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We consider a recently proposed nonlinear Schroedinger equation exhibiting soliton-like solutions

of the power-law form e
i(kx−wt)
q , involving the q-exponential function which naturally emerges within

nonextensive thermostatistics [ezq ≡ [1 + (1− q)z]1/(1−q), with ez1 = ez]. Since these basic solutions
behave like free particles, obeying p = h̄k, E = h̄ω and E = p2/2m (1 ≤ q < 2), it is relevant to
investigate how they change under the effect of uniform acceleration, thus providing the first steps
towards the application of the aforementioned nonlinear equation to the study of physical scenarios
beyond free particle dynamics. We investigate first the behaviour of the power-law solutions under
Galilean transformation and discuss the ensuing Doppler-like effects. We consider then constant
acceleration, obtaining new solutions that can be equivalently regarded as describing a free particle
viewed from an uniformly accelerated reference frame (with acceleration a) or a particle moving
under a constant force −ma. The latter interpretation naturally leads to the evolution equation
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with V (x) = max. Remarkably enough, the

potential V couples to Φq , instead of coupling to Φ, as happens in the familiar linear case (q = 1).
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The importance of symmetries in physics can hardly
be overestimated. A proper understanding of the rel-
evant symmetries exhibited by a physical phenomenon
encapsulates some of its most essential features, and usu-
ally leads to the most elegant and compact mathematical
formulation of the associated physical laws. Many im-
portant symmetries are directly related to changes in the
reference frame employed to describe physical systems.
Such is the case of the dynamical symmetries associated
with the Galilean transformation between inertial frames,
playing a central role in Newtonian mechanics and non-
relativistic quantum mechanics; the Lorentz transforma-
tion plays an analogous role in special relativity, both at
the classical and at the quantum levels. We can also men-
tion the invariance of statistical mechanics and thermo-
dynamics under uniform translation of the energy spec-
trum, which leads to the full freedom of choosing the zero
level of energies in any physical system (the above list of
examples is, of course, far from complete). A remarkable
feature of symmetry or invariance principles is that they
constitute powerful heuristic tools to extend knowledge
about particular or restricted instances of the behaviour
of physical systems to more general situations or scenar-
ios. The most spectacular example of this approach was
probably Einstein’s use of his Principle of Equivalence in
the development of General Relativity.

Symmetries with important physical implications are
also observed in pure mathematics. We may focus, for
example, on the Central Limit Theorem: the stability
of Gaussians in the space of distributions with regard to

adding (into the system) a finite or even infinite num-
ber of nearly independent random variables with finite
variance is at the heart of their robustness, and therefore
of their ubiquity in nature. The expansibility property
of an entropic functional (that is, its invariance when
adding new microscopic configurations with zero proba-
bility) constitutes another relevant example. It plays a
special role within the (Shannon-Khinchine) set of ax-
ioms that uniquely determine the mathematical form of
the Boltzmann-Gibbs (BG) additive entropy, basis of BG
statistical mechanics.

Symmetry considerations arise naturally in the study
of both linear and nonlinear dynamics. In the latter case,
however, the analysis of the relevant symmetries is usu-
ally much more difficult. The physically relevant nonlin-
ear evolution equations are highly diverse and describe
wide classes of physical systems: see for instance [1–4].
Among the most studied nonlinear differential equations
we have nonlinear versions of the Schroedinger [1, 5, 6]
and Fokker-Planck [2, 7, 8] ones. Here we focus primar-
ily on the soliton-like solutions of the recently proposed
nonlinear Schroedinger equation [5] inspired by nonex-
tensive statistical mechanics and the associated nonaddi-
tive entropies [9–11]. The nonlinear evolution equation
advanced in [5] (and the above mentioned soliton-like so-
lution) are implicitly assumed to hold with repect to an
inertial reference frame. Our main aim in the present
work is to investigate the form of these solutions when
described with respect to a uniformly accelerated refer-
ence frame. We consider first the behavior of the soliton-
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like solutions under Galilean transformations connecting
inertial frames. We then tackle the case of accelerated
frames.
The aforementioned soliton-like solutions are referred

to as q-plane waves and may be relevant in diverse areas
of physics, including nonlinear optics, superconductiv-
ity, plasma physics, and dark matter [6, 12]. The the-
ory within which q-plane waves emerged generalizes the
BG entropy and statistical mechanics, through the in-
troduction of an index q (q → 1 recovers the BG case).
Along this line, considerable progress was achieved, lead-
ing to generalized functions, distributions, various equa-
tions of physics, and new forms of the Central Limit
Theorem [13]. In particular, the q-Gaussian distribution,
which generalizes the standard Gaussian, appears natu-
rally by extremizing the q-entropy [9], or from the solu-
tion of the corresponding nonlinear Fokker-Planck equa-
tion [14], and has been successfully applied to the anal-
ysis of recent experimental results in various fields [10].
Among others, we may mention: (i) The velocities of
cold atoms in dissipative optical lattices [15]; (ii) The
velocities of particles in quasi-two dimensional dusty
plasma [16]; (iii) Single ions in radio frequency traps in-
teracting with a classical buffer gas [17]; (iv) The re-
laxation curves of RKKY spin glasses, like CuMn and
AuFe [18]; (v) Transverse momenta distributions at LHC
experiments [19].
Herein we discuss the following q-generalized

Schroedinger equation for a d-dimensional free par-
ticle of mass m [5]:
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where Φ0 guarantees the correct physical dimensionalities
for all terms (this scaling becomes irrelevant only for the
linear equation, i.e., q = 1). Its solutions are expressed
in terms of the q-exponential function expq(u) which, for
a pure imaginary iu, is defined as the principal value of

expq(iu) = [1 + (1− q)iu ]
1

1−q ; exp1(iu) ≡ exp(iu). (2)

The above function satisfies [20],

expq(±iu) = cosq(u)± i sinq(u) ,
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{

1

q − 1
arctan[(q − 1)u]

}

,

sinq(u) = ρq(u) sin

{

1

q − 1
arctan[(q − 1)u]

}

,

ρq(u) =
[

1 + (1− q)2u2
]1/[2(1−q)]

, (3)

expq(iu) expq(−iu) = [ρq(u)]
2=expq(−(q − 1)u2),

expq(iu1) expq(iu2) 6= expq [i(u1 + u2)] , (q 6= 1) (4)

As a consequence of Eqs. (3-4), a q-exponential with a
pure imaginary argument, expq(iu), presents an oscilla-
tory behavior with a u-dependent amplitude ρq(u). The

function expq(iu) complies with the physically important
property of square integrability for 1 < q < 3, whereas
the concomitant integral diverges in both limits q → 1
and q → 3 and also for q < 1 [21].

The d-dimensional q-plane wave is given by

Φ(~x, t) = Φ0 expq

[

i(~k · ~x− ωt)
]

, (5)

If we take into account that d expq(z)/dz = [expq(z)]
q

and d2 expq(z)/dz
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2q−1 we obtain, for the
d-dimensional Laplacian,
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Now, inserting the q-plane wave ansatz (5) into the NL
Schroedinger Eq. (1), we verify that the q-plane wave is
indeed a solution provided that the frequency ω and the

momentum k satisfy the relation ω = h̄k2

2m . Equivalently,
if one makes [5], according to the celebrated de Broglie

and Planck relations, the identifications ~k → ~p/h̄ and
ω → E/h̄, one verifies that the q-plane wave is a solution
of equation (1) with E = p2/2m, thus preserving the

energy spectrum of the free particle for all values of q.

Eq. (1) differs from previous formulations [1, 22] where
new nonlinear terms (usually a cubic nonlinearity in the
wave function) are added to the two existing linear terms.
The main differences between Eq. (1) and other propos-
als for NL Schroedinger equations are: (i) Instead of
adding an extra term in which the nonlinearity is intro-
duced, we generalize the spatial second-derivative term;
(ii) The equation, together with the proposed solution,
are easily extended from one to d dimensions; (iii) The
corresponding solution of Eq. (1) manifests nonlinearity
in both space and time, through a modulation in these
two variables, which keeps the norm finite for all (~x, t);
(iv) The well-known energy spectrum of a free particle
is preserved for all q. Therefore Eq. (1), together with
its solution Eq. (5), can be considered as candidates for
describing interesting types of physical phenomena.

Let us now investigate how the q-plane wave solution
is transformed under two basic types of changes in the
reference frame. As already mentioned, we consider first
a Galilean transformation connecting inertial reference
frames. Then, we analyze the aspect of the q-plane wave
solutions when “viewed” from an uniformly accelerated
reference frame. We shall consider the one dimensional
nonlinear Schroedinger equation. The extension to the
d-dimensional case is straightforward.

We shall assume that the nonlinear Schroedinger equa-
tion,
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holds in an inertial reference frame characterized by the
spatio-temporal coordinates (x′, t′) and that the system
under consideration is described by a q-plane wave solu-
tion

Ψ(x′, t′) = Ψ0 expq [i(kx
′ − ωt′)] . (8)

Let us consider now a Galilean transformation

t = t′; x = x′ − vt′, (9)

relating the original inertial frame (x′, t′) with a second
inertial frame (x, t) that moves with respect to the former
one with a uniform velocity v. To obtain a “new” solution
Φ(x, t) to the nonlinear Schroedinger equation expressed
in terms of the spatio-temporal coordinates (x, t), that
corresponds to the “old” solution (8), one may naively
just re-express (8) in terms of the new variables (that is,
substitute in (8) the old variables (x′, t′) by their expres-
sions in terms of the new variables (x, t)),

Ψ(x′, t′) → Φ(x, t)=Ψ(x + vt, t)
= Φ0 expq [i(k(x+ vt)−ωt)], Φ0=Ψ0 (10)

However, this procedure leads to a function of x and t
that does not satisfy the nonlinear Schroedinger equation
(as expressed in terms of the new variables (x, t)). In
order to obtain a valid solution it is necessary to add an
extra term to the argument of the q-exponential. Indeed,
it can be verified after some algebra that,
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does satisfy the nonlinear Schroedinger equation. The
extra term 1
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)

admits a clear physical in-
terpretation. If we recast (11) under the guise,
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(12)
it is plain that (12) has the form of a q-plane wave with
frequency ω̃ and wave number k̃ respectively given by

ω̃ = ω − kv +
mv2

2h̄
; k̃ = k −

mv

h̄
. (13)

Now, as shown in [5], the q-plane wave solutions to the
nonlinear Schroedinger equation are compatible with the
Planck and de Broglie relations connecting respectively
frequency and wave number with energy and momen-
tum: E = h̄ω and p = h̄k. Combining equations
(13) with the Planck and de Broglie relations we obtain

Ẽ = E − pv + mv2

2 and p̃ = p −mv, which are the cor-
rect Galilean transformations for the kinetic energy and
momentum of a particle of mass m obeying the (nonrel-
ativistic) energy-momentum relation E = p2/2m. These

considerations reinforce the validity of the Planck and de
Broglie relations for the q-plane wave solutions of Eq. (1).
Taking the limit q → 1 of the transformed solution

(11), on sees that the relation between the original solu-
tion Ψ(x′, t′) and the transformed one Φ(x, t) becomes,

Ψ(x′, t′) → Φ(x, t)

= exp

[

−
i

h̄

(

mv2

2
t+mvx

)]

Ψ(x+ vt, t),(14)

thus recovering the transformation rule corresponding to
the linear Schroedinger equation [23].
Let us now consider a uniformly accelerated reference

frame. The corresponding spatio-temporal coordinates
(x, t) are

t = t′; x = x′ −
1

2
at′2 = x′ −

1

2

F

m
t′2 , (15)

where (x′, t′) are the variables associated with an inertial
frame, a is the constant acceleration of reference frame
(x, t), and a = F

m . As in the previous discussion, we as-
sume that the nonlinear Schroedinger equation (7) holds
in the inertial frame (x′, t′), and also that in this frame
our system is described by the q-plane wave solution (8).
Again, simply re-writting the q-plane wave solution (8) in
terms of the new variables (x, t) does not yield a solution
of the nonlinear Schroedinger equation. As in the above
Galilean transformation case, new terms are needed in
the argument of the q-exponential to obtain a valid solu-
tion. Let us consider the ansatz,
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(16)
Inserting (16) in the right and the left hand sides of the
nonlinear Schroedinger equation yields
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Comparing (17) with (18) one verifies that the ansatz
(16) satisfies the nonlinear equation,
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(19)
where V (x) = Fx. The nonlinear Eq. (19) can be inter-
preted as describing the motion of a particle of mass m
under a constant force −F (with the associated poten-
tial function V = Fx). This is consistent with the well-
known fact that the behavior of a free particle with re-
spect to a uniformly accelerated reference frame is equiv-
alent to the the behavour of a particle in an inertial ref-
erence frame moving under the effect of a constant force.



4

In the limit F → 0, Eq. (19) reduces to the nonlinear
Schroedinger equation for a free particle introduced in [5],
and solution (16) reduces to the corresponding q-plane
wave solution. Also, q → 1 in Eq. (19) corresponds to
the standard linear Schroedinger equation for a particle
of mass m moving under a constant force −F . An in-
teresting feature of equation (19) is that the potential V
couples to Φq, instead of coupling to Φ, as happens in the
standard linear case (q = 1). Consistently, the q-plane
wave Φ(x, t) = Φ0 expq [i(kx− ωt)] is not only a solu-
tion of the free-particle nonlinear Schroedinger equation

(when h̄ω = h̄2k2

2m ), but also of the nonlinear equation
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with a constant potential V0, provided that h̄ω = h̄2k2

2m +
V0, which, using the Planck and de Broglie relations, be-

comes E = p2

2m + V0, as expected.
Considering now the limit q → 1 of the transformed

solution (16), we verify that the original solution Ψ(x′, t′)
and the transformed one Φ(x, t) are linked through

Ψ(x′, t′) → Φ(x, t)

= exp

[

−
i
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F 2t3

6m

)]
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2m
, t

)

,(21)

thus recovering the transformation rule associated with
the linear Schroedinger equation [23].
We have investigated the effect of uniform acceleration

on q-plane waves, soliton-like solutions of a recently pro-
posed non-linear Schroedinger equation associated with
non-extensive thermostatistics. We first studied the be-
haviour of these solutions under Galilean transformations
relating different inertial frames and obtained the trans-
formation rule satisfied by the q-plane waves. This rule
turns out to be fully consistent with the de Broglie and
Planck relations, thus providing further support to the
validity of these relations for the q-plane wave solutions.
Then we derived the transformation law yielding new
solutions corresponding to the aforementioned q-plane
waves when “viewed” from uniformly accelerated frames.
In the limit q → 1 the transformation laws advanced here
reduce to those associated with time dependent solutions
of the standard, linear Schroedinger equation. The ac-
celerated q-plane wave solutions investigated here admit
two possible interpretations: they can be viewed as de-
scribing a free particle as “seen” from a uniformly ac-
celerated frame or, alternatively, as describing a particle
moving under the effect of a constant force. In fact, the
non-linear Schroedinger equation governing these solu-
tions (when expressed in terms of the accelerated frame’s
coordinates) incorporates a new term involving a poten-
tial function V (x). This equation indicates that, within
the present generalization of Schroedinger equation, the
potential V (x) “couples” to a power of the wave func-

tion, Φq, instead of coupling just to the wave function Φ,
as happens with the linear Schroedinger equation. This
result opens the door for the study of a variety of simple
potentials, which should result in physical applications.
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