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Abstract

A simplified version of the Kondo lattice model, the Kondo necklace model, is studied at finite temperature using a

representation for the localized and conduction electron spins in terms of local Kondo singlet and triplet operators. We

calculate the double time Green’s functions to get the dispersion relation of the excitations of the system. We show that

in 3-d there is an antiferromagnetic ordered state at finite temperatures, but in 2-d long-range magnetic order occurs

only at T ¼ 0:
r 2005 Published by Elsevier B.V.
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It is well known that the nature of the ground
state of the dense Kondo compounds results
basically from the competition between the Ru-
derman–Kittel-Kasuya–Yosida (RKKY) interac-
tion and the Kondo effect. This is governed by a
single parameter, the ratio J=t; where J is the
effective exchange between localized moments and
conduction electrons and t is the hopping term
related to the bandwidth of the latter. The RKKY
interaction is an indirect magnetic interaction
e front matter r 2005 Published by Elsevier B.V.
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between localized moments, mediated by the
polarized conduction electrons, which produces a
long-range-ordered magnetic ground state. On the
other hand, the Kondo effect favors the formation
of singlet states between localized moments and
conduction electrons generating a non-magnetic
ground state. As a result of the interplay between
these two effects, some Kondo compounds are
non-magnetic and are characterized by a heavy-
fermion behavior (Fermi-liquid) at very low
temperatures, while others order magnetically,
generally antiferromagnetically. The study of this
interplay is easily formulated using the Kondo
lattice model (KLM), which emphasizes the
importance of spin fluctuations neglecting charge
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fluctuations of the localized electrons [1]. The
KLM is a theoretical model for heavy fermions
that can be derived from the more fundamental
Anderson lattice model in the case of well-
developed local spin moments [2]. The KLM
consists of two different types of electrons, the
localized spins whose charge degrees of freedom
are suppressed and the conduction electrons that
propagate as charge carriers. It is described by

H ¼ �t
X
hi;ji
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y
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(1)

The first term represents the conduction band (cyi;s;
is a creation operator, t is the hopping between
nearest neighbors) and the second term is the
interaction between conduction electrons and
localized moments Si via the intra-site exchange
J. si are Pauli matrices. In order to study the
interplay between Kondo screening and the
RKKY interaction, Doniach proposed a simplified
model related to the one-dimensional Kondo
lattice, called the Kondo Necklace Model
(KNM). In this model, the conduction electrons
are replaced by a spin chain with XY coupling [1]

H ¼ t
X
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i t
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i t
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X
i

Si:si, (2)

where si and Si are independent sets of spin-1
2

Pauli
operators. The first term mimics electron propaga-
tion and in one dimension can be mapped by the
Jordan–Wigner transformation onto a band of
spinless fermions. The second term is the magnetic
interaction between conduction electrons and
localized spins Si via the coupling J, as in Eq.
(1). Usually, for two S ¼ 1

2
spins ti and Si placed

on a lattice site, the local Hilbert space is spanned
by four states consisting of one singlet and three
triplet states defined by, js4 ¼ syj04 and jta4 ¼

tyaj04 (a ¼ x; y; z). A representation of the im-
purity spins and conduction electron spins in terms
of these singlet and triplet operators is given by [3]
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where a; b; g represent components along the x, y

and z axes, respectively, and � is the antisymmetric
Levi–Civita tensor. This type of spin representa-
tion in terms of singlet and triplet (bond) operators
was first proposed by Sachdev and Bhatt to study
the properties of dimerized phases [3]. Substituting
this operator representation for the local and
conduction electron spins and considering that the
local Kondo spin singlets and triplets condense,
the latter at the AF reciprocal vector tk;x ¼ffiffiffiffiffi

N
p

tdk;Q þ Zk;x: Finally using the Green’s func-
tions to obtain the thermal averages of the singlet
and triplet correlation functions, we obtain for the
total mean-field energy,
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which generalizes the results of Ref. [4] to finite
temperatures. Above o0 is the dispersionless
energy level of the antiparallel spin-triplet excited

state, ok ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

k � ð2DkÞ
2

q
corresponds to the

excitation spectrum of the parallel spin-triplet
excited states, Z is the total number of the nearest
neighbors on the hyper-cubic lattice and m the

Fermi energy. When the order parameter t is

nonzero, minimizing Eq. (6) with respect to t yields

m ¼ 1
2

Zts2 � J=4; which makes the parallel spin-

triplet excitation spectrum gapless, ok ¼

1
2

Zts2
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p
: The mean field t represents

the AF order parameter. Finally, we derive the
saddle-point equations, and obtain at finite tem-
peratures
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Fig. 1. Phase diagram for the Kondo necklace in three

dimensions.
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In 2-d, at zero temperature, we find an antiferro-
magnetic ground for J=4to0:36; but no long-
range magnetic order at finite temperatures. In 3-
d, the equation determining the AF order para-
meter close to zero temperature is given by

0:44 �
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ffiffiffi
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where o0 ¼ 3ts2: The phase diagram is shown in
Fig. 1. There is a quantum critical point (QCP) at
xc ¼ ðJ=tÞc ¼ 2:65 and a line of finite temperature
phase transitions which rises from the QCP as

TN / jx � xcj
c; with a shift exponent c ¼ 1

3
:
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