequence of items of mixed fypes
23

Sequence Types: Tuples, Lists and Strings

* All three sequence types share much of the same syntax
and functionality.

* key difference:
* tuples and sfrings are immutable
* lists are mutable

* exawmples shown here can be applied to all sequence types

24

Sequence Types: Definitions

* Tuples are defined using parenthesis (and commas).
* Lists are defined using square brackets (and commas).

* Strings are defined using quotes.

2%

Sequence Types: Accessing Members

* |ndividual members of a tuple, list or string can be
accessed using a square bracket notation.

* Sequence types are all 0 based.

26

Sequence Types: Negative Indices

* positive index: count from left, starting at 0

* pnegative index: count from right, starting with -1

27

Sequence Types: Slicing

* You can return a copy of the container with a subset of
the original mewmbers using a colon notation.

28

Tuples vs. Lists

* Lists are slower but more powerful than tuples.

* Lists can be modified, and they have lots of handy
operations we can perform on thewm (reverse, sort, count,
remove, index, insert, ...)

* Tuples are immutable and have fewer features.

* With the list() and tuple() functions lists and tuples can be
converted.

29

One More Datatype: Dictionaries

* Dictionaries store a mapping between a of keys and a set of
values.

* Keys can be any immutable (!) type.
* Values can be any type.
* A single dictionary can store values of different types.

* You can define, modify, view, lookup, and delete the key-value pair
in the dictionary.

30

>>> d = { ‘user’: ‘bozo’,
>>> d[‘user’]

‘bozo’

>>> d[‘pswd’]

1234

>>> d[‘bozo’]

‘pswd’ :1234}

Traceback (innermost last):
File ‘}<interactive input)>’
KeyError: bozo

line 1, in ?

>>> d = {‘user’: ‘bozo’,
>>> d[‘user’] = ‘clown’
>>> d

{ ‘user’ : ‘clown’,

‘pswd’ :1234}

‘pswd’ :1234}

>>> d['id’] = 45
>>> d
{ ‘user’ : ‘clown’,

‘id’ :45, ‘pswd’ :1234)

Pictionary Examples

>>> d = {‘user’: ‘bozo’,
>>> del d[‘user’]
>>> d

{‘'p’:1234, ‘i’ :34}

>>> d.clear ()

>>> d

{}

‘p’:1234, ‘i’ :34}
Remove one.

Remove all.

>>> d = {‘user’: ‘bozo’,
>>> d.keys ()

[‘user’, ‘p’,
>>> d.values|()
[‘bozo’, 1234, 34]
>>> d.items ()

[(‘user’, ‘bozo’),

‘p’:1234, ‘i’ :34}
List of keys.
\il]

List of values.

List of item tuples.
(‘p’,1234), (‘'i’,34)]

31

Whitespace

* Whitespace is meaningful in Python:
especially indentation and placement of
new lines.

* Use newline to end a line of code

* No braces { } to mark blocks of code!

f= (fn,'r")
for line in f:
try:
newline = line.rstrip('\n')

toks=newline.split(',"')

* Use indentation instead

break # don't plot spend lift

if(len(toks)!=4) and (len(toks)!=5) and (len(toks)!=7):
continue

if line.find("Lg0") > O:
bidType=toks [2]
lift= (toks[3])
name=toks [0]
updateDetails(summaryDetails, bidType + "-details-" + mydate, lift)
updateDetails(flightData, name + "-lift", lift)
updateDetails(flightData, name + "-liftPoints", 0.01) # fake variance for now
updateDetails(flightData, name + "-date", mydate)
if not name in flightKeys.keys():

flightKeys[name] = 1

32

Functions

* ‘def’ creates a function and assigns a name

* ‘return’ sends a result back to the caller

* arguments are passed by assignment

* arguments and return tvpes are not declared

def <name>(argl, arg2, ..., argN):

<statements>
return <value>

def times(x,vy):
return x*y

Passing Arguments to Functions

* Arguwents are passed by assignment.

* Passed arquments are assigned to local names.
* Assignment to argument names dont atfect the caller.

* Changing a mutable argument may affect the caller.

def changer (x,y):

X = 2 # changes local value of x only
y[0] = "hi’ # changes shared object

B — —————

34

Function Gotchas

* All functions in Python have return values!
* Functions without a return, return the special value ‘None’
* There is no function overloading in Python.

* Two different functions cant have the same name, even if they have
different arquwments.

* Functions can be used as any other data type. They can be:
* arguments to other functions
* return values of functions
* assigned to variables

* parts of lists, tuples, efe. o

list_of_functions = [f, g, h]

function list_of_functions:
function(a, b)

Things Not Covered

* 00 classes inheritance

* wodules

infrospection
* iterators, generators, comprehensions

* standard library

37

uosuosbwmum

i-d0d

=ainlo]n &
Ew_umhma_u_z_z =

nOEIRg -

gundiogss N>N_ww

* __._Q_Ood - ana9iq0 Y04

%smEm;uw
na ._8&3
hnzm oale

m>_u8m_oooo. y

Mtdu Y

wcmtm

I
ran

Oriented:.:;

Eg

Cami

b

0j0.d

ort
00

Proto
Mumps Verlog

SSem

_m.__._ﬁmoohn_
pIedIdAH

aSCal,
ect

J

=XML
iC
Y
=O0bj
OF
N5
<>
a8
ftalk

P
,0bol
onckvuﬂ\
f

NET
‘IB§“§icg
0

— nbV_.“.mw R e
e_mco_uoczn_h =

MqUISIQS
= Pm_ QEM cmsmma% ol

umm::wxxummrqp_=m5;mwmw—¢_nu
EM3IINGe]080T>
S phseq-oig07!

JavaScnp

Differences to ther
Languages

—

PEE—

38

Python vs. Java

* Python programs are usually expected to run slower.
* But they also take less time to develop.

* Python programs are usvally 3-5 times shorter than
equivalent Java code.

39

Python vs. Perl

* Both come from the same background.
* Have many similar features, but very different philosophies.

* Per| emphasises application-oriented tasks: file scanning, reqular expressions,
report generating features, ete.

* Python emphasises common programming methodologies: data structures, 00....
* Python comes close to Perl but will not be able to beat it in its core use cases.

* However, Python has an applicability well beyond Perl.

40

Python vs. O++

* Everything said about Java applies here as well.
* Python code usually 9-10 times shorter.

* There’s saying, that one Python programwer can finish in two
months what two C*++ programwmers cant complete in one year.

* Python shines as a glue language to combine components
written in O++.

41

Pros and Cons

* 3 Disadvantages of Python

* concurrency and parallelism possible but not very elegant
* server/client programming does not really require Python
* wmeta-programming (LISP) not a strong side of Python
* 3 Advantages of Python
* time-wasting matters of style (blocks and curly braces) dont exist
* The easy’ way of doing something in Python is usually the correct way.

* You can become productive with Python very quickly, even as a beginner.

42

Python in Physics

Is Python right for me?

| need... to manipulate big data structures

* You might want to look info Pandas.

pandas

: — ,"‘- , >, . .
Yit — -‘3 Lt + A + €t

* A software library written for Python for data manipulation

and analysis.

* data alignment

* time series functionality
* group by, pivoting,

b

PLOT

SPECIES

DEPTH

SLOPE

ORIENT
07/06/2013 14:47

08/06/2013 8:11
10/06/2013 12:51
11/06/2013 14:55
12/06/2013 20:26
13/06/2013 19:11
14/06/2013 9:50

14/06/2013 19:16
15/06/2013 10:36
16/06/2013 15:24
17/06/2013 16:44
18/06/2013 14:15
19/06/2013 15:05
20/06/2013 13:00
21/06/2013 16:42
25/06/2013 21:35

26{06/2013 20:48

1083.89
1078.73
1064.39
1060.71
1041.57
1064.02
1056.66
1067.33
1084.55
1058.87
1051.51
1058.5
1058.87
1179.18
1199.78
1160.41
1117

1022.22
1018.97
1015.18
1023.85
1005.42
1047.15

1037.4
1061.79
1102.98
1050.41
1040.65
1056.37
1062.33
1139.84
1158.27
1201.08
1137.13

1117.6
1114.06
1109.93
1117.01
1091.07

11341
1127.03
114884
1199.53
114471

11341
114884
1152.96
1252.58
1272.62
1229.59
1162.39

1103.12
1084 41
1060.64
1057.73
1038.13
1061
1055.92
1068.63
1099.13
1062.45
1054.47
1062.82
1062.45
1223.31
125454
12215
1184.46

1146.6
1138.12
1126.93
1125.24
1110.73
1132.72
1128.09
1140.05
1172.45
1136.57

1130.4
1140.05

1141.2

12473
1265.05
1231.48
1185.96

~J

1055.02
1048.54
1048
1055.56
1033.98
1073.35
1065.8
1086.84
1129.99
1079.83
1069.04
1084.68
1092.77
1169.9
1186.08
114995
1089.54

1152.46
114473
1137.39
113884
1119.61
1146.28

1140.1
1155.17
1188.41
1153.24
1146.28
1156.71
1159.42
1250.24
1255.65
1237.49

11842

104465
1027
899.481
1001.56
981.828
1018.69
1010.38
1029.6
1074.25
102482
1012.46
1025.44
1025.96
1211.32
1240.39
1190.03
1127.73

1104.03
1090.59
1056.97
1052.72
1035.03
1058.03
1052.37
1064.76

1096.6
1057.32
1047.42
1056.97
1057.32
1219.75
1253.72
1215.15
117481

1050.03
1037.39
1013.69
1017.9
1000
1037.39
1030.02
10485
1091.63
104265
1032.12
104423
1045.81
121274
1241.18
1199.58
1145.87

1088.2
1081.65
1073.29
1074.01
1058.01

1080.2
1075.83
1087.11

1116.2
1081.65
1078.74
1087.11
1087.47
1175.49
118476

1157.3
1115.11

1098.95
1090.11
1084.58
1086.05
1068.36
1093.05
1087.89
1102.27
1133.96
1100.42
1084.53
1104.48
1106.32
1191.45
1207.67
1177.81
1135.07

1193.37
1179.23
114461
1140.15
1113.34
1136.05
1130.09
114238
1177.37
1138.28
1123.39

1132.7
1133.07
1303.18
1331.47
1303.55
1263.35

1054.44
1045.56
1043.89
1050.56
1027.22
1065.56
1058.89
1075.44
1125.44
1074.44
1064.44
1078.33
1086.67
1176.11
1196.11
1157.78
1085.56

44

—

| need... to deal with big arrays, matrices

* NumPy extension was written adding support for
large, multi-dimensional arrays and matrices along ™
with a large library of high-level mathematical
functions to operate on these arrays.

11' :Pdilrrlffy’

* exawmple: element-wise wultiplication of large

arrays python Numpy
c = []

for 1 in range(len(a)): c =a * b

c.append(a[i]*b[i])

slow fast (C)

| need... to do scientific computing

* SciPy comes with support of: (S SciPy.org i

* optimisation

113 — —--""‘“ 11.3 - ; - -

11.1

11.1

* linear algebra

109 109

* [htegration U L
* interpolation i: N i: -

* special functions : . s
* FFT . 1
* ordinary differential equations J M L

* 8808 46

* watplotlib is a plotting library for Python

N1

| need... to visuvalise dafa/resulfs

—8
Peccentage of Bachelors degrees confemed to women ic tha 1S A hy majo (1970207 1]
e
e ’,/A\\\ P el T Ml P
e~ ~ .
A% / e FRLSTFEE — mMeasued nvwec«*m crnvu‘x&'n&: 11
y o _ N p— 0.10 Model of intergelde 24 oh\‘ \M!r{ chlFerce Nekds)
—— . o h - 2
=T N SN 5
;- . e RN A
i of . V\
3 - - S \\n\\\‘\\\\‘ A \ S
-] bt
260 02 i e -) N AW BV [7 \ 7
- ead uma N . rd
. e — e W
Loasud - ~——— - ,‘55_’&& SNNY R!“(i
yd e T R N AL
/ —— B~ o = 2N AN P
o . / i Bl - — == SN\ YO
200 Ta» we M / P e = - et vt S P
/ T — /(- Mo - —— : A ‘
- / O . "‘Q Sy) \'h '\ \
- -~ / L — Ee — L~ - -
a7=02 = % “j’(,?ré i~ et ~ iayical sa e n S
va -~ y 4 - -\ ~
- - - . e A il SR \ 3 FTAR] P /N
43202 e CLant e ,I’J \ s l‘!’:\ Nw [-2/
e Ve V 4 g . = rdis
e —— % e 7~ Dote o Arst versurtvent o 390K, . 483 - /
-— '/' -~ sdl B e
. ago | | ip —_— P a et e | g
'I‘ID? T3 2501M AN N2 18105 2Re 0 A0e107 150 Zee R MANC TS 00 N800) ,,/ -0.10 /
— ’ ——— P23 ,f’, 010 NOTITY 0N 0 1o
- — P —
”’ - -
<7/ — E— ———
% .
JPM daily _ ¢ 170 1580 1993 2000 201¢
nal ':"'II' ' ' -".'u — cwarkoughe
70 — =l RN P A \ \
§ B)(.,-"- -'A" . N < - - rA
i oV il W O L — s
30 N »‘ “
<1 = nwerraald
L I L
T T L)
i R=o7a : . ol =L
37.35 .
Y
3520 s
=
c .
37.05 E
(— —— a
34. ’
. HMACD E
)
0.08 2
Q.00 N
-0.058
o [»
.
(— — — T —— — — — T —T — ™
‘W 4 <% 2 1 0 1 2 3 4 5 € 7 € 98 1N 12 1 18 =® E— ————
e RNA-22q Expression [log, RPKM]
[— —

| need... ROOT

* Rootpy is a pythonic layer on Pyroot (which is a Python interface to ROOT)

* .does not intend to recreate ROOT or to severely alter the default
behaviour of ROOT.

* .08 not an analysis framework, but rather a library that one’s
analysis framework wmight use.

* é.p;ovid;as interface to scientific Python packages (Pandas, Numpy,
city, ...

48

Wait... There’s More

* QuTiP: simulation of dynamics of open quantum systems
* SywPy: library for symbolic mathematics

* scikit-learn: machine learning in Python

* astropy: single core package for astronomy in Python
* cosmocale: Python version of the Coswmology Calculator
* ALPS: algorithms and libraries for physics simulations
* SunPy: solar physics

* (T 49

50

Most Popular Coding Languages of 2014

Javascript
5.27%

Haskell
1.2%

@codeeval CO dé Eva\ www.codeeval.com

Python

* Python, yet another programming language

* There arent many pathological cases (in physics) that
wont allow the usage of Python.

* Quick development cycles make Python a true
alternative to other programwming options.

* Beginners make progress fast.

52

Goal of this Course

* Teach Python

* Use examples from computational physics.

53

The Course Itself

* |1’s qoing to be a lecture.

* But we strongly believe that active participation from your side will be
greatly beneficial for you!

* Active participation: exercises, questions, discussions, presentations (?)

* Course details (slides, references, articles of interest) will be collected on
our website: https:/pythonatchpf.wordpress.com

* (ode examples etc. will be available in our github repository:
https:/nithub.com/Carstenttensel/PythonAtCBPF

54

https://pythonatcbpf.wordpress.com
https://github.com/CarstenHensel/PythonAtCBPF

Course Qutline

* Python Basics - Variables and such

* Python Basics - Program flows and programwming styles
* [Pitferential Equations (Phase Space Portraits)

* Random Number Generators (Simulations)

* (Classical and Quantum Random Walks

* Topological Phases in Condensed Matter

* (Olassifications (Artificial Neural Networks, Pecision Trees)

59

YOURE FvaG!‘\&\ \
~ HOW? & A 2

\\
S . 5&*:\\

/

T LEARNED IT LAST
NIGHT! EVERYTHING

1S GO SIMPLE!
|

HELLO WORLD 1S JUST
print "Hello, world!"

I DUNNO.--.
DYNAMIC TYPING?
WHITEGPRCE?

’ COME JOIN V5!
PROGRAMMING
1S FUN AGAIN!

ITS A WHOLE

NEW WORLD
N UP HERE!

BUT HOW ARE
YOU FLYING?

I JUST TYPED

... T ALSO SAMPLED
EVERYTHING IN THE
MEDICINE CABINET
FOR COMPARISON.
(
BUT I THINK THIS
|5 THE PYTHON.

VA

