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Abstract

A procedure for deriving general nonlinear Fokker–Planck equations (FPEs) directly from the
master equation is presented. The nonlinear e1ects are introduced in the transition probabilities,
which present a dependence on the probabilities for 2nding the system in a given state. It is
shown that the FPEs, obtained from master equations describing transitions among discrete and
continuous sets of states, are identical. Within such a procedure, we construct nonlinear FPEs
that appear to be very general. Our general FPEs recover, as particular cases, nonlinear FPEs
investigated previously by many authors, introduced on a purely phenomenological basis, and
they lead to the possibility of more complete and complex di1usive equations.
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1. Introduction

One of the fundamental equations of nonequilibrium statistical mechanics is cer-
tainly the master equation, which describes the evolution, in phase space, of a given
physical system following a Markovian stochastic process [1–3]. More speci2cally, it
describes how the probability for 2nding the system in a given state changes in time due
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to transitions between states. Considering a system speci2ed by a set of discrete stochas-
tic variables, we shall de2ne P(n; t) as the probability to 2nd the system in a state
characterized by the variable n at time t. Basically, the master equation expresses the
simple fact that P(n; t) tends to increase with time due to transitions from other states
to n, whereas it decreases due to transitions from state n to other states, i.e.,

9P(n; t)
9t =

∞∑
m=−∞

[P(m; t)wm;n(t) − P(n; t)wn;m(t)] : (1.1)

In the equation above, wk;l(t) represents the transition probability rate from state k to
l [i.e., wk;l(t) dt is the probability for a transition from state k to l to occur during the
time interval t → t + dt]. In most of the cases—basically Hamiltonian systems—the
transitions between states are essentially instantaneous, in such a way that the transition
rates wk;l(t) do not depend on the probabilities for 2nding the system in either one of
the states k or l, leading to a master equation that is usually considered as a linear
equation. The master equation may be written also for the case of continuous stochastic
variables {x},

9P(x; t)
9t =

∫ ∞

−∞
dx′[P(x′; t)w(x′|x) − P(x; t)w(x|x′)] ; (1.2)

where w(y|z) represents the transition rate from state y to z.
The standard, linear Fokker–Planck equations (FPE), may be obtained by choosing

conveniently the transition rates (with no dependence on the probabilities for 2nding
the system on the states before and after the transition), from both forms of the master
equation (Eqs. (1.1) and (1.2)) [2,3]. Although the linear FPE is widely accepted
as an appropriate equation for the description of many natural phenomena—mainly
those within the class of normal di1usion—it is well-established nowadays that such
an equation is not suitable to describe more complicated di1usion processes, like those
inserted in the class of anomalous-di1usion problems [4,5]. Among such processes, one
may single out the transport of a Muid in porous media [6], dynamics of surface growth
[6], di1usion of polymer-like breakable micelles [7], evolution of the density of Mux
lines in disordered superconductors [8], correlations in heartbeat interval increments
[9], and 2nancial transactions [10,11].

The introduction of nonlinearities in FPEs has appeared recently as a possible pro-
cedure to describe anomalous-transport processes properly. Essentially, two approaches
have been used for such a purpose. The 2rst approach consists in considering a linear
theory, and introduce the anomalous nature of the process through correlations ex-
pressed in non-local operators; this has been much considered recently, through the
study of the fractional FPE (see Ref. [12] for a review), which may also be derived
from a generalized master equation [13]. In the second approach, one uses nonlinear
FPEs [4–7,14–22], some of which appear as simple phenomenological generalizations
of the usual linear FPE [14–18], presenting the power-like probability distribution as a
solution, which maximizes the entropy proposed by Tsallis [23–26].

Recently, nonlinear FPEs were derived directly from the master equation, by intro-
ducing transition rates with a dependence on the probabilities for 2nding the system on
the states before and after the transition [27]. Such a scheme should apply to systems
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that evolve in time through gradual transitions (rather than instantaneous transitions, as
in standard Hamiltonian systems), in such a way that the transition rate should depend
on the above-mentioned probabilities. One could also mention the fuzzy-logic systems,
for which there is always a pertinence for the system to be in more than one state
at the same time. In addition to that, as argued in Ref. [27], we could mention, as
good candidates for the application of such a transition rate, those systems following
anomalous-di1usion processes, like the ones indicated above, e.g., particle di1usion in
a porous media, surface growth in fractals, Mux lines in disordered superconductors,
and 2nancial transactions.

For a system described in terms of discrete stochastic variables, the following non-
linear FPE has been derived [27],

9P(x; t)
9t =− 9[F(x)P(x; t)]

9x + a
92P�(x; t)
9x2

+ bP�−1(x; t)
92P(x; t)
9x2 − bP(x; t)

92P�−1(x; t)
9x2 : (1.3)

The constants a and b, may depend, in principle, on the system under consideration,
F(x) is an external force, and the exponents � and � are real numbers. It is important
to remind that Eq. (1.3) reduces to the usual (linear) FPE [2,3] either for (a=D; b=
0; �=1), (b=D; a=0; �=1), or (a+b=D; �=�=1), with D representing the di1usion
constant.

For the case of continuous stochastic variables, the corresponding nonlinear FPE
obtained was [27],

9P(x; t)
9t =− 9[F(x)P(x; t)]

9x + a
92P�(x; t)
9x2 + b

92P�(x; t)
9x2

− 2b
9P(x; t)
9x

9P�−1(x; t)
9x − 2bP(x; t)

92P�−1(x; t)
9x2 : (1.4)

Once again, the above equation recovers the standard FPE in the particular limits
(a = D; b = 0; � = 1), (b = D; a = 0; � = 1), or (a + b = D; � = � = 1).

It is possible to show that Eqs. (1.3) and (1.4) are identical, reducing to the simple
form (see the appendix),

9P(x; t)
9t = − 9[F(x)P(x; t)]

9x +
9
9x

{
�[P(x; t)]

9P(x; t)
9x

}
; (1.5a)

�[P(x; t)] = a�P�−1(x; t) + b(2 − �)P�−1(x; t) : (1.5b)

It should be noticed that Eqs. (1.5) recover the nonlinear FPE proposed, on a phe-
nomenological basis, by many authors [14–17,19,20], either for b = 0, a = 0 (� �= 2),
or � = �. In such cases, relating the exponents � and � to Tsallis’s entropic index q
[23,26], � = 2 − q, � = 2 − q, and � = � = 2 − q, respectively, it is possible to show
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[14,15,27] that the time-dependent Tsallis’s probability distribution,

P(x; t) = B(t)[�(x; t)]1=(1−q) ; (1.6a)

�(x; t) = 1 + �(t)(q− 1)[x − x0(t)]2 (1¡q¡ 3) ; (1.6b)

is a solution of Eqs. (1.5), provided that one considers a harmonic external force,
F(x) = k1 − k2x (k1 and k2 constants, k2¿ 0).

It is important to remind also that Eqs. (1.5) reduce, for the particular case �=2 and
�= 1, to the nonlinear di1usion equation proposed for the description of the evolution
of the density of Mux lines in disordered superconductors [8].

In the present work we introduce, into the master equation, transition probabilities
that generalize those of Ref. [27], deriving FPEs for both discrete and continuous
sets of states, and show that such equations are identical. The FPEs obtained herein
are much more general than the one of Eqs. (1.5). In the next section, we consider
transition probabilities with a polynomial dependence on the probabilities for 2nding
the system in a given state, whereas in Section 3 we deal with transition probabilities
of a general kind. Finally, in Section 4 we present our conclusions.

2. Polynomial transition rates

In Ref. [27] we have considered transition rates which depended on either one of
the probabilities for 2nding the system on the state before or after the transition at
time t. However, for the kind of systems mentioned in the previous section, it is quite
reasonable to expect, as well, a dependence of the transition rate on both probabilities
simultaneously. For that, one should consider contributions which take into account
products of such probabilities; in general, one may have several contributions, with
di1erent powers each.

Let us 2rst consider the case of discrete stochastic variables, described by the master
equation of Eq. (1.1); for a random walk in which the step size is given by �, one
has that

9P(n�; t)
9t =

∞∑
m=−∞

[P(m�; t)wm;n(�) − P(n�; t)wn;m(�)] : (2.1)

Now, we shall introduce a transition rate with a polynomial dependence on the prob-
abilities for 2nding the system on a given state, i.e.,

wk;l(�) =− 1
�
�k;l+1F(k�) +

1
�2 (�k;l+1 + �k;l−1)

×
M∑
i=1

ciP�i−1(k�; t)P i−1(l�; t) ; (2.2)

where ci (i= 1; 2; : : : ; M) are constants, the exponents �i and  i are real numbers, and
M denotes an arbitrary number of terms (which could be in2nite, in principle). One
may see easily that the corresponding transition rate de2ned in Ref. [27] appears to be
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a particular case of the one de2ned above, for M=2 and (c1=a; c2=b), (�1=�; �2=1),
( 1 = 1;  2 = �).

Substituting the transition rate de2ned above in Eq. (2.1), carrying out the sums,
and de2ning x = n�, one gets

9P(x; t)
9t =− 1

�
[P(x + �; t)F(x + �) − P(x; t)F(x)]

+
1
�2

M∑
i=1

ciP i−1(x; t)[P�i(x + �; t) + P�i(x − �; t)]

− 1
�2

M∑
i=1

ciP�i(x; t)[P i−1(x + �; t) + P i−1(x − �; t)] : (2.3)

Considering the limit � → 0, one gets the nonlinear FPE,

9P(x; t)
9t =− 9[F(x)P(x; t)]

9x +
M∑
i=1

ciP i−1(x; t)
92P�i(x; t)
9x2

−
M∑
i=1

ciP�i(x; t)
92P i−1(x; t)

9x2 : (2.4)

Let us now turn to the case of continuous stochastic variables; introducing the vari-
able y = x − x′, the master equation of Eq. (1.2) becomes,

9P(x; t)
9t =

∫ ∞

−∞
dy[P(x − y; t)w(x − y|x) − P(x; t)w(x|x + y)] ; (2.5)

where we have changed y → −y in the 2rst integral. De2ning !(x; y)=w(x|x+y), as
the transition rate between states x and x + y, Eq. (2.5) may be written as

9P(x; t)
9t =

∫ ∞

−∞
dy[P(x − y; t)!(x − y; y) − P(x; t)!(x; y)] : (2.6)

Considering !(x; y) sharply peaked around y= 0, one may expand Eq. (2.6) [3,28,29],

9P(x; t)
9t =

∫ ∞

−∞
dy

{ ∞∑
n=1

(−y)n

n!
9n[P(x; t)!(x; y)]

9nx

}
: (2.7)

Similarly to what was done in the discrete case [see Eq. (2.2)], let us now de2ne the
transition rate for a transition between states x and x + y,

!(x; y) = "1(x; y) + "2(x; y)
M∑
i=1

ciP�i−1(x; t)P i−1(x + y; t) ; (2.8)

where

"1(x; y) =




F(x)
�2 if 06y6

√
2� ;

0 otherwise
(2.9a)
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and

"2(x; y) =




1

2
√

6�3
if −

√
6�6y6

√
6� ;

0 otherwise :
(2.9b)

Again, by considering in the de2nition above, M=2 and (c1=a; c2=b), (�1=�; �2=1),
( 1 =1;  2 = �), the corresponding transition rate of Ref. [27] is recovered. Substituting
the transition rate of Eq. (2.8) in Eq. (2.7), expanding P i−1(x+y; t) for y small, and
taking the limit � → 0, one gets the following nonlinear FPE,

9P(x; t)
9t =− 9[F(x)P(x; t)]

9x +
M∑
i=1

ci
92P�i+ i−1(x; t)

9x2

− 2
M∑
i=1

ci
9P�i(x; t)
9x

9P i−1(x; t)
9x

− 2
M∑
i=1

ciP�i(x; t)
92P i−1(x; t)

9x2 : (2.10)

It is important to stress that the procedure used for deriving Eq. (2.10) is very general,
and depends only on how the moments of "1(x; y) and "2(x; y) scale with � and not
on their speci2c forms [2,3]. One may show that Eqs. (2.4) and (2.10) are identical
(see the appendix); they both reduce to the simple form of Eq. (1.5a), with

�[P(x; t)] =
M∑
i=1

ci(�i −  i + 1)P�i+ i−2(x; t) : (2.11)

As expected, Eq. (2.11) recovers Eq. (1.5b) for M=2, (c1=a; c2=b), (�1=�; �2=1), and
( 1 =1;  2 =�). There are several possibilities where Eqs. (1.5a) and (2.11) lead to the
nonlinear FPE of Refs. [14–17,19,20], for which Tsallis’s time-dependent probability
distribution is a solution [14,15,27], e.g., if one considers �i +  i − 2 = �− 1 (�= 2−
q) (∀i). In addition to that, the nonlinear FPE proposed for describing the evolution
of the density of Mux lines in disordered superconductors [8] may be obtained as a
particular case of Eqs. (1.5a) and (2.11) for M = 2, with �1 +  1 = 3 (�1 �=  1), and
�2 +  2 = 2 (�2 �=  2).

In the next section we will derive a very general nonlinear FPE, by introducing
transition probabilities with an arbitrary dependence on the probabilities for 2nding the
system on a given state.

3. Transition rates of a general kind

Let us now introduce transition rates with a general dependence on the probabilities
for 2nding the system on a given state. For the case of discrete stochastic variables,
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one may write Eq. (2.2) in the following general form,

wk;l(�) = − 1
�
�k;l+1F(k�) +

1
�2 (�k;l+1 + �k;l−1) #[P(k�; t); Q(l�; t)] ;

(3.1)

whereas for continuous variables, a similar procedure should change Eq. (2.8) into

!(x; y) = "1(x; y) + "2(x; y) #[P(x; t); Q(x + y; t)] : (3.2)

For the sake of the calculations, we will distinguish the probabilities P and Q; ob-
viously, one should have Q(k�; t) ≡ P(k�; t) and Q(x; t) ≡ P(x; t), for the cases of
discrete and continuous stochastic variables, respectively.

In the latter case, one may use the expansion,

#[P(x; t); Q(x + y; t)] =

[
#[P(x; t); Q(x; t)] +

(
y
9Q(x; t)
9x

+
y2

2
92Q(x; t)
9x2

)
9#[P;Q]
9Q

+
y2

2

(
9Q(x; t)
9x

)2 92#[P;Q]
9Q2 + · · ·

]
Q=P

(3.3)

in such a way that substituting the transition rate of Eq. (3.2) into Eq. (2.7), and taking
the limit � → 0, one gets the FPE,

9P(x; t)
9t =− 9[F(x)P(x; t)]

9x +

[
92{P(x; t)#[P;Q]}

9x2

− 2
9
9x

(
P(x; t)

9#[P;Q]
9Q

9Q(x; t)
9x

)]
Q=P

: (3.4)

The above equation may be easily rewritten in the form of Eqs. (1.5), i.e.,

9P(x; t)
9t = − 9[F(x)P(x; t)]

9x +
9
9x

{
�[P(x; t)]

9P(x; t)
9x

}
; (3.5a)

�[P(x; t)] =
[
#[P;Q] + P(x; t)

(
9#[P;Q]
9P − 9#[P;Q]

9Q

)]
Q=P

; (3.5b)

where we have used the fact that (9P(x; t)=9x) ≡ (9Q(x; t)=9x).
A similar result applies for the case of discrete stochastic variables, i.e., if one

applies the same procedure of the previous section for the transition rate of Eq. (3.1),
one ends up with the same nonlinear FPE de2ned by Eqs. (3.5). This represents the
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most general type of nonlinear FPE that one can derive from the master equation, by
using transition rates that depend on the probabilities for 2nding the system on a given
state. In particular, if one considers

#[P(x; t); Q(x + y; t)] =
M∑
i=1

ciP�i−1(x; t)Q i−1(x + y; t) ; (3.6)

one recovers the form of �[P(x; t)] of the previous section [cf. Eq. (2.11)].
Due to its generality, the nonlinear FPE of Eqs. (3.5) is expected to present a wide

range of applicability, covering many di1erent types of nonlinear di1usive equations,
in such a way that each physical system should be characterized by its own form
of #[P;Q]. Since the simpler form in Eqs. (1.5) covers already a large variety of
nonlinear Fokker–Planck-like equations known in the literature [6–8,14–17,19,20], the
general form in Eqs. (3.5) should lead to even more complex di1usive equations.

4. Conclusion

We have obtained general nonlinear FPEs through approximations to the master
equation. The nonlinear e1ects were introduced by considering, inside the transition
probabilities of the master equation, arbitrary dependences on the probabilities for 2nd-
ing the system in a given state. Such a procedure was carried for both cases of discrete
and continuous sets of states, and we have shown that the FPEs obtained are iden-
tical. We have argued that this kind of transition probability should be relevant for
the description of many real phenomena included in the class of anomalous-di1usion
problems. Due to their generality, the nonlinear FPEs derived herein cover many dif-
ferent types of di1usive equations, introduced previously in the literature, in a purely
phenomenological basis. These equations are expected to present a wide range of ap-
plicability in the area of anomalous di1usion, opening the way to even more complex
di1usive equations.
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Appendix A

In this appendix, we will show that the FPEs (2.4) and (2.10) [and consequently,
Eqs. (1.3) and (1.4)], derived from the master equation for the cases of discrete and
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continuous sets of states, respectively, are identical. We shall consider the properties
for the derivatives,

9P%(x; t)
9x = %P%−1(x; t)

9P(x; t)
9x ; (A.1a)

92P%(x; t)
9x2 =

9
9x
9P%(x; t)
9x =

9
9x

[
%P%−1(x; t)

9P(x; t)
9x

]
: (A.1b)

The term of Eq. (2.4),

I1 =
M∑
i=1

ci

[
P i−1(x; t)

92P�i(x; t)
9x2 − P�i(x; t)

92P i−1(x; t)
9x2

]
; (A.2a)

I1 =
M∑
i=1

ci
9
9x

[
P i−1(x; t)

9P�i(x; t)
9x − P�i(x; t)

9P i−1(x; t)
9x

]
; (A.2b)

becomes, after using the properties of Eqs. (A.1),

I1 =
M∑
i=1

ci(�i −  i + 1)
9
9x

[
P�i+ i−2(x; t)

9P(x; t)
9x

]
: (A.3)

Let us now consider the term of Eq. (2.10),

I2 =
M∑
i=1

ci

[
92P�i+ i−1(x; t)

9x2 −2
9P�i(x; t)
9x

9P i−1(x; t)
9x − 2P�i(x; t)

92P i−1(x; t)
9x2

]
;

(A.4a)

I2 =
M∑
i=1

ci

[
92P�i+ i−1(x; t)

9x2 − 2
9
9x

(
P�i(x; t)

9P i−1(x; t)
9x

)]
; (A.4b)

that, after using Eqs. (A.1), may be written as

I2 =
M∑
i=1

ci(�i −  i + 1)
9
9x

[
P�i+ i−2(x; t)

9P(x; t)
9x

]
: (A.5)

Since I1 = I2, one concludes that Eqs. (2.4) and (2.10) are identical, and may be
written in the form

9P(x; t)
9t = − 9[F(x)P(x; t)]

9x +
9
9x

{
�[P(x; t)]

9P(x; t)
9x

}
; (A.6a)

�[P(x; t)] =
M∑
i=1

ci(�i −  i + 1)P�i+ i−2(x; t) : (A.6b)

Since Eqs. (2.4) and (2.10) reduce, respectively, to Eqs. (1.3) and (1.4), for the par-
ticular case M =2, (c1 = a; c2 = b), (�1 =�; �2 =1), and ( 1 =1;  2 = �), one obviously
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concludes that Eqs. (1.3) and (1.4) are identical as well. For this particular case,
the corresponding FPE is given by Eqs. (1.5), which follow trivially from the above
equations.
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