
Computational Physics
with PYTHON

Tobias Micklitz
Linneu Holanda
Carsten Hensel

1

Disclaimer

We’re not a computing engineers nor
computing scientists.

2

OUTLINE
Why?

Introduction to Python

Python basics

Differences to other programming languages

Applications in Physics

Summary/Outlook

3

Why?

4

Why Computational Physics?
Doing physics without computers is basically impossible
nowadays:

From information exchange over monitoring experiments
and simulations to complicated calculations.

Computers became an integral part of physics (or research
for that matter).

Now, if we want to (have to) use computers in our daily
work life we need to learn to communicate with them.

5

Why PYTHON?
Python is easy to use, powerful and versatile.

Perfect for beginners and experts alike.

Python’s readability makes it a great first programming
language.

It allows you to think like a programmer and not waste
time understanding mysterious syntax.

6

Which Programming Languages Do You Know/Use?
C or C++

Java

Perl

Scheme

Fortran

Python

Matlab

7

Introduction

8

Guido van Rossum

What Kind of Programming
Language is PYTHON?

9

PYTHON
open source general-purpose language

objected oriented, procedural, functional

easy to interface with C/ObjC/Java/Fortran

easy-ish to interface with C++ (via SWIG)

great interactive environment

10

The Zen of PYTHON
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
In the face of ambiguity, refuse the temptation to guess.
There should be one -and preferably only one-obvious way to do it.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea

11

Python Basics
Starting to Program in Python

12

The following is an overview of the language basics.

It’s not meant as a language tutorial.

We will cover everything in detail in the next part of the
lecture.

So, lean back and relax for now!

13

Which Version of PYTHON?
‘current’ version is 2.7.X

‘new’ version is 3.6.X

2.7.X will be last stable release of PYTHON 2.

Differences seem to be subtle for a beginners.

If you start writing PYTHON code, you might want to stick
with PYTHON 3

14

Running PYTHON
We will assume that PYTHON is installed on your system.

It comes pre-installed on Linux and Mac-OSX.

For Windows please see the instructions (and binaries) on
www.python.org

We highly recommend the anaconda Python distribution.

Easy to install and everything you need.

15

http://www.python.org

Running PYTHON - The PYTHON Interpreter
interactive interface to PYTHON:

interactive interface to PYTHON:

exit with CTRL-D
16

Running PYTHON - Running Programs
execute your program like this

or make it executable by adding to the top of your file:

17

A Code Example
assignment with = and comparisons with ==

for numbers +-*/% as expected

special use of + for string concatenation

special use of % for string formatting

logic operators are words (and, or, not) not symbols

basic printing command is print

first assignment of a variable creates it

variable types don’t need to be declared

Python figures out the variable type on its own
18

Basic Data Types
Integers

Floats

Strings At this point we need to talk about
how Python treats variable names.

19

Understanding Reference Semantics
other languages have variables

assigning to a variable puts a value into a ‘box’

box ‘a’ contains now value ‘1’

assigning another value to the same variable replaces the
contents of the box

assigning one variable to another variable makes a copy
of the value and puts it into a new box

box ‘b’ is a second box with a copy of the value from box ‘a’
20

Understanding Reference Semantics
Python has names

in Python a name or identifier is like parcel tag

here an integer 1 object has a tag labelled ‘a’

reassigning moves the tag to another object

assigning one name to another adds another tag

here the name ‘b’ is just a second tag attached to
the same object

21

Understanding Reference Semantics

Does it matter?

For simple built-in datatypes assignments
behave as expected.

However, mutable datatypes behave differently!

22

Sequence Types: Tuples, Lists and Strings
Tuple

a simple, immutable ordered sequence of items

items can be of mixed types, including collection types

Strings

immutable

conceptually very much like a tuple

List

mutable, ordered sequence of items of mixed types
23

Sequence Types: Tuples, Lists and Strings
All three sequence types share much of the same syntax
and functionality.

key difference:

tuples and strings are immutable

lists are mutable

examples shown here can be applied to all sequence types
24

Sequence Types: Definitions
Tuples are defined using parenthesis (and commas).

Lists are defined using square brackets (and commas).

Strings are defined using quotes.

25

Sequence Types: Accessing Members
Individual members of a tuple, list or string can be
accessed using a square bracket notation.

Sequence types are all 0 based.

26

Sequence Types: Negative Indices

positive index: count from left, starting at 0

negative index: count from right, starting with -1

27

Sequence Types: Slicing

You can return a copy of the container with a subset of
the original members using a colon notation.

28

Tuples vs. Lists
Lists are slower but more powerful than tuples.

Lists can be modified, and they have lots of handy
operations we can perform on them (reverse, sort, count,
remove, index, insert, …)

Tuples are immutable and have fewer features.

With the list() and tuple() functions lists and tuples can be
converted.

29

One More Datatype: Dictionaries
Dictionaries store a mapping between a of keys and a set of
values.

Keys can be any immutable (!) type.

Values can be any type.

A single dictionary can store values of different types.

You can define, modify, view, lookup, and delete the key-value pair
in the dictionary.

30

Dictionary Examples

31

Whitespace
Whitespace is meaningful in Python:
especially indentation and placement of
new lines.

Use newline to end a line of code

No braces { } to mark blocks of code!

Use indentation instead

32

Functions
‘def’ creates a function and assigns a name

‘return’ sends a result back to the caller

arguments are passed by assignment

arguments and return types are not declared

33

Passing Arguments to Functions
Arguments are passed by assignment.

Passed arguments are assigned to local names.

Assignment to argument names don’t affect the caller.

Changing a mutable argument may affect the caller.

34

Function Gotchas
All functions in Python have return values!

Functions without a return, return the special value ‘None’

There is no function overloading in Python.

Two different functions can’t have the same name, even if they have
different arguments.

Functions can be used as any other data type. They can be:

arguments to other functions

return values of functions

assigned to variables

parts of lists, tuples, etc. 35

Fun With Functions

36

Things Not Covered
OO, classes, inheritance

modules

introspection

iterators, generators, comprehensions

standard library

…

37

Differences to Other
Languages

38

Python vs. Java

Python programs are usually expected to run slower.

But they also take less time to develop.

Python programs are usually 3-5 times shorter than
equivalent Java code.

39

Python vs. Perl
Both come from the same background.

Have many similar features, but very different philosophies.

Perl emphasises application-oriented tasks: file scanning, regular expressions,
report generating features, etc.

Python emphasises common programming methodologies: data structures, OO,…

Python comes close to Perl but will not be able to beat it in its core use cases.

However, Python has an applicability well beyond Perl.

40

Python vs. C++
Everything said about Java applies here as well.

Python code usually 5-10 times shorter.

There’s saying, that one Python programmer can finish in two
months what two C++ programmers can’t complete in one year.

Python shines as a glue language to combine components
written in C++.

41

Pros and Cons
3 Disadvantages of Python

concurrency and parallelism possible but not very elegant

server/client programming does not really require Python

meta-programming (LISP) not a strong side of Python

3 Advantages of Python

time-wasting matters of style (blocks and curly braces) don’t exist

The ‘easy’ way of doing something in Python is usually the correct way.

You can become productive with Python very quickly, even as a beginner.
42

Python in Physics
Is Python right for me?

43

I need… to manipulate big data structures
You might want to look into Pandas.

A software library written for Python for data manipulation
and analysis.

data alignment

time series functionality

group by, pivoting, reshaping

…
44

I need… to deal with big arrays, matrices
NumPy extension was written adding support for
large, multi-dimensional arrays and matrices along
with a large library of high-level mathematical
functions to operate on these arrays.

example: element-wise multiplication of large
arrays Python Numpy

slow fast (C)45

I need… to do scientific computing
SciPy comes with support of:

optimisation

linear algebra

integration

interpolation

special functions

FFT

ordinary differential equations

… 46

I need… to visualise data/results
matplotlib is a plotting library for Python

47

I need… ROOT
Rootpy is a pythonic layer on Pyroot (which is a Python interface to ROOT)

…does not intend to recreate ROOT or to severely alter the default
behaviour of ROOT.

 …is not an analysis framework, but rather a library that one’s
analysis framework might use.

…provides interface to scientific Python packages (Pandas, Numpy,
SciPy, …)

48

Wait… There’s More
QuTiP: simulation of dynamics of open quantum systems

SymPy: library for symbolic mathematics

scikit-learn: machine learning in Python

astropy: single core package for astronomy in Python

cosmocalc: Python version of the Cosmology Calculator

ALPS: algorithms and libraries for physics simulations

SunPy: solar physics

… 49

Summary

50

51

Python
Python, yet another programming language

There aren’t many pathological cases (in physics) that
won’t allow the usage of Python.

Quick development cycles make Python a true
alternative to other programming options.

Beginners make progress fast.

52

Goal of this Course

Teach Python

Use examples from computational physics.

53

The Course Itself
It’s going to be a lecture.

But we strongly believe that active participation from your side will be
greatly beneficial for you!

Active participation: exercises, questions, discussions, presentations (?)

Course details (slides, references, articles of interest) will be collected on
our website: https://pythonatcbpf.wordpress.com

Code examples etc. will be available in our github repository:
https://github.com/CarstenHensel/PythonAtCBPF

54

https://pythonatcbpf.wordpress.com
https://github.com/CarstenHensel/PythonAtCBPF

Course Outline
Python Basics - Variables and such

Python Basics - Program flows and programming styles

Differential Equations (Phase Space Portraits)

Random Number Generators (Simulations)

Classical and Quantum Random Walks

Topological Phases in Condensed Matter

Classifications (Artificial Neural Networks, Decision Trees)
55

56

