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We consider two kinds of solutions of a recently proposed field theory leading to a nonlinear Schrödinger
equation exhibiting solitonlike solutions of the power-law form ei(kx−wt)

q , involving the q exponential
function naturally arising within nonextensive thermostatistics [ez

q ≡ [1 + (1 − q)z]1/(1−q), with ez
1 = ez]. These

fundamental solutions behave like free particles, satisfying p = !k, E = !ω, and E = p2/2m (1 ! q < 2). Here
we introduce two additional types of exact, analytical solutions of the aforementioned field theory. As a first step
we extend the theory to situations involving a potential energy term, thus going beyond the previous treatment
concerning solely the free-particle dynamics. Then we consider both bound, stationary states associated with
a confining potential and also time-evolving states corresponding to a linear potential function. These types of
solutions might be relevant for physical applications of the present nonlinear generalized Schrödinger equation.
In particular, the stationary solution obtained shows an increase in the probability for finding the particle localized
around a certain position of the well as one increases q in the interval 1 ! q < 2, which should be appropriate
for physical systems where one finds a low-energy particle localized inside a confining potential.
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I. INTRODUCTION

Nonlinear partial differential equations constitute important
tools for the description of a wide family of physical systems
and processes [1–3]. Among the most intensively investigated
nonlinear differential equations we have the nonlinear versions
of the Schrödinger [3–6] and the Fokker-Planck [7–11]
equations. Here we focus primarily on a recently advanced
nonlinear Schrödinger equation (NLSE) [4] that may be
related to nonextensive statistical mechanics and the associated
nonadditive entropies [12–14].

The free-particle NLSE proposed in [4] has a formal
resemblance to the power-law nonlinear diffusion equation
and to the associated nonlinear Fokker-Planck equation [7],
which has been successfully applied to the study of a
variety of subjects ranging from diffusion in porous media
to processes in finance [15]. This resemblance is, of course,
already apparent in the q → 1 linear limit. In fact, the close
structural connection between the linear Schrödinger and the
Fokker-Planck equations [16] suggests an exploration of
the dynamics of a complex Schrödinger-like counterpart of
the power-law nonlinear diffusion equation. This complex
equation is obtained by replacing the diffusion (real) constant
by a (purely imaginary) complex number. As happens in
the linear scenario, this modification gives rise to profound
changes in the associated dynamics. The main new feature
exhibited by the nonlinear evolution equation introduced in [4]
is that it admits solitonlike solutions where the space-time
dependence of the wave function "(x,t) occurs solely through
a single variable of the form x − vt , corresponding to a space
displacement at a constant velocity v without change in the
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wave function’s shape. These solitonlike solutions are known
as q plane waves and are compatible with the Planck and
de Broglie relations, satisfying E = !w and p = !k, with
E = p2/2m. Furthermore, under Galilean transformations the
q plane waves recover the transformations rules of the linear
Schrödinger equation [6]. The NLSE satisfied by the q plane
waves can be obtained from a field theory based upon an action
variational principle [5]. These properties suggest that the
q-plane-wave solutions of the NLSE can be regarded as a new
field-theoretical description of particle dynamics that may be
relevant in diverse areas of physics, including nonlinear optics,
superconductivity, plasma physics, and dark matter [5,17].

The theoretical framework within which q plane waves
emerged generalizes the Boltzmann-Gibbs (BG) entropy and
statistical mechanics, through the introduction of an index q
(q → 1 recovers the BG case). Considerable progress has been
achieved along these lines of research, leading, for instance, to
nonlinear extensions of various important equations of physics
and new forms of the central limit theorem [18]. Central to
these developments are the q Gaussian distributions, which
generalize the standard Gaussian distribution and appear natu-
rally when optimizing the q entropy [12], or from the solution
of the corresponding nonlinear Fokker-Planck equation [10].
The q Gaussians have been successfully applied to the analysis
of recent experimental results in various fields [13]. Among
others, we may mention the following: (i) the velocities of
cold atoms in dissipative optical lattices [19]; (ii) the velocities
of particles in quasi-two-dimensional dusty plasma [20]; (iii)
single ions in radio-frequency traps interacting with a classical
buffer gas [21]; (iv) the relaxation curves of Ruderman-
Kittel-Kasuya-Yosida (RKKY) spin glasses, like CuMn and
AuFe [22]; (v) transverse momenta distributions in Large
Hadron Collider (LHC) experiments [23]. Recent progress in
the study of the dynamics given by the nonlinear Schrödinger
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equation advanced in [4] includes the investigation of its
behavior under Galilean transformations [6], of q Gaussian
wave packet solutions [24], of quasistationary solutions [25],
and of its connection with the Bohmian approach to quantum
mechanics [26].

It was shown in [5] (see also [27]) that, besides the wave
function "(x,t) and its associated evolution equation, an
extra field #(x,t) must be introduced satisfying a differential
equation coupled with the one originally advanced in [4]. The
coupled nonlinear equations jointly governing the dynamics
of the fields " and # are then

i! ∂

∂t

[
"(x⃗,t)

"0

]
= − 1

2 − q

!2

2m
∇2

[
"(x⃗,t)

"0

]2−q

,

(1)

i!
∂

∂t

[
#(x⃗,t)

#0

]
= !2

2m

[
"(x⃗,t)

"0

]1−q

∇2
[
#(x⃗,t)

#0

]
,

where q " 1 and the real, positive constants "0 and #0
guarantee the correct physical dimensionalities for all terms
(notice that this scaling becomes irrelevant only for the
linear equation, i.e., q = 1). The constants "0 and #0 have
to be regarded as parameters characterizing the evolution
equation (1) itself (that is, not as part of the initial conditions).
The first of the equations (1) may be seen as the master
equation, whereas the second is the slave.

Consistently with the evolution equations (1), for any q and
an arbitrary finite volume %, the probability density for finding
a particle at time t in a given position x can be defined as

ρ(x⃗,t) = 1
2%"0#0

["(x⃗,t)#(x⃗,t) + "∗(x⃗,t)#∗(x⃗,t)]. (2)

In general, this density satisfies the balance equation,

∂ρ

∂t
+ ∇⃗ · J⃗ = R, (3)

where

J⃗ = i!
4m%"

2−q
0 #0

[−"1−q(∇⃗")# + ("∗)1−q(∇⃗"∗)#∗

+"2−q (∇⃗#) − ("∗)2−q(∇⃗#∗)], (4)

and

R = i(1 − q)!
4m%"

2−q
0 #0

["1−q(∇⃗") · (∇⃗#)

− ("∗)1−q(∇⃗"∗) · (∇⃗#∗)]. (5)

Note that in the limit q → 1 the second equation in (1)
reduces to the complex conjugate of the first one. That is,
when q → 1 the function #(x,t) = "∗(x,t), with "(x,t) a
solution of the first equation in (1), satisfies the second field
equation in (1). It is interesting to note that for the q-plane-
wave solutions of the equation governing the field "(x,t), the
field [#(x,t)/#0] = ["(x,t)/"0]−q is a solution of the second
equation in (1), yielding the probability density ρ(x,t) = 1

%
for all values of q, and consequently satisfying a continuity
equation.

In spite of the apparent singularity exhibited by the first
equation in (1) when q = 2, it is easy to verify that this equation
is well defined for this value of q. It should be emphasized

that the coupled equations (1) have important structural differ-
ences with respect to other nonlinear Schrödinger equations
appearing in the literature, which contain extra nonlinear terms
(usually a cubic nonlinearity) involving only the wave function
itself. In particular, and most importantly, the first evolution
equation in (1) here is endowed with a power-law nonlinearity
within the Laplacian term. This equation can be regarded as
a q-generalized Schrödinger equation that describes a free
particle of mass m moving in d spatial dimensions [4].

As already mentioned, the field equations (1) admit q-
plane-wave solutions that are compatible with the Planck
and de Broglie relations and behave like free particles. These
solutions are expressed in terms of the q-exponential function
expq(u) which, for a purely imaginary iu, is defined as the
principal value of

expq(iu) = [1 + (1 − q)iu ]1/(1−q),

exp1(iu) ≡ exp(iu). (6)

The above function satisfies [28]

expq(±iu) = cosq(u) ± i sinq(u),

cosq(u) = rq(u) cos
{

1
q − 1

arctan[(q − 1)u]
}
,

sinq(u) = rq(u) sin
{

1
q − 1

arctan[(q − 1)u]
}
,

rq(u) = [1 + (1 − q)2u2]1/[2(1−q)], (7)

expq(iu) expq(−iu) = [rq(u)]2 = expq[−(q − 1)u2],

expq(iu1) expq(iu2) ̸= expq[i(u1 + u2)] (q ̸= 1). (8)

As a consequence of Eqs. (7) and (8), a q exponential with a
purely imaginary argument, expq(iu), presents an oscillatory
behavior with a u-dependent amplitude rq(u). The function
expq(iu) complies with the physically important property of
square integrability for 1 < q < 3, whereas the concomitant
integral diverges in both limits q → 1 and q → 3 and also for
q < 1 [29].

The d-dimensional q-plane-wave solution of Eqs. (1) is
given by

"(x⃗,t) = "0 expq[i(k⃗ · x⃗ − ωt)],
(9)

#(x⃗,t) = #0 exp−q
q [i(k⃗ · x⃗ − ωt)].

If we take into account that d expq(z)/dz = [expq(z)]q

and d2 expq(z)/dz2 = q[expq(z)]2q−1 we obtain, for the d-
dimensional Laplacian,

∇2
(

"

"0

)α

= −α(α + q − 1)
( d∑

n=1

k2
n

)(
"

"0

)α+2q−2

,

(10)

∇2
(

#

#0

)
= −q

( d∑

n=1

k2
n

)(
#

#0

)q−2

,

with α any real constant. Now, inserting the q-plane-wave
ansatz (9) into the nonlinear field equations (1), we verify
that the q plane wave is indeed a solution provided that the
frequency ω and the momentum k satisfy the relation ω = !k2

2m
.
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Equivalently, if one makes [4], according to the celebrated de
Broglie and Planck relations, the identifications k⃗ → p⃗/! and
ω → E/!, one verifies that the q plane wave is a solution of
Eq. (1) with E = p2/2m, thus preserving the energy spectrum
of the free particle for all values of q. Therefore (1), together
with its solution Eq. (9), can be considered as candidates for
describing interesting types of physical phenomena.

The q-plane-wave solutions (9) have been so far the only
known solutions of the coupled nonlinear field equations (1).
In the case of the q-generalized NLSE [the first equation in (1)]
other exact solutions besides q plane waves have been recently
discovered. For instance, a family of solutions to the NLSE
has been obtained exhibiting the form of q Gaussian wave
packets [24]. Needless to say, an important feature of the linear
Schrödinger equation is the superposition principle, so that
one can express the solution as a linear combination of other
functions. However, for the NLSE, the superposition principle
is not satisfied by all solutions. In this context, it is very relevant
to explore a considerable number of different solutions for the
nonlinear equations.

The purpose of the present work is twofold. We are
going to consider the extension of the nonlinear field theory
proposed in [5] beyond the free-particle dynamics, and to study
additional families of exact solutions of the associated field
equations. In particular, we shall obtain solutions which can
be decomposed into spatial and temporal parts. It is easy to
see that the q plane wave cannot be decomposed in such a
way when q ̸= 1. Using the method of separation of variables
we find different ordinary differential equations for the two
fields appearing in (1). Furthermore, we are going to discuss
a different family of exact analytical solutions of Eqs. (1)
corresponding to a linear potential function.

II. PARTICLE IN A POTENTIAL

The generalization of the Schrödinger equation proposed in
Ref. [4] was formulated only for free particles. The q-plane-
wave solution expresses a possible dynamics of a particle
of mass m in a space in the absence of external potentials.
Symmetry considerations applied to this formalism [6] have
shown important features allowing this theory to be extended
beyond free-particle dynamics. For example, consistent with
what happens in the standard Schrödinger equation, the
behavior of a free particle in the NLSE in the presence of
uniform acceleration can be interpreted as describing a free
particle under a constant force. However, instead of the usual
coupling between the potential and the function ψ , within the
NLSE formalism, the potential is attached to ψq [6].

Following the main conclusions derived from the analysis
conducted in [6], it is possible to reformulate the field theory
introduced in [5] in order to incorporate appropriate potential
energy terms in the associated field equations and thus extend
the theory beyond free-particle dynamics. This allows for
discussing the dynamics of a particle in the presence of an
external potential V (x). The appropriate Lagrangian density
is given by

L = Lfree − V (x)#̃(x,t)"̃(x,t)q − V (x)#̃∗(x,t)"̃∗(x,t)q,

(11)

where Lfree is the Lagrangian density of the free particle [5],
"̃ = "/"0 and #̃ = #/#0.

From the above equation, using the Euler-Lagrange equa-
tion for each field, we obtain the NLSE

i! ∂

∂t

[
"(x,t)

"0

]
= − 1

2 − q

!2

2m

∂2

∂x2

[
"(x,t)

"0

]2−q

+V (x)
[
"(x,t)

"0

]q

, (12)

together with the new field equation

i! ∂

∂t

[
#(x,t)

#0

]
= !2

2m

[
"(x,t)

"0

]1−q
∂2

∂x2

[
#(x,t)

#0

]

− qV (x)
(

"(x,t)
"0

)q−1[
#(x,t)

#0

]
. (13)

An interesting feature of the field equations (12) and (13)
is that in the first equation the potential V couples to "q ,
instead of coupling to ", as happens in the standard linear
Schrödinger equation (q = 1). In the case of the second
field equation (13) the potential couples to "(q−1)#. In
this regard it is interesting to note that the q-plane-wave
solution given by the fields "(x,t) = "0 expq [i(kx − ωt)]
and #(x,t) = #0 expq [i(kx − ωt)]−q is a solution not only of
the nonlinear field equations corresponding to a free particle
(with !ω = !2k2

2m
) but also of the nonlinear equations

i! ∂

∂t

[
"

"0

]
= − 1

2 − q

!2

2m

∂2

∂x2

[
"

"0

]2−q

+ V0

[
"

"0

]q

,

i! ∂

∂t

[
#

#0

]
= !2

2m

[
"

"0

]1−q
∂2

∂x2

[
#

#0

]

− q

[
#

#0

]
V0

[
"

"0

]q−1

, (14)

with a constant potential V0, provided that !ω = !2k2

2m
+ V0,

which, using the Planck and de Broglie relations, becomes
E = p2

2m
+ V0, as expected.

The field equations (12) and (13) still have an associated
density ρ of the form (2), which satisfies the balance
equation (3) with the probability density current (4) and

R = i(1 − q)!
4m%"

2−q
0 #0

["1−q(∇⃗") · (∇⃗#)

− ("∗)1−q(∇⃗"∗) · (∇⃗#∗)]

+ (1 − q)
2i!%"

q
0 #0

["q# − ("∗)q#∗]V (x⃗). (15)

Note that the presence of the potential V (x⃗) gives rise to a
new term in R not appearing in the previous expression (5).
As a consequence of the NLSE for a particle in the presence of
external potentials, we can observe that decomposed solutions
are not admitted anymore. The exception is the infinite
potential well that we address in the following section.
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III. STATIONARY STATES

Now, we introduce solutions for Eq. (12) that can be
decomposed into spatial and temporal parts. Let us start with
the case of a free particle, V (x) = 0; considering "(x,t) =
ψ1(x)ψ2(t) we obtain

− !2

2m(2 − q)
ψ10

ψ1(x)
d2

dx2

[
ψ1(x)
ψ10

]2−q

= i!
[

ψ20

ψ2(t)

]2−q
d

dt

[
ψ2(t)
ψ20

]
= ϵ, (16)

where ϵ, ψ10, and ψ20 are constants. Thus, we can write

d2

dx2

[
ψ1(x)
ψ10

]2−q

+ ϵ
2m(2 − q)

!2

[
ψ1(x)
ψ10

]
= 0 (17)

and

d

dt

[
ψ2(t)
ψ20

]
+ i

ϵ

!

[
ψ2(t)
ψ20

]2−q

= 0. (18)

By direct calculus, we find the expressions

ψ1(x) = ψ10 exp(q+1)/2

[
i

√
4mϵ

(3 − q)!2
x

]
(19)

and

ψ2(t) = ψ20 exp2−q[−iϵt/!]. (20)

Now we take into account Eqs. (19) and (20) to obtain

"(x,t) = ψ0

[1+(1−q)ikx
√

2
3−q

− (1−q)2 k2x2

2(3−q)

1 − (q − 1) iϵt
!

]1/(1−q)

.

(21)
In particular, we emphasize that in the limit of (q − 1) → 0 if
we retain only terms of order q − 1, the present decomposed
solution coincides with the family of solutions given by q plane
waves "(x,t) = ψ0 expq[i(kx − wt)] in the same limit.

The extra field φ(x,t) can also be decomposed as #(x,t) =
φ1(x)φ2(t), so using Eq. (13) we obtain

− !2

2m

φ10

φ1(x)

[
ψ1(x)
ψ10

]1−q
d2

dx2

[
φ1(x)
φ10

]

= −i!
[

ψ20

ψ2(t)

]1−q
φ20

φ2(t)
d

dt

[
φ2(t)
φ20

]
= µ, (22)

which yields [φ1(x)/φ10] = [ψ1(x)/ψ10]−1 and [φ2(t)/φ20] =
[ψ2(t)/ψ20]−1, where we have observed that the constant
µ = ϵ in order that the solution presented here can also be
characterized by the probability density ρ(x,t) = 1

%
for all

values of q.
The extension of these results to the d-dimensional case

is straightforward. We observe that the solutions of the d-
dimensional NLSE can also be decomposed into spatial and
temporal parts. In contrast to the linear case, however, the
spatial wave cannot be decomposed into d different coordinate
components. In any case, we have ρ(r⃗ ,t) = 1

%d for all d.

A. The infinite potential well

An important feature of the decomposed solution con-
cerns the stationarity for the NLSE. In this situation we
can investigate a time-independent probability density as
in standard quantum mechanics for a state with definite
energy spectrum. As an example, we are going to solve the
problem of a particle in an infinite rectangular potential well,
where

V (x) =
{

0, 0 < x < a,
∞ otherwise. (23)

Notice that the superposition principle cannot be applied
here; thus we cannot use the solution ψ1(x) as given by Eq. (19)
to solve Eq. (17) in the presence of the above potential V (x).
Boundary conditions assert that ψ1(x) must be taken purely
real. A family of solutions can be obtained by writing Eq. (17)
as [30]

dϕ(x)
dx

=
√

2

√

1 − 2mϵ(2 − q)2ϕ(3−q)/(2−q)

(3 − q)!2
, (24)

where we have defined ϕ(x) = [ψ1(x)/ψ10]3−q . It is straight-
forward to obtain

√
2
(

2mϵ(2 − q)2

(3 − q)!2

)(2−q)/(3−q)

x + δ

=
∫ ϕ(x)/Aq

0

dz√
1 − z(3−q)/(2−q)

, (25)

where Aq and δ are constants of integration and |z| < 1. We
could not find an analytical solution for this integral. However,
defining

x ≡ Sin−1
q (y) =

∫ y

0

dz√
1 − z(3−q)/(2−q)

, (26)

we can write the relation y = Sinq(x), whose period is 4τq ,
where

τq =
∫ 1

0

dz√
1 − z(3−q)/(2−q)

=
√

π
(2 − q)/((2 − q)/(3 − q))

(3 − q)/((7 − 3q)/(6 − 2q))
. (27)

These equations express a generalization of the trigono-
metric function, recovered in the limit q = 1, i.e., Sin1(x) ≡
sin(x). One should notice that this generalization differs from
the sinq(x) function that is currently used in nonextensive
statistics [28]; in particular, one important distinction concerns
the fact that |Sinq(x)| ! 1 for 1 ! q < 2. In Fig. 1 we exhibit
the function Sinq(x) versus x for typical values of q in the
interval 1 ! q < 2. Since τq decreases for increasing q (cf.
Fig. 2), the function Sinq(x) becomes contracted for higher
values of q as shown in Fig. 1.

Observe that we can also define Cosq(y) ≡
√

1 − Sinq(y)2,
or even in a more general way, Cosq(y) ≡ [1 − Sinq(y)αq ]1/αq .
Further analysis of the properties of these functions would
be useful, but it is out of the scope of the present
study.
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-4.0 -2.0 0.0 2.0 4.0x
-1.0

-0.5

0.0

0.5

1.0
Si
n q
(x
)

➙q=1

➙q=2

FIG. 1. (Color online) Generalized trigonometric function de-
fined in Eq. (26). The function Sinq (x) [Sin1(x) ≡ sin(x)] is exhibited
versus x for typical values of q, such that in the x interval shown
(x ∈ [−2τq ,2τq ] in each case) one has q = 1, 1.2, 1.5, 1.8, and 2
(from left to right for x < −1), the curves essentially overlap in the
interval −1 < x < 1, whereas the order gets inverted for x > 1. One
notices that |Sinq (x)| ! 1 for 1 ! q < 2.

Now, considering

kq ≡
√

2
(

2mϵ(2 − q)2

(3 − q)!2

)(2−q)/(3−q)

, (28)

from Eqs. (25) and (26) we have (kqx + δ) = Sin−1
q [ϕ(x)/Aq].

Thus ϕ(x) = AqSinq(kqx + δ), and the stationary solution for
the NLSE can be written as

ψ1(x) = ψ10[AqSinq(kqx + δ)]1/(2−q). (29)

1.0 1.2 1.4 1.6 1.8 2.0q
1.0

1.2

1.4

1.6

τ q

FIG. 2. The dimensionless quantity τq [cf. Eq. (27)], associated
with the periodicity of the function Sinq (x) (which presents a period
4τq ), is exhibited versus q in the interval 1 ! q < 2, so that one has
as particular cases τ1 = π/2 and τ2 = 1.

1 1.2 1.4 1.6 1.8 2q
100

101

102

103

104

µ n
(q
)

n=1

n=5

FIG. 3. (Color online) The dimensionless ratio µn(q) = ϵn(q)/
ϵ1(1) [ϵ1(1) = (!2/2m)(π/a)2], for a particle in a one-dimensional
infinite potential well of size a [cf. Eq. (23)], is exhibited versus q,
for the quantum numbers n = 1,2, . . . ,5.

Considering the boundary condition ψ1(0) = ψ1(a) = 0,
we have δ = 0 and kqa = 2τqn, where n = 1,2,3, . . . , so
that

ψ1(x) = ψ1(x,q,n) =
[
Ãq,nSinq

(
2nτqx

a

)]1/(2−q)

. (30)

Then the expression

ϵn(q) = (3 − q)!2

2m(2 − q)2

(√
2nτq

a

)(3−q)/(2−q)

(31)

generalizes the energy spectrum of the standard quantum well,
ϵn(1) = (!2/2m)(nπ/a)2. In Fig. 3 we present the dimen-
sionless ratio µn(q) = ϵn(q)/ϵ1(1) versus q, for the quantum
numbers n = 1,2, . . . ,5. One notices the same qualitative
behavior of ϵn(q) on varying q, for all values of n, and as
expected ϵn(q) increases on increasing n for any q in the
interval considered. However, one notices that ϵn(q) diverges
as q → 2, for all values of n.

The extra field φ1(x) is obtained by inserting the solution
for ψ1(x) of Eq. (30) into Eq. (13), so that by choosing µ =
(2 − q)ϵ we find

φ1(x) = [ψ1(x)]2−q . (32)

Finally, we can write the probability density as

ρ(x) = Re{[Sinq(2nτqx/a)](3−q)/(2−q)}
a

∫ 1
0 dx Re{[Sinq(2nτqx/a)](3−q)/(2−q)}

, (33)

where Re{s} stands for the real part of s and we have
used Eq. (2), as well as the normalization condition for
finding the amplitude Ãn,q . It is important to stress that
Re{[Sinq(2nτqx/a)](3−q)/(2−q)} > 0 for 1 < q < 4/3 and that
this quantity may also be positive for other values of q
outside this interval, e.g., whenever the parameter q satisfies
the inequalities (3/2) + 2k < (3 − q)/(2 − q) < (5/2) + 2k,
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FIG. 4. (Color online) The dimensionless probability density
aρ(x) [cf. Eq. (33)] for a particle in a one-dimensional infinite
potential well of size a is represented for typical values of q, namely,
q = 1, 1.25, and 1.8 (from bottom to top), in the cases n = 1 (a)
and n = 2 (b). In (a) all probability densities exhibit a maximum at
(x/a) = 1/2. In (b) all probability densities are zero at (x/a) = 1/2,
presenting a symmetry around this point, with maxima at (x/a) = 1/4
and (x/a) = 3/4, respectively.

with k integer and k " 1. However, there are values of q
in the range 4/3 < q < 2 for which one obtains ρ(x) < 0,
representing situations that deserve further analysis. Such
cases may be compared with what happens to the Wigner
function, which may present negative values for some values
of its arguments, and so it cannot be considered as a simple
probability distribution, and is often called a quasidistribution
(see, e.g., Ref. [31]).

In Fig. 4 we present the dimensionless probability density
aρ(x) for a particle in an infinite potential well, in the
cases n = 1 [panel (a)] and n = 2 [panel (b)] and typical
values of q, namely, q = 1, 1.25, and 1.8. For n = 1 one has
an argument 0 ! (2τqx/a) ! 2τq , so that Sinq(2τqx/a) " 0
(cf. Fig. 1). From Fig. 4(a) one notices that q plays an

important role for a particle with an energy ϵ1(q), in what
concerns its confinement around the central region of the
well: by increasing q in the range 1 < q < 2 the particle
becomes more confined around (x/a) = 1/2. In this context,
the present solution with an index q > 1 may be relevant
for systems where one finds a low-energy particle localized
in the central region of a confining potential. In Fig. 4(b)
we show aρ(x) in the case n = 2 and the same values
of q considered in Fig. 4(a). Now one has an argument
0 ! (4τqx/a) ! 4τq , so that Sinq(4τqx/a) may yield negative
values for (x/a) > 1/2 (cf. Fig. 1). As mentioned above,
in these cases one has always real positive probabilities for
1 < q < 4/3, as well as other values of q outside this interval
(e.g., q = 1.8). In these cases the corresponding probability
densities present a symmetry with respect to (x/a) = 1/2,
with maxima at (x/a) = 1/4 and (x/a) = 3/4. Once again,
the present solution with an index q > 1 may be relevant
for systems where one finds a low-energy particle with the
same probability for being found in two different regions,
symmetrically localized around the central region of the
well.

IV. UNIFORMLY ACCELERATED STATES

Let us now consider a uniformly accelerated reference
frame. The corresponding spatiotemporal coordinates (x,t)
are

t = t ′, x = x ′ − 1
2
at ′2 = x ′ − 1

2
F

m
t ′2 , (34)

where (x ′,t ′) are the variables associated with an inertial frame,
a is the constant acceleration of the reference frame (x,t),
a = F

m
, and F is a constant with dimensions of force. We

assume that the nonlinear field equations (12) and (13) (with
zero potential, V = 0) hold in the inertial frame (x ′,t ′), and also
that in this frame our system is described by the q-plane-wave
solution (9). Simply rewriting the q-plane-wave solution (9)
(which in this section we are going to denote by "̃ and #̃) in
terms of the new variables (x,t) does not yield a solution of
the nonlinear Schrödinger equation. Similarly to what occurs
with both Galilean transformations and transformations from
inertial to accelerated frames applied to the linear Schrödinger
equation [32], new terms are needed in the argument of the
q exponential to obtain a valid solution. Let us consider the
ansatz

"

"0
=

[
1 − i(1 − q)

{
ωt − k

(
x + F t2

2m

)

+ F

!

(
xt + F t3

6m

)}]1/(1−q)

,

#

#0
=

[
1 − i(1 − q)

{
ωt − k

(
x + F t2

2m

)

+ F

!

(
xt + F t3

6m

)}]−q/(1−q)

. (35)
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Inserting (35) in the right- and the left-hand sides of the
nonlinear field equations yields

i! ∂

∂t

(
"

"0

)
=

[
!ω − !kF t

m
+ Fx + F 2t2

2m

](
"

"0

)q

, (36)

− 1
2 − q

!2

2m

∂2

∂x2

[(
"

"0

)2−q]

=
[

!2k2

2m
− !kF t

m
+ F 2t2

2m

](
"

"0

)q

, (37)

i!
∂

∂t

(
#

#0

)
= q

[
−!ω + !kF t

m
− Fx − F 2t2

2m

](
#

#0

)−1

,

(38)

and

!2

2m

∂2

∂x2

[(
#

#0

)2−q]

= q

[−!2k2

2m
+ !kF t

m
− F 2t2

2m

](
#

#0

)q−2

. (39)

Substituting these results in Eqs. (12) and (13) one verifies that
the ansatz (35) satisfies the nonlinear field equations, with the
potential function

V (x) = Fx. (40)

The nonlinear field equations with the linear potential (40)
can be construed as describing the motion of a particle of
mass m under the effect of a constant force −F (with the
concomitant potential function V = Fx). This is consistent
with the well-known fact that the behavior of a free particle
with respect to a uniformly accelerated reference frame is
equivalent to the behavior of a particle in an inertial reference
frame moving under the effect of a constant force. In the
limit F → 0, Eq. (40) reduces to the nonlinear Schrödinger
equation for a free particle introduced in [4], and the solu-
tion (35) reduces to the corresponding q-plane-wave solution.
Also, q → 1 in Eqs. (35) corresponds to the standard linear
Schrödinger-equation solution for a particle of mass m moving
under a constant force −F .

The probability density ρ and the probability density cur-
rent J associated with the accelerated q-plane-wave solutions
are, respectively,

ρ = 1
%

, (41)

and

J = (1 + q)
2m%

[!k − F t]. (42)

The above form of the probability density current admits a
clear physical interpretation. For a free particle we have that
J is proportional to !k which, through the de Broglie relation,
can be identified with the particle’s linear momentum. For the
accelerated particle J is proportional to !ka = !k − F t . This
fact is consistent with the de Broglie relation, since it can be
interpreted as describing a particle whose linear momentum is
decreasing linearly with time due to the effect of a constant
force −F .

Considering now the limit q → 1 of the transformed
solution (35), we verify that the original, nonaccelerated
solution "na,#na and the transformed one #," are linked
through

"(x,t) = exp
[
− i

!

(
Fxt + F 2t3

6m

)]
"na

(
x + F t2

2m
,t

)
,

#(x,t) = exp
[
+ i

!

(
Fxt + F 2t3

6m

)]
#na

(
x + F t2

2m
,t

)
, (43)

thus recovering the transformation rule associated with the
linear Schrödinger equation [32]. Other nonlinear equations
that have been discussed in the literature share with the
standard linear Schrödinger equation this kind of behavior:
they also “pick up” phases [as in (43)] when accelerated (or
under Galilean transformations). In contrast, the nonlinear
field equations analyzed here lead to extra terms appearing
in the transformed solutions that are not, strictly speaking,
“phases,” because they cannot (except in the limit q → 1)
be cast as (complex) multiplicative factors of modulus 1 [as
occurs in (43)].

We have obtained the transformation rule leading to
additional solutions of the nonlinear field equations (12)
and (13) corresponding to q plane waves “observed” from
the vintage point of a uniformly accelerated frame. In the limit
q → 1 the transformation laws derived here coincide with
those associated with time-dependent solutions of the standard,
linear Schrödinger equation. The accelerated q-plane-wave
solutions advanced here can be interpreted in two different
ways: they can be regarded as describing a free particle
“viewed” from a uniformly accelerated frame or, alternatively,
as describing a particle moving under a constant force. Indeed,
the nonlinear field equations governing these solutions (when
expressed in terms of the accelerated frame’s coordinates)
incorporate an additional term involving a linear potential
function V (x) corresponding to a constant force. These equa-
tions confirm that, within the present field theory associated
with a nonlinear generalization of the Schrödinger equation,
the potential energy terms in the field equations are precisely
of the form indicated in Eqs. (12) and (13). In particular, we see
that the potential V (x) “couples” to appropriate powers of the
fields " and #, instead of coupling just linearly to the wave
function ", as occurs in the case of the linear Schrödinger
equation.

The time-dependent solutions of the field equations cor-
responding to the linear potential can be related to the
family of q Gaussian solutions investigated in [24]. If we
consider an ansatz for the field "(x,t) of the q Gaussian
form

"(x,t) = "0[1 − (1 − q)(αx2 + βx + γ )]1/(1−q), (44)

it is possible to verify, following a procedure similar to the
one explained in [24] that the ansatz (44) indeed constitutes
an exact time-dependent solution of the field equation for ",
provided that the complex, time-dependent parameters α, β,
and γ comply with the following set of coupled, ordinary
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differential equations:

iα̇ = !
m

(3 − q)α2,

iβ̇ = !
m

(3 − q)αβ − F

!
, (45)

iγ̇ = !
m

[
(1 − q)αγ − α + β2

2

]
.

The above equations admit the exact solution

α(t) =
[

(3 − q)i!t

m
+ 1

α0

]−1

,

β(t) =
{

β0

α0
+ mF

2(3 − q)!2

[(
(3 − q)i!t

m
+ 1

α0

)2

− 1
α2

0

]}

×
[

(3 − q)i!t

m
+ 1

α0

]−1

, (46)

where α0 = α(t = 0) and β0 = β(t = 0) are integration con-
stants. The time dependence of the parameter γ (t) does not
admit a compact analytical expression. However, it can be
expressed in terms of quadratures as

γ (t) =
{
γ0 +

∫ t

0
f0(t ′) exp

[
−

∫ t ′

0
f1(t ′′)dt ′′

]
dt ′

}

× exp
[ ∫ t

0
f1(t ′)dt ′

]
, (47)

where γ0 = γ (t = 0) is an integration constant,

f0(t) = i!
m

[
α − β2

2

]
, f1(t) = −i(1 − q)!

m
α. (48)

and in the above expressions for f0 and f1, α(t) and β(t) are
given by (46).

The q-Gaussian-wave-packet solution (44) for the linear
potential (constant force), given by the time-dependent param-
eters (46) and (47), is of intrinsic interest because it constitutes
an additional exact time-dependent solution of the nonlinear
Schrödinger equation introduced in [4] (note that the case of
a linear potential was not considered in [24]). Unfortunately,
when considering the nonlinear field theory advanced in [5],
this q Gaussian wave function provides a solution only for
the field ". The evolution of the associated field # does
not in general, for this q Gaussian " wave packet, admit
an analytical solution. However, in the particular case corre-
sponding to taking the limit α0 → 0, setting also γ0 = 0, and
making the identification β0 = −ik, the q Gaussian solution
reduces to the previously considered uniformly accelerated
q plane wave. We see then that the uniformly accelerated
q plane wave is intimately related to the q Gaussian wave
packet.

The solution (35) for the coupled field equations (12)
and (13) with a linear potential has a structure similar to the
one exhibited by the q plane solutions advanced in [4,5], in
the sense that the two fields are related by

[
#

#0

]
=

[
"

"0

]−q

. (49)

The q-plane-wave solutions and the solutions corresponding
to the linear potential are both of the form

" = "0[1 − (1 − q)iA(x⃗,t)]1/(1−q),
(50)

# = #0[1 − (1 − q)iA(x⃗,t)]−q/(1−q),

where A(x⃗,t) is a real and universal function of x⃗ and t
(universal in the sense of being independent of the parameter
q). It is interesting to characterize all the solutions of the field
equations that share this basic structure. Substituting the ansatz
for the field " in Eq. (50) into the field equation (12) leads to
the following differential equation for A(x⃗,t):

∂A

∂t
= !

2m
|∇⃗A|2 + (1 − q)!

2m
A∇⃗2A + i!

2m
∇⃗2A + V

!
. (51)

If we require the function A(x⃗,t) to be real for all times and
all space locations, then we need that

∇⃗2A = 0. (52)

In fact, it is plain from (51) that, if at a given initial time
t = 0 we have that A(x⃗,0) is real, then, in general, A(x⃗,t) is
going to develop an imaginary part for t > 0 due to the term
i!
2m

∇⃗2A appearing in the right-hand side of (51). Therefore, the
constraint (52) guarantees that an initially real function A(x⃗,t)
remains real for all subsequent times. Combining Eqs. (51)
and (52) leads to

∂A

∂t
= !

2m
|∇⃗A|2 + V

!
. (53)

On the other hand, inserting the ansatz (50) for the field # into
the field equation (13) leads to

∂A

∂t
= !

2m
|∇⃗A|2 − (1 − q)!

2m
A∇⃗2A − i!

2m
∇⃗2A + V

!
, (54)

which, again, under the constraint of A being real, consistently
leads to the evolution equation (53).

Note that a function A(x⃗,t) evolving according the dif-
ferential equation (51) and satisfying (52) at t = 0 does not
necessarily comply with this constraint at later times. In other
words, the condition (52) is not invariant under the evolution
determined by (51). Consequently, the equations (51) and (52)
are to be regarded as two independent differential equations
that have to be satisfied by a valid function A(x⃗,t) leading
to legitimate solutions of the nonlinear field equations (12)
and (13). It is not trivial that real solutions A(x⃗,t) satisfying
both equations (51) and (52) actually exist. The q-plane-wave
solutions and uniformly accelerated solutions of the field
equations (12) and (13) are related to functions A(x⃗,t) that
constitute explicit examples of joint solutions of Eqs. (51)
and (52).

The probability density ρ and the probability density
current J corresponding to solutions of the field equations
having the form (50) are, respectively,

ρ = 1
%

(55)

and

J = −!(1 + q)
2m%

∇⃗A. (56)
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We now consider in detail the one-dimensional situation, in
which the constraint

∇⃗2A = ∂2A

∂x2
= 0 (57)

implies that the function A(x,t) has the form

A(x,t) = a0(t) + a1(t)x, (58)

where a0(t) and a1(t) are functions of time to be determined.
Equation (53) now adopts the form

!(ȧ0 + ȧ1x) = !2

2m
a2

1 + V (x,t). (59)

Note that, for the sake of generality, we allow for a possible
time dependence of the potential function V . It follows from
the above equation that

∂

∂x

[
!ȧ0 − !2

2m
a2

1

]
= ∂V (x,t)

∂x
− !ȧ1

= 0, (60)

since the quantity inside the square brackets appearing in the
left-hand side of the first line of the above equation depends
solely on time. Therefore, we have

V (x,t) = v0(t) + v1(t)x, (61)

where v1(t) = !ȧ1 and v0(t) depicts another function of time.
The time-dependent functions a0 and a1 are related to the
functions v0 and v1 through

a0(t) = 1
!

∫ t

0
dt ′

{
v′

0(t)

+ 1
2m

[ ∫ t ′

0
v1(t ′′)dt ′′ + !c1

]2}
+ c0 (62)

and

a1(t) = 1
!

∫ t

0
v1(t ′)dt ′ + c1, (63)

where c0 = a0(t = 0) and c1 = a1(t = 0) are integration con-
stants.

V. CONCLUSIONS

We have explored some features of a recently introduced
nonlinear field theory leading to a nonlinear generalized
Schrödinger equation associated with the q-generalized ther-
mostatistics. We introduced an extension of this theory
incorporating potential energy terms and thus going beyond
the free-particle case previously considered in the literature.
Similarly to these previous studies, besides the usual field
"(x⃗,t), one has to introduce a second field #(x⃗,t), described
by an additional nonlinear field equation. On the basis of these
developments we obtained additional analytical solutions of
the field equations corresponding to (i) stationary solutions
associated with confining potentials and (ii) time-dependent
solutions for a linear potential function.

These types of solutions might be relevant for physical
applications of the present nonlinear generalized Schrödinger
equation. In particular, the stationary solution obtained for a
particle in an infinite potential well holds for 1 ! q < 2, and it

was shown that by increasing q in this interval one increases the
probability for finding the particle localized around a certain
position of the well. Such a behavior has some similarity with
that observed in systems where one finds a low-energy particle
localized inside a confining potential, e.g., a trapped atom
through the interference of two or more laser fields [33], or
in optical lattices [34], as well as for cold atoms and Bose-
Einstein condensates, for which the NLSE of Ref. [3] has
been considered (see, e.g., Refs. [35,36]).

In general, the motivations behind previous proposals for
nonlinear quantum evolution equations have fallen within two
main classes. On the one hand, some of these equations have
been proposed as fundamental equations governing phenom-
ena at the frontiers of our present understanding of quantum
physics, particularly at the boundaries between quantum
physics and gravitational physics (see, for instance, [37,38]
and references therein). On the other hand, and within stan-
dard quantum physics, nonlinear-Schrödinger-like equations
have been introduced as effective single-particle mean-field
descriptions of complex quantum many-body systems. In
the latter vein we mention the celebrated Gross-Pitaievsky
equation [39]. As a final remark concerning previous applica-
tions of nonlinear Schrödinger equations, it is remarkable that
instances of these equations involving a cubic nonlinearity in
the wave function have also been applied in classical contexts
such as the study of water waves.

With regards to the first of the above-mentioned kinds of
applications, the presently discussed NLSE may be useful for
describing components of dark matter. Indeed, the structure
of the action variational principle leading to our NLSE
suggests that it may describe particles that do not interact
with the electromagnetic field [5]. Concerning the second
aforementioned type of quantum applications, it is worth
noticing that the NLSE exhibits an intriguing similarity with
the Schrödinger equation corresponding to a particle with
position- (and time-) dependent effective mass [40–43]. This
equation is useful for treating (among other systems) quantum
particles in nonlocal potentials (in particular, in connection
with the nonlocal terms appearing in the potential associated
with the energy density functional approach to the quantum
many-body problem [44]). The connection between the present
NLSE equation and the Schrödinger equation for particles
with position-dependent mass has been recently pointed out
in Refs. [42,43]. This indicates that the present NLSE may
constitute an effective mean-field description, based on a
single-particle wave function, of a many-body system consist-
ing of particles interacting via nonlocal potentials. A detailed
analysis of these possible applications is still premature (and
certainly beyond the scope of the present work) until a more
complete understanding of the properties of the NLSE and its
solutions is achieved. We plan to address some of these issues
in a future communication.
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