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A wave kinetic equation equivalent to the Schrodinger-like equation for the electrons is derived
from relativistic theory in the eikonal approximation. This equation is used to study the interaction
of the relativistic electron beam in a wiggler field in the quantum regime, i.e., when the normalized
quantum free-electron laser parameter �̄�1. A general quantum dispersion relation and an
expression for free-electron laser instabilities are derived. Conditions for kinetic instability, which
takes into account the Landau damping effect, are established. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2833591�

I. INTRODUCTION

The free-electron laser �FEL� is today a very important
area of research. This device, which can generate high-power
coherent radiation using a relativistic electron beam moving
in a periodic magnetostatic field �wiggler�, is capable of op-
erating in a broad band of the electromagnetic spectrum even
at wavelengths not accessible to conventional lasers. This
tunable feature of the FEL is due to the fact that the wave-
length of the coherent radiation, �r, is mainly determined by
the relativistic electron beam energy and the wavelength or
period of the wiggler magnetic field, �w, which satisfy the
approximate resonant condition �r��w /2�r

2, where �r is the
normalized resonant electron beam energy. This characteris-
tic of the FEL has mainly motivated the construction of very
large experimental systems that aim to produce intense radia-
tion sources in the ultraviolet and x-ray domains.1,2 Recently,
Bonifacio et al.3 proposed and examined the FEL operation
in a self-amplified spontaneous emission �SASE� regime, in
which the electron motion is quantized and the propagation
or slippage effects are considered with startup from noise. In
an x-ray FEL, the quantum regime occurs when a quantum
free-electron laser parameter, which measures the average
number of photons scattered per particle, �̄�1. This condi-
tion means that one photon momentum recoil �k is larger
than the momentum spread.

In the present work, we return to the quantum theory of
the free-electron laser by using a different perspective. We
propose to establish a quantum theory for the electron beam
evolution in a wiggler field by using wave kinetics, which is
based on the evolution equation for the Wigner function of
the system,4 coupled with the interacting field by an adequate
ponderomotive potential. In recent years, considerable
progress has been made in wave kinetics, when applied to
different problems, in both the classical and the quantum
domain, such as plasma turbulence,5,6 nonlinear optics,7

Bose–Einstein condensates,8,9 or neutrino physics.10,11 Here,
we also show that it is possible to derive a Schrodinger type

of equation for the relativistic electron beam in the wiggler
field, by starting from the total energy E of an electron given
by the relativistic theory and using the eikonal approxima-
tion. In this paper, the wave kinetic equation for the Wigner
function is derived as in Ref. 12, where, in contrast with the
present work, the Schrodinger type of equation is not explic-
itly derived. This wave kinetic equation is coupled to the
radiation field through the ponderomotive potential due to
the beating between the radiation and the wiggler fields. Us-
ing a perturbative approach, we derive a kinetic dispersion
relation for the bunching oscillations of the electron beam,
taking into account the beam energy spread, which can lead
to a kinetic instability associated with a negative Landau
damping. This kinetic approach generalizes previous work.13

II. BASIC EQUATIONS

We first show that, starting from the exact relativistic
energy of an electron beam, we can derive an approximate
form of the wave equation that is formally identical to a
Schrodinger equation. In a free-electron laser, the electrons
move in a ponderomotive potential V�r� , t�, which is due to
the beating of the static periodic magnetic field �wiggler
field, in short� and the radiation field produced by the beam
electrons themselves. The single-electron total relativistic en-
ergy in this ponderomotive potential is

E = �p2c2 + me
2c4 + V�r�,t� . �1�

In the absence of the potential, V=0, the electrons would
have a constant energy E=��e, and a constant momentum
p� =�k�e. But, for V�0, these quantities will slowly vary in
space and time, and in order to account for such changes we
have to make the replacements

E → ���e + i
�

�t
�, p�e → ��k�e − i � � , �2�

which is valid in the eikonal approximation.15–17 This is
equivalent to the slowly varying envelope approximation
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	 ��

�t
	 � �e
�
, 
��
 � ke
�
 , �3�

and following Refs. 15–17 we get from Eqs. �1�–�3� the fol-
lowing wave equation:

i� �

�t
+ v�e · ��� +

c2

2�e
��2 − �1 −

me
2c4

�2�e
2��û · ��2��

=
1

�
V�r�,t�� , �4�

where û=ke
� /ke. Here, �e and ke

� are the frequency �energy�
and wave vector �momentum� of the electron in the absence
of interaction, respectively. The electron unperturbed veloc-

ity v�e associated with the energy��e� and momentum�ke
� �

spectra is defined by

v�e = cke
� �ke

2 +
me

2c2

�2 �−1/2


�ke

�

me
�5�

for the Compton wavelength of the electron �c=h /mec
	2
 /ke. Here, we are assuming that the N-electron system
can be described as a quantum ensemble represented by the
macroscopic matter-wave function ��r� , t�,12 where 
�
2 is the
probability amplitude of the electron ensemble normalized in
such a way that the electron density is given by ne= 
�
2. We
should point out that this normalization is valid since we are
considering that the electrons in the ensemble interact only
collectively through an electromagnetic potential, i.e., we are
assuming a pure state ensemble of electron �perfectly coher-
ent particle sample� to represent a relativistic electron beam
in a FEL. Defining new variables as

�� = r� − v�et, t� = t , �6�

and making ��e=�mec
2, with � being the relativistic factor

associated with the electron velocity v�e, the wave equation
�4� reduces to

i
��

�t�
+

�

2�me
� 1

�2

�2

���
2 +

�2

���
2 �� =

V

�
� , �7�

where �� =��û+��� has been used. Neglecting transverse ef-
fects ��2 /���

2 =0�, we obtain the following Schrodinger-like
equation of the form

i
��

�t�
+

�

2meff

�2�

��2 =
V

�
� , �8�

where �=z−vzt and meff=�3me have been used. If we now
apply this equation to describe the quantum state of nearly
resonant electrons interacting with the ponderomotive poten-
tial associated with a given wiggler field, we have to use

vz = vr � c
k

k + kw
, � = �r �� k

2kw
�1 + aw

2 � , �9�

where k, kw, and vr are the radiation, the wiggler field wave-
numbers, and the beam resonant velocity, respectively. Here,
aw=eAw /mec

2 is the normalized amplitude of the wiggler
field and �r is the associated normalized resonant energy. It

is also useful to introduce the following dimensionless vari-
ables:

� = 2�kwct�,  = �k + kw�z − �t�, �10�

where �k� is the electron phase for k	kw, and � is the
classical free-electron laser parameter20 defined as

� =
1

�r
�aw�p

4ckw
�2/3

. �11�

Replacing these new variables in the one-dimensional wave
equation �8�, we obtain

i
��

��
+

1

2�̄

�2�

�2 = Vp� , �12�

where we have also used the new quantities

�̄ = ��rmec

�k
��, Vp =

V

2��kwc
. �13�

In order to derive Eq. �12�, the FEL resonant condition k
=2kw�r

2 has been used. Note that this equation, which was
derived here in a simple way, is exactly the same equation as
given by a much heavier quantum field calculation.14 Al-
though these new variables and parameters are not strictly
necessary, they are used here for comparison with previous
work on the quantum theory of the free-electron laser, where
the electron beam is described by the matter-wave function
��� ,�. Equation �12� has to be solved with the following
expression for the ponderomotive potential:

Vp = − i�̄�A���ei − c.c.� �14�

as given in Ref. 12 with A=a /��̄N being the dimensionless
radiation amplitude such that �̄
A
2 estimates the ratio be-
tween the number of photons and electrons in the beam.
Finally, the evolution equation for the radiation field A can
be written in dimensionless form as12

� �

��
− i�̄�A = �

0

2



���,�
2e−i d

2

, �15�

where �̄= ��0−�r� /��r is the detuning parameter. This wave
equation is valid when the slippage effect is negligible. This
completes our discussion of the basic equations for the free-
electron laser.

III. WAVE KINETIC DESCRIPTION

Next we derive the equivalent wave kinetic equation for
a Wigner distribution function, W, to describe the ensemble
of the particles in the relativistic beam. This approach re-
places the Schrodinger description of a pure state ensemble
of particles �coherent particle sample� given by the matter-
wave function ��� ,� to a description that will also allow a
mixed-state sample of particles as in a real FEL relativistic
electron beam. Let us first rewrite Eq. �12� in the standard
form
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i�
�

��
� = �−

�2

2�

�2

�2 + Ṽ��,��� � H� �16�

with

� = �̄�, Ṽ � �Vp = − i��̄�A���ei − c.c.� . �17�

Let us now define the autocorrelation function for the wave
function as

C��,,s� = �*��, − s/2����, + s/2� . �18�

From Eq. �16�, it is then possible to derive an evolution
equation for the autocorrelation function in the form

�i�
�

��
+

�2

�

�2

��s
− 2 sinh� s

2

�

�
Ṽ��C = 0. �19�

We now define the Wigner function W�� , , p�, which is the
Fourier transform of the autocorrelation function

W��,,p� = �
−�

�

C��,,s�e−ipsds . �20�

It is obvious from here that the integral of this function over
the variable p is equal to the quantum probability, assuming
that we are using a normalized wave function

�
−�

�

W��,,p�
dp

2

= 
���,�
2. �21�

Inserting this new function in Eq. �19�, we obtain the desired
wave kinetic equation in the form

i�� �

��
+

�p

�

�

�
�W =� Ṽ�W− − W+�eiq dq

2

, �22�

where we assumed that W�=W�p�q /2�, and we used the
Fourier transform of the ponderomotive potential as defined
by the integral

Ṽ��,� =� Ṽ��,q�eiq dq

2

. �23�

Equation �22� is exactly equivalent to the Schrodinger equa-
tion �12� and can be used to study the interaction of the
relativistic electron beam with the nearly resonant pondero-
motive potential in a free-electron laser. Now, for the free-
electron laser, this potential takes the simple form given by
Eq. �17�. In this case, the wave kinetic equation, which is the
evolution equation for the Wigner function, reduces to

� �

��
+

�p

�

�

�
�W = �Ãei + c.c.��W− − W+� , �24�

where Ã= �̄A��� is the potential amplitude. This kinetic equa-
tion reduces to the Vlasov equation, which gives the classical
FEL limit under �̄	1, which means that the quantum recoil
effect due to single-photon process is negligible.

As a matter of fact, due to the periodicity in  between
�0,2
�, one should use the discrete Wigner function as de-
scribed in Ref. 19. This is because the momentum recoil is
not a continuous spectrum but a discrete one whose eigen-
value is a multiple of the photon momentum �k. This dis-

creteness can, however, be neglected in the quasiclassical
limit considered here, when the initial momentum spread is
larger than �k.

As we know, the free-electron laser instability corre-
sponds to a radiation-induced electron bunching, and can be
studied by using the above wave kinetic equation, coupled
with the radiation field equation. In order to study this insta-
bility, let us consider a perturbation of the form

A��� = ã exp�− i���, W = W0�,p� + W̃ exp�iq − i��� .

�25�

It is obvious from the above equations that coupling between

the perturbations W̃ and ã can only occur for q= �1. After
linearization with respect to the perturbed quantities, we ob-
tain from Eq. �24�

W̃ = i
�̄ã

�� − qv̄�
�W+ − W−� �26�

and, from the radiation field equation,

ã =
i

�� + �̄�
� dp

2

� dW̃ . �27�

From these two equations, we can then obtain the dispersion
relation for perturbations oscillating with frequency � and
wavenumber q, both in the electron beam and in the radiation
field. This relation takes the form

1 +
�̄

�� + �̄�
� �G0+ − G0−�

�� − qv̄�
dp = 0, �28�

where we have used the auxiliary function

G0�p� =
1

2

�

0

2


W0�,p�d . �29�

We have also used G0�=G0�p�q /2�. It is obvious that
G0�p� is the unperturbed Wigner function of the electron
beam averaged over the angular variable . In order to un-
derstand the meaning of the dispersion relation �28� and its
physical consequences, we first consider the case of a mo-
noenergetic electron beam, such that we can write

G0�p� = G0��p − p0� . �30�

Integration of Eq. �28� then leads to

1 +
�̄

�� + �̄�
� 1

��+ − qv̄0�
−

1

��− − qv̄0�
� = 0, �31�

where we have used

v̄0 =
�p0

�
, �� = � �

�q2

2�
. �32�

This can also be written in the alternative form

�� + �̄���� − qv̄0�2 − ��q2

2�
�2� =

�q2

�
�̄ . �33�

This expression shows the coupling between two distinct
modes, with dispersion relations given by
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�� + �̄� = 0, �� − qv̄0� =
�q2

2�
. �34�

The first mode, in the absence of detuning, is just given by
�=0. The second mode looks like a Doppler-shifted mode
with a photon recoil term. They can be seen as a field and a
beam mode with nearby frequencies, coupled through the
free-electron laser parameter �̄. It should be noticed that, if
we take v̄0=0, for a Dirac delta function centered at p0=0,
and �q2 /�=1 / �̄, which means q= �1 as pointed out above,
we are left with an equation for � of the form

�� + �̄���2 −
1

4�2� = 1. �35�

This equation coincides with that obtained in Ref. 3 for the
quantum free-electron laser if we replace �=−�. It is also
formally identical to the well known classical dispersion re-
lation, if we assume a classical distribution with a rectangu-
lar shape and a width equal to 2�̄.20 It has already been
shown that this equation has solutions with I����0, corre-
sponding to the free-electron laser instability. We should
point out that when the number of photons per particle is
much larger than unity, i.e., when �̄	1, this quantum FEL
dispersion relation reduces to the classical one with a maxi-

mum growth rate given by I���=�3 /2 at �̄=0, as pointed
out in Ref. 3. The wave kinetic formulation is, therefore, able
to reproduce such results. But its main interest is related to
the study of a more general situation in which the simple
distribution �30� is not valid. Let us go back to the general
quantum dispersion relation, given by Eq. �28�. This can be
rewritten in the form

1 + �r��,q� + i�i��,q� = 0, �36�

where the real part of the susceptibility function ��� ,q� is
given by

�r��,q� = −
�̄

�� + �̄�

�

�q
P� G0�z�� 1

�z − �+�
−

1

�z − �−��dz ,

�37�

where P� represents the principal part of the integral, and the
imaginary part of the susceptibility function contains the
contribution from the singularities,

�i��,q� = −

�̄

�� + �̄�

�

�q
�G0�z = �+� − G0�z = �−�� . �38�

In these equations, we have used a new variable defined as
z=qv̄, where v̄=�p /�. If the energy spread of the relativistic
electron beam is not very significant, Eq. �37� will lead to a
dispersion relation, 1+�r�� ,q�=0, which is not very much
different from the previous one given by Eq. �31� or Eq. �33�.
In addition, however, we have an extra source of instability
provided by the imaginary part of the susceptibility. This
leads to a kinetic damping coefficient determined by

� = −
�i��r,q�

���r/����=�r

, �39�

where we have taken �=�r+ i�. This shows that the free-
electron laser can also become unstable outside the range of
classical instability described by Eq. �31�, in cases in which
��0. This kinetic instability condition can more explicitly
be written as

� = 
�̄
�

�q

�G0��+� − G0�� − ��
���r/����=�r

. �40�

Taking v̄0=0, we can approximately write

��r

��
�

1

�� + �̄�
+

2�

��2 − �2q4/4m2�
. �41�

This means that, even if the free-electron laser is classically
stable, the wave kinetic description of its quantum behavior
predicts a kinetic instability for ��0. This can occur for an
appropriate inversion of population in the p states, and
shown by the numerator of Eq. �40�. Equation �41� general-
izes the results pointed out in Ref. 13 where �r is assumed to
be constant. In this approximation, the Landau damping ef-
fect becomes negligible. We should point out that this non-
dissipative kinetic effect can also be neglected if the denomi-
nator of Eq. �40� is large enough so that the kinetic instability
is suppressed.

IV. CONCLUSION

In conclusion, a wave kinetic theory was applied to for-
mulate the quantum free-electron laser theory. We have first
shown how a Schrodinger type of equation can be derived
from the relativistic theory, in the eikonal approximation, for
an electron beam, moving in the ponderomotive potential
that results from the beating between the wiggler field and
the radiation field. We have then established the wave kinetic
equation for the relativistic electron beam, which is exactly
equivalent to the one-dimensional Schrodinger type of equa-
tion describing the electron bunching in a wiggler. We have
then used this wave kinetic equation, coupled with the enve-
lope equation for the radiation field, to derive a general ki-
netic dispersion relation for perturbations in the beam. We
also have shown that, in the particular case of a monoener-
getic electron beam, this dispersion relation reduces to the
well known quantum results. However, for a beam with a
finite-energy distribution, new domains of instability can be
shown to exist. The present approach, therefore, leads to a
quite general description of the free-electron laser instability
taking into account the kinetic nondissipative effect known
as Landau damping. The present theoretical model can also
be adapted to the case of free-electron laser effects in
plasmas.21–24
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