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We consider a recently proposed nonlinear Schroedinger equation exhibiting soliton-
like solutions of the power-law form ei(kx−wt)

q , involving the q-exponential func-
tion which naturally emerges within nonextensive thermostatistics [ez

q ≡ [1 + (1
− q)z]1/(1−q), with ez

1 = ez]. Since these basic solutions behave like free particles,
obeying p = �k, E = �ω, and E = p2/2m (1 ≤ q < 2), it is relevant to inves-
tigate how they change under the effect of uniform acceleration, thus providing
the first steps towards the application of the aforementioned nonlinear equation to
the study of physical scenarios beyond free particle dynamics. We investigate first the
behaviour of the power-law solutions under Galilean transformation and discuss the
ensuing Doppler-like effects. We consider then constant acceleration, obtaining new
solutions that can be equivalently regarded as describing a free particle viewed from
an uniformly accelerated reference frame (with acceleration a) or a particle moving
under a constant force − ma. The latter interpretation naturally leads to the evolution

equation i� ∂
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]

+ V (x)
(
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with V (x) = max .

Remarkably enough, the potential V couples to �q, instead of coupling to �, as
happens in the familiar linear case (q = 1). C© 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4798999]

The importance of symmetries in physics can hardly be overestimated. A proper understanding
of the relevant symmetries exhibited by a physical phenomenon encapsulates some of its most
essential features, and usually leads to the most elegant and compact mathematical formulation
of the associated physical laws. Many important symmetries are directly related to changes in
the reference frame employed to describe physical systems. Such is the case of the dynamical
symmetries associated with the Galilean transformation between inertial frames, playing a central
role in Newtonian mechanics and non-relativistic quantum mechanics; the Lorentz transformation
plays an analogous role in special relativity, both at the classical and at the quantum levels. We can
also mention the invariance of statistical mechanics and thermodynamics under uniform translation
of the energy spectrum, which leads to the full freedom of choosing the zero level of energies in
any physical system (the above list of examples is, of course, far from complete). A remarkable
feature of symmetry or invariance principles is that they constitute powerful heuristic tools to
extend knowledge about particular or restricted instances of the behaviour of physical systems to
more general situations or scenarios. The most spectacular example of this approach was probably
Einstein’s use of his Principle of Equivalence in the development of General Relativity.

Symmetries with important physical implications are also observed in pure mathematics. We
may focus, for example, on the Central Limit Theorem: the stability of Gaussians in the space
of distributions with regard to adding (into the system) a finite or even infinite number of nearly
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independent random variables with finite variance is at the heart of their robustness, and therefore of
their ubiquity in nature. The expansibility property of an entropic functional (that is, its invariance
when adding new microscopic configurations with zero probability) constitutes another relevant
example. It plays a special role within the (Shannon-Khinchine) set of axioms that uniquely deter-
mine the mathematical form of the Boltzmann-Gibbs (BG) additive entropy, basis of BG statistical
mechanics.

Symmetry considerations arise naturally in the study of both linear and nonlinear dynamics. In
the latter case, however, the analysis of the relevant symmetries is usually much more difficult. The
physically relevant nonlinear evolution equations are highly diverse and describe wide classes of
physical systems: see for instance Refs. 1–4. Among the most studied nonlinear differential equations
we have nonlinear versions of the Schroedinger1, 5, 6 and Fokker-Planck2, 7, 8 ones. Here we focus
primarily on the soliton-like solutions of the recently proposed nonlinear Schroedinger equation5

inspired by nonextensive statistical mechanics and the associated nonadditive entropies.9–11 The
nonlinear evolution equation advanced in Ref. 5 (and the above mentioned soliton-like solution)
is implicitly assumed to hold with respect to an inertial reference frame. Our main aim in the
present work is to investigate the form of these solutions when described with respect to a uniformly
accelerated reference frame. We consider first the behaviour of the soliton-like solutions under
Galilean transformations connecting inertial frames. We then tackle the case of accelerated frames.

The aforementioned soliton-like solutions are referred to as q-plane waves and may be relevant
in diverse areas of physics, including nonlinear optics, superconductivity, plasma physics, and dark
matter.6, 12 The theory within which q-plane waves emerged generalizes the BG entropy and statistical
mechanics, through the introduction of an index q (q → 1 recovers the BG case). Along this line,
considerable progress was achieved, leading to generalized functions, distributions, various equations
of physics, and new forms of the Central Limit Theorem.13 In particular, the q-Gaussian distribution,
which generalizes the standard Gaussian, appears naturally by extremizing the q-entropy,9 or from the
solution of the corresponding nonlinear Fokker-Planck equation,14 and has been successfully applied
to the analysis of recent experimental results in various fields.10 Among others, we may mention:
(i) The velocities of cold atoms in dissipative optical lattices;15 (ii) The velocities of particles in
quasi-two dimensional dusty plasma;16 (iii) Single ions in radio frequency traps interacting with a
classical buffer gas;17 (iv) The relaxation curves of Ruderman-Kittel-Kasuya-Yosida (RKKY) spin
glasses, like CuMn and AuFe;18 (v) Transverse momenta distributions at Large Hadron Collider
(LHC) experiments.19

Herein we discuss the following q-generalized Schroedinger equation for a d-dimensional free
particle of mass m:5

i�
∂

∂t

[
�(�x, t)

�0

]
= − 1

2 − q

�
2

2m
∇2

[
�(�x, t)

�0

]2−q

(q ≥ 1) , (1)

where �0 guarantees the correct physical dimensionalities for all terms (this scaling becomes
irrelevant only for the linear equation, i.e., q = 1). Notice that, in spite of the apparent singularity in
q = 2, it can be verified after some algebra that Eq. (1) is well defined for this value of the parameter
q. It should be emphasized that Eq. (1) has important structural differences with respect to other
nonlinear Schroedinger equations appearing in the literature, which contain extra nonlinear terms
(usually a cubic nonlinearity) involving only the wave function itself. In contrast with those equations,
the evolution equation (1) considered here has a power-law nonlinearity inside the Laplacian term.
This gives rice to q-plane wave solutions that are compatible with the Planck and de Broglie relations
and behave like free particles. These solutions are expressed in terms of the q-exponential function
exp q(u) which, for a pure imaginary iu, is defined as the principal value of

expq (iu) = [1 + (1 − q)iu ]
1

1−q ; exp1(iu) ≡ exp(iu). (2)

The above function satisfies,20

expq (±iu) = cosq (u) ± i sinq (u),

cosq (u) = ρq (u) cos

{
1

q − 1
arctan[(q − 1)u]

}
,
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sinq (u) = ρq (u) sin

{
1

q − 1
arctan[(q − 1)u]

}
,

ρq (u) = [
1 + (1 − q)2u2

]1/[2(1−q)]
, (3)

expq (iu) expq (−iu)= [ρq (u)]2 =expq (−(q − 1)u2),

expq (iu1) expq (iu2) �= expq [i(u1 + u2)] , (q �= 1). (4)

As a consequence of Eqs. (3) and (4), a q-exponential with a pure imaginary argument, exp q(iu),
presents an oscillatory behaviour with a u-dependent amplitude ρq(u). The function exp q(iu) com-
plies with the physically important property of square integrability for 1 < q < 3, whereas the
concomitant integral diverges in both limits q → 1 and q → 3 and also for q < 1.21

The d-dimensional q-plane wave is given by

�(�x, t) = �0 expq

[
i(�k · �x − ωt)

]
. (5)

If we take into account that dexp q(z)/dz = [exp q(z)]q and d2exp q(z)/dz2 = q[exp q(z)]2q − 1 we obtain,
for the d-dimensional Laplacian,

∇2

(
�

�0

)
= −q

(
d∑

n=1

k2
n

)(
�

�0

)2q−1

. (6)

Now, inserting the q-plane wave ansatz (5) into the NL Schroedinger equation (1), we verify that
the q-plane wave is indeed a solution provided that the frequency ω and the momentum k satisfy
the relation ω = �k2

2m . Equivalently, if one makes,5 according to the celebrated de Broglie and Planck

relations, the identifications �k → �p/� and ω → E/�, one verifies that the q-plane wave is a solution
of Eq. (1) with E = p2/2m, thus preserving the energy spectrum of the free particle for all values
of q.

As already mentioned, Eq. (1) differs from previous formulations1, 22 where new nonlinear terms
are added to the two existing linear terms. The main differences between Eq. (1) and other proposals
for NL Schroedinger equations are: (i) Instead of adding an extra term in which the nonlinearity
is introduced, we generalize the spatial second-derivative term; (ii) The equation, together with the
proposed solution, is easily extended from one to d dimensions; (iii) The corresponding solution of
Eq. (1) manifests nonlinearity in both space and time, through a modulation in these two variables,
which keeps the norm finite for all (�x, t); (iv) The well-known energy spectrum of a free particle
is preserved for all q. Therefore Eq. (1), together with its solution Eq. (5), can be considered as
candidates for describing interesting types of physical phenomena.

Let us now investigate how the q-plane wave solution is transformed under two basic types of
changes in the reference frame. As already mentioned, we consider first a Galilean transformation
connecting inertial reference frames. Then, we analyze the aspect of the q-plane wave solutions when
“viewed” from an uniformly accelerated reference frame. We shall consider the one-dimensional
nonlinear Schroedinger equation. The extension to the d-dimensional case is straightforward.

We shall assume that the nonlinear Schroedinger equation,

i�
∂

∂t ′

[
�(x ′, t ′)

�0

]
= − 1

2 − q

�
2

2m

∂2

∂x ′2

[
�(x ′, t ′)

�0

]2−q

(q ≥ 1), (7)

holds in an inertial reference frame characterized by the spatio-temporal coordinates (x′, t′) and that
the system under consideration is described by a q-plane wave solution

�(x ′, t ′) = �0 expq

[
i(kx ′ − ωt ′)

]
. (8)

Let us consider now a Galilean transformation

t = t ′; x = x ′ − vt ′, (9)

relating the original inertial frame (x′, t′) with a second inertial frame (x, t) that moves with respect
to the former one with a uniform velocity v. To obtain a “new” solution �(x, t) to the nonlinear
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Schroedinger equation expressed in terms of the spatio-temporal coordinates (x, t), that corre-
sponds to the “old” solution (8), one may naively just re-express (8) in terms of the new variables
(that is, substitute in (8) the old variables (x′, t′) by their expressions in terms of the new variables
(x, t)),

�(x ′, t ′)→�(x, t)=�(x + vt, t)

=�0 expq [i(k(x + vt)−ωt)], �0 =�0. (10)

However, this procedure leads to a function of x and t that does not satisfy the nonlinear Schroedinger
equation (as expressed in terms of the new variables (x, t)). In order to obtain a valid solution it is
necessary to add an extra term to the argument of the q-exponential. Indeed, it can be verified after
some algebra that

�

�0
=

[
1 − i(1 − q)

{
ωt − k(x+vt)+ 1

�

(
mvx+ 1

2
mv2t

)}] 1
1−q

(11)

does satisfy the nonlinear Schroedinger equation. The extra term 1
�

(
mvx+ 1

2 mv2t
)

admits a clear
physical interpretation. If we recast (11) under the guise,

�

�0
=

[
1 − i(1 − q)

{(
ω − kv + mv2

2�

)
t −

(
k − mv

�

)
x

}] 1
1−q

, (12)

it is plain that (12) has the form of a q-plane wave with frequency ω̃ and wave number k̃, respectively,
given by

ω̃ = ω − kv + mv2

2�
; k̃ = k − mv

�
. (13)

Now, as shown in Ref. 5, the q-plane wave solutions to the nonlinear Schroedinger equation are
compatible with the Planck and de Broglie relations connecting, respectively, frequency and wave
number with energy and momentum: E = �ω and p = �k. Combining equations (13) with the Planck
and de Broglie relations we obtain Ẽ = E − pv + mv2

2 and p̃ = p − mv, which are the correct
Galilean transformations for the kinetic energy and momentum of a particle of mass m obeying the
(nonrelativistic) energy-momentum relation E = p2/2m. These considerations reinforce the validity
of the Planck and de Broglie relations for the q-plane wave solutions of Eq. (1).

Taking the limit q → 1 of the transformed solution (11), on sees that the relation between the
original solution �(x′, t′) and the transformed one �(x, t) becomes,

�(x ′, t ′)→�(x, t)

=exp

[
− i

�

(
mv2

2
t + mvx

)]
�(x + vt, t), (14)

thus recovering the transformation rule corresponding to the linear Schroedinger equation.23

Let us now consider a uniformly accelerated reference frame. The corresponding spatio-temporal
coordinates (x, t) are

t = t ′; x = x ′ − 1

2
at ′2 = x ′ − 1

2

F

m
t ′2 , (15)

where (x′, t′) are the variables associated with an inertial frame, a is the constant acceleration of
reference frame (x, t), and a = F

m . As in the previous discussion, we assume that the nonlinear
Schroedinger equation (7) holds in the inertial frame (x′, t′), and also that in this frame our system
is described by the q-plane wave solution (8). Again, simply re-writing the q-plane wave solution
(8) in terms of the new variables (x, t) does not yield a solution of the nonlinear Schroedinger
equation. As in the above Galilean transformation case, new terms are needed in the argument of
the q-exponential to obtain a valid solution. Let us consider the ansatz,

�

�0
=

[
1 − i(1 − q)

{
ωt − k

(
x+ Ft2

2m

)
+ F

�

(
xt+ Ft3

6m

)}] 1
1−q

. (16)
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Inserting (16) in the right- and the left-hand sides of the nonlinear Schroedinger equation yields

i�
∂

∂t

(
�

�0

)
=

[
�ω − �k Ft

m
+ Fx + F2t2

2m

](
�

�0

)q

(17)

and

− 1

2 − q

�
2

2m

∂2

∂x2

[(
�

�0

)2−q
]
=

[
�

2k2

2m
− �k Ft

m
+ F2t2

2m

](
�

�0

)q

. (18)

Comparing (17) with (18) one verifies that the ansatz (16) satisfies the nonlinear equation,

i�
∂

∂t

(
�

�0

)
=− 1

2 − q

�
2

2m

∂2

∂x2

[(
�

�0

)2−q
]

+ V (x)

(
�

�0

)q

, (19)

where V (x) = Fx . The nonlinear equation (19) can be interpreted as describing the motion of a
particle of mass m under a constant force − F (with the associated potential function V = Fx). This
is consistent with the well-known fact that the behavior of a free particle with respect to a uniformly
accelerated reference frame is equivalent to the behaviour of a particle in an inertial reference frame
moving under the effect of a constant force. In the limit F → 0, Eq. (19) reduces to the nonlinear
Schroedinger equation for a free particle introduced in Ref. 5, and solution (16) reduces to the
corresponding q-plane wave solution. Also, q → 1 in Eq. (19) corresponds to the standard linear
Schroedinger equation for a particle of mass m moving under a constant force − F. An interesting
feature of Eq. (19) is that the potential V couples to �q, instead of coupling to �, as happens in the
standard linear case (q = 1). Consistently, the q-plane wave �(x, t) = �0 exp q[i(kx − ωt)] is not
only a solution of the free-particle nonlinear Schroedinger equation (when �ω = �

2k2

2m ), but also of
the nonlinear equation

i�
∂

∂t

(
�

�0

)
=− 1

2 − q

�
2

2m

∂2

∂x2

[(
�

�0

)2−q
]

+ V0

(
�

�0

)q

, (20)

with a constant potential V0, provided that �ω = �
2k2

2m + V0, which, using the Planck and de Broglie

relations, becomes E = p2

2m + V0, as expected.
Considering now the limit q → 1 of the transformed solution (16), we verify that the original

solution �(x′, t′) and the transformed one �(x, t) are linked through

�(x ′, t ′)→�(x, t)

=exp

[
− i

�

(
Fxt+ F2t3

6m

)]
�

(
x+ Ft2

2m
, t

)
, (21)

thus recovering the transformation rule associated with the linear Schroedinger equation.23 Other
nonlinear equations previously studied in the literature also behave like the standard linear
Schroedinger equation, in the sense that they “pick up” phases (like in (21)) when accelerated
(or under Galilean transformations). In contrast, in the case of the evolution equation studied here
the extra terms appearing in the transformed solutions, strictly speaking, are not “phases” because
they cannot (except in the limit q → 1) be written as a (complex) multiplicative factor of modulus
1 (as happens in (21)). These extra terms are, however, of special relevance in connection with the
Planck and de Broglie relations discussed in the present work.

We have investigated the effect of uniform acceleration on q-plane waves, soliton-like solutions
of a recently proposed nonlinear Schroedinger equation associated with non-extensive thermostatis-
tics. We first studied the behaviour of these solutions under Galilean transformations relating different
inertial frames and obtained the transformation rule satisfied by the q-plane waves. This rule turns
out to be fully consistent with the de Broglie and Planck relations, thus providing further support to
the validity of these relations for the q-plane wave solutions. Then we derived the transformation
law yielding new solutions corresponding to the aforementioned q-plane waves when “viewed” from
uniformly accelerated frames. In the limit q → 1 the transformation laws advanced here reduce to
those associated with time dependent solutions of the standard, linear Schroedinger equation. The
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accelerated q-plane wave solutions investigated here admit two possible interpretations: they can be
viewed as describing a free particle as “seen” from a uniformly accelerated frame or, alternatively, as
describing a particle moving under the effect of a constant force. In fact, the nonlinear Schroedinger
equation governing these solutions (when expressed in terms of the accelerated frame’s coordinates)
incorporates a new term involving a potential function V (x). This equation indicates that, within
the present generalization of Schroedinger equation, the potential V (x) “couples” to a power of
the wave function, �q, instead of coupling just to the wave function �, as happens with the linear
Schroedinger equation. This result opens the door for the study of a variety of basic potentials such
as, among others, potential steps, square wells and barriers, and harmonic potentials which, although
simple, may provide valuable insights concerning possible physical applications.

Partial financial support from CNPq and FAPERJ (Brazilian agencies), and from the Projects
FQM-2445 and FQM-207 of the Junta de Andalucia is acknowledged.
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