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In this work, we calculate the magnetocaloric effect in the series of compounds �GdxTb1−x�5Si4. We use the
classical Monte Carlo simulation to deal with the 4f spin-spin interaction as well as the disorder at the
rare-earth sites. The calculated isothermal entropy change and the adiabatic temperature change upon varia-
tions of the magnetic field are in good agreement with the available experimental data.
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I. INTRODUCTION

The magnetocaloric effect in rare-earth metals and their
alloys has been intensively studied in the literature.1–5 The
series of compounds Gd5�SixGe1−x�4 for x�0.5 undergo first
order transition from the ferromagnetic to the paramagnetic
phase, together with a crystallographic transition from the
orthorhombic phase �temperature below Tc� to the mono-
clinic one �temperature above Tc�. In the compounds
Gd5�SixGe1−x�4 with x�0.5, the isothermal entropy changes
upon magnetic field variation around the magnetic ordering
temperature6–9 are very large as compared with that observed
for metallic gadolinium. For x�0.5 the compounds
Gd5�SixGe1−x�4 always exhibit the orthorhombic phase and
undergo a second order magnetic phase transition. The iso-
thermal entropy changes ��S� upon magnetic field variation
in the compounds Gd5�SixGe1−x�4 for x�0.5 are comparable
with the one found in metallic gadolinium. The structural,
magnetic, and thermodynamical properties in the series of
compounds10 Tb5�SixGe1−x�4 are very similar to those ob-
served in the series of compounds Gd5�SixGe1−x�4. In the
doped compounds �GdxTb1−x�5Si4 the orthorhombic phase
and the second order magnetic phase transition occur in the
whole range of Gd concentration. The magnetic ordering
temperature in the compounds �GdxTb1−x�5Si4 decreases
from 336 K in Gd5Si4 to 225 K in Tb5Si4. The magnetoca-
loric effect in the compounds �GdxTb1−x�5Si4 has been ex-
perimentally studied11 and experimental data of the isother-
mal entropy change ��S� and the adiabatic temperature
change ��Tad� upon magnetic field variations, as a function
of Gd concentration, are available.

Despite the great deal of theoretical papers found in the
literature, the theoretical description of the magnetocaloric
effect in doped rare-earth compounds with disorder at the
rare-earth sites has not yet been properly addressed. In order
to calculate the magnetocaloric effect in rare-earth doped
compounds such as �GdxTb1−x�5Si4, which involve two types
of rare-earth ions, we should go beyond the conventional
molecular field theory. This is because the molecular field
theory replaces the 4f spin-spin interaction by an interaction
of the local spin with a mean field generated by the first
nearest neighbors. Thus in the usual treatment of the 4f spin-
spin interaction within the molecular field theory neither
short range interactions, which are very important near the
magnetic phase transition, nor the possibility of having

neighboring sites occupied by different types of rare-earth
ions are considered. Very recently, we have used the classical
Monte Carlo simulation12,13 to calculate the magnetocaloric
effect in rare-earth compounds with only one type of rare-
earth ions. In those papers, our results show that the Monte
Carlo simulations explain quite well the experimental data of
the magnetocaloric quantities �S and �Tad. Moreover, the
Monte Carlo calculations provides a good description of the
specific heat capacity, even around the magnetic ordering
temperature where the molecular field theory does not work
well.

In the present work, we discuss the magnetic and thermo-
dynamics properties as well as the magnetocaloric effect in
the doped rare-earth compounds �GdxTb1−x�5Si4, which in-
volve more than one type of rare-earth ions. In the particular
case of such compounds the 4f spin-spin interaction should
be treated beyond the conventional molecular field theory.
Here, we use the classical Monte Carlo simulations14,15

where the occupation of a given rare-earth site by a Gd or Tb
ion is randomly determined according to the Gd concentra-
tion. In order to calculate the energy of the system, we use a
model of 4f-interacting spins and consider the z components
of total angular momentum as quantum quantities, which can
assume discrete values in the interval −J�Jz�J. For a given
Jz, the transverse components Jx and Jy were randomly cho-
sen under the condition �Jx�2+ �Jy�2=J2− �Jz�2. Within this
approach we restrict the number of available states so that
the upper limit of the magnetic entropy Smag=R ln�2J+1� is
reproduced, where R is the gas constant. In order to calculate
the magnetocaloric quantities, i.e., the isothermal entropy
change ��S� and the adiabatic temperature change ��Tad�
upon variation of the magnetic field, we take the electronic
part of the entropy proportional to the temperature and con-
sider the crystalline lattice entropy in the Debye approxima-
tion. The calculated magnetocaloric quantities �S and �Tad
for the compounds �GdxTb1−x�5Si4 are in good agreement
with the available experimental data.11

II. THE METHOD

In order to calculate the magnetocaloric effect in the com-
pounds �GdxTb1−x�5Si4, on the basis of Monte Carlo calcula-
tions, we start with the following energy:
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where �il is the effective exchange interaction parameter, Ji
�

�J�l
�� �� ,�=Gd or Tb� is the total angular momentum of rare-

earth ions, and H is the applied magnetic field. The term

�i�r�i .J�i�2 represents the single ion anisotropy, where r�i is the
direction of the anisotropy and �i is the anisotropic coeffi-

cient. The anisotropic term �i�r�i .J�i�2 accounts for a reduction
of the magnitude of the magnetization. In rare-earth systems
the reduction in magnetic moment �quenching effect� is
mainly due to the crystalline electric field �CEF� interaction.
For rare-earth ions, the proper crystalline electric field inter-
action is described by higher order terms �fourth and sixth
order terms� in angular momentum operators—Stevens Op-
erators. Nevertheless, the inclusion of the proper CEF
Hamiltonian together with the exchange and Zeeman inter-
actions leads to a complex problem, which is in general
solved in the conventional mean field approximation. In our
Monte Carlo calculations, a simplification has to be intro-
duced, since the quantization was performed only in the z
component of the spin operator. It should be mentioned that

the term �i�r�i ·J�i�2 does not reproduce the CEF anisotropy
�such as the easy magnetic direction� as a proper CEF Hamil-
tonian. Nevertheless, the quenching effect can be controlled
by our anisotropic second order term, which somehow mim-
ics the crystalline electric field effect.

For a given temperature, the Monte Carlo method calcu-
lates the mean energy given in Eq. �1� by simulating different
configurations of total angular momentum. Here we give a
very brief description of the method: First we generate an
orthorhombic unit cell containing Gd and Tb ions randomly
distributed according to the Gd concentration. Then, we gen-
erate an initial configuration of total angular momentum, by
drawing random numbers to establish the values of the com-
ponents of the corresponding total angular momentum at
each lattice site, taking into account if the site is occupied by
Gd or Tb ions. We calculate the energy for this initial con-
figuration �EI� according to Eq. �1�. We choose one particular
site, whose occupancy �Gd or Tb� has already been deter-
mined, to change the values of the components of the corre-
sponding total angular momentum. The components of the
total angular momentum of the remaining ions into the crys-
talline lattice are kept unchanged. Then, we calculate the
mean energy for this new configuration of total angular mo-
mentum �EF� through Eq. �1�. If EF	EI the change in the
components of the total angular momentum at the chosen site
is accepted. If EF�EI, we calculate the probability factor
p=e−
�EF−EI� and draw a random number r between 0 and 1.
If r	 p the new configuration of total angular momentum is
accepted. Otherwise, it is rejected and the initial configura-
tion with energy EI is preserved. Then, we move to the next
site and repeat the entire process described before, until we
sweep all NS sites of the crystalline lattice. In the Monte
Carlo method, the mean value of the energy �E� is obtained
by

�E� =
1

�Nc − N0� �
i�N0

NC

Ei, �2�

where “i” represents a given Monte Carlo step, Nc represents
the total number of Monte Carlo steps, and N0 is the number
of Monte Carlo steps used for thermalization. A similar rela-
tion holds for the mean square energy �E2�. The magnetic
part of the heat capacity is calculated by

Cmag�T,H� =
�E2� − �E�2

kBT2 , �3�

where kB is the Boltzmann constant. The total heat capacity
is given by C=Cel+Clat+Cmag. Here Cel=�T is the contribu-
tion from the conduction electrons where � is the Sommer-
feld coefficient. Clat is the contribution from the crystalline
lattice, which in the Debye approximation is given by

Clat�T� = 9RNi�4� T

�D
�3	

0

�D/T x3

�ex − 1�
dx −

�D

T

1

�e�D/T − 1�
 ,

�4�

where Ni is the number of ions per formula unit R is the gas
constant, and 
D is the Debye temperature. The total entropy
of the compound is given by S=Sel+Slat+Smag, where
Sel=�T is the contribution from the conduction electrons.
Smag is the contribution from the magnetic ions calculated
from

Smag�T,H� = 	
0

T Cmag�T,H�
T

dT . �5�

Slat is the lattice contribution, which in the Debye approxi-
mation is given by

Slat�T� = Ni�− 3R ln�1 − e−
D/T�

+ 12R� T


D
�3	

0


D/T x3

ex − 1
dx
 . �6�

The isothermal entropy change ��S� and the adiabatic tem-
perature change ��Tad� upon magnetic field variation are cal-
culated respectively from �S=S�T ,H�0�−S�T ,H=0� and
�Tad=T2−T1 under the adiabatic condition S�T2 ,H�0�
=S�T1 ,H=0�.

III. RESULTS AND DISCUSSION

Now, we present our theoretical Monte Carlo calculations
of the magnetocaloric effect in the series of compounds
�GdxTb1−x�5Si4. The Landè factor and the total angular mo-
mentum were taken as g=2 and J=7/2 for Gd ions and
g=1.5 and J=6 for Tb ions. We use a tridimensional cluster
of 6�6�6 orthorhombic unit cells with eight rare-earth
ions �Gd or Tb� per cell, randomly distributed at the lattice
sites, according to the Gd concentration. In order to establish
the magnitude of the z components of the total angular mo-
mentum of the Gd and Tb ions at each lattice site we draw a
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random number r such that 0�r�1 and fix the value of Jz

according to the following condition: if �n−1� / �2J+1�	r
�n / �2J+1� we take Jz=−J+ �n−1�, where n is an integer
number in the range n=1,2 , . . . �2J+1�. The transverse com-
ponents Jx and Jy were randomly established under the con-
dition �Jx�2+ �Jy�2=J2− �Jz�2. The exchange interaction pa-
rameters �ij depend on the lattice parameters and on the type
of ions occupying the neighboring sites. Therefore, it should
depend on Gd concentration, since the lattice parameters in
�GdxTb1−x�5Si4 get larger with increasing Gd concentration.11

In a more rigorous treatment, the exchange interaction pa-
rameter should be self-consistently calculated in terms of the
electronic structure of the compound. Here, for the sake of
simplicity, we choose the exchange interaction parameter in
order to adjust the experimental data of the magnetic order-
ing temperature. The exchange interaction parameters be-
tween Gd ions in the compound Gd5Si4 and between Tb ions
in the compound Tb5Si4 were taken �Gd-Gd=1.189 meV and
�Tb-Tb=0.294 meV. For the compound �Gd0.9Tb0.1�5Si4 we
take ��Gd-Gd=1.242 meV, �Tb-Tb=0.284 meV, and �Gd-Tb

=0.41 meV�; for the compound �Gd0.7Tb0.3�5Si4 we take
��Gd-Gd=1.339 meV, �Tb-Tb=0.284 meV, and �Gd-Tb=0.41
meV� and for the compound �Gd0.5Tb0.5�5Si4 we take
��Gd-Gd=1.430 meV, �Tb-Tb=0.294 meV, and �Gd-Tb=0.41
meV�. Notice that the values of the exchange interaction pa-
rameters ��Gd-Gd, �Gd-Tb, and �Tb-Tb� in the compounds
�GdxTb1−x�5Si4 take into account the increase of the distance
between Gd and Gd ions, Gd and Tb ions, and Tb and Tb
ions, with increasing Gd concentration.11 The anisotropic co-
efficients � for Gd and Tb ions in the compounds
�GdxTb1−x�5Si4 were taken respectively as �Gd=0.00 meV
and �Tb=0.0294 meV for the whole range of Gd concentra-
tion. These values have been chosen in order to yield a very
small reduction in the contribution from Tb ions to the total
magnetization of the compound. The numerical simulation
was performed using 4000 Monte Carlo steps for thermali-
zation of the system and 3000 Monte Carlo steps to compute
the average values of the physical quantities. In order to
calculate the total specific heat capacity and total entropy, we
use �=5.4 mJ/ �mol K2� and 
D=350 K, which are consis-
tent with the usual values found in the literature. Within
these parameters we calculate the magnetization, the specific
heat capacity and the magnetocaloric effect in the com-
pounds �GdxTb1−x�5Si4 for several values of Gd concentra-
tion.

In Fig. 1, we plot the total specific heat capacity for the
compounds �GdxTb1−x�5Si4, calculated in the absence of an
external magnetic field. We can observe that our theoretical
calculations, in which the magnetic part was calculated
within the Monte Carlo simulation, are in good agreement
with the available experimental data.11 Moreover, we should
emphasize that the present results obtained for the pure com-
pounds Tb5Si4 and Gd5Si4 within the Monte Carlo calcula-
tions are better than the mean field ones, not shown in this
paper, mainly around the magnetic ordering temperature
where the mean field results do not agree with experiments.
In Fig. 2, we plot the total specific heat capacity for the
compound �Gd0.7Tb0.3�5Si4 in the absence of an external
magnetic field �solid line� and for an applied magnetic field

of 5 T �dashed line�. From this figure we can also observe a
good agreement between our theoretical calculations and the
experimental data both for H=0 and H=5 T.11 It is worth
mentioning here that the experimental data of the specific
heat for �Gd0.7Tb0.3�5Si4 could not be properly described by
the conventional mean field theory, even far from the mag-
netic ordering temperature, because it does not consider the
chemical disorder at the rare-earth sites. In Fig. 3, we plot the
magnetic entropy for the compound �Gd0.7Tb0.3�5Si4for H
=0 �solid line�, H=5 T �dotted line�, and H=7.5 T �dashed
line�. Our theoretical calculations predict that the magnetic
entropy in the compound �Gd0.7Tb0.3�5Si4 saturates around
88 �J /mol K�. In Figs. 4 and 5 we plot the isothermal en-

FIG. 1. Total specific heat capacity of �GdxTb1−x�5Si4 in the
absence of an external magnetic field. Solid lines are the theoretical
calculations whereas open circles and triangles are experimental
data11 for x=0 and x=0.7, respectively.

FIG. 2. Total specific heat capacity of �Gd0.7Tb0.3�5Si4. Solid
and dashed lines correspond to theoretical calculations for H=0 and
H=5 T, respectively. Open and solid triangles are the correspond-
ing experimental data.11
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tropy change and the adiabatic temperature change for the
compound �Gd0.7Tb0.3�5Si4 upon magnetic field variation
from 0 to 2 T, from 0 to 5 T, and from 0 to 7.5 T. From
these figures, we can notice a good agreement with the
Monte Carlo calculations and the experimental data.11 Again
we should stress that the experimental data of the magneto-
caloric quantities �S and �Tad for �Gd0.7Tb0.3�5Si4 could not
be properly described by the conventional molecular field
theory, because it does not consider the chemical disorder at
the rare-earth sites.

In Fig. 6, we plot the magnetic entropy for the compound
�GdxTb1−x�5Si4 �x=0, 0.5, 0.9, and 1.0� calculated in the ab-
sence of an applied magnetic field. From this figure we can

observe that the magnetic entropy in the compounds Gd5Si4
and Tb5Si4 saturates around 83 �J /mol K� and 103 �J /mol K�
respectively. These values are consistent with the expected
value given by Smag=R ln�2J+1� per rare-earth ions. Our
theoretical calculations show that for intermediate concentra-
tions, the saturation values of the magnetic entropy in the
compounds �GdxTb1−x�5Si4 lie between the values obtained
for the extreme limits of Tb5Si4 �x=0� and Gd5Si4 �x=1.0�.
It is worth mentioning that the saturation values of the mag-
netic entropy in the series of compounds �GdxTb1−x�5Si4 for
intermediate concentrations, which are automatically ob-
tained by the numerical Monte Carlo calculations, are our
theoretical prediction and need experimental data to be con-

FIG. 3. Magnetic entropy of �Gd0.7Tb0.3�5Si4. Solid, dotted, and
dashed lines correspond to the theoretical calculations for H=0,
H=5 T, and H=7.5 T, respectively.

FIG. 4. Calculated isothermal entropy change for
�Gd0.7Tb0.3�5Si4 upon magnetic field variations from 0 to 2 T �dot-
ted line�, from 0 to 5 T �dashed line�, and from 0 to 7.5 T �solid
line�. Open squares, open triangles, and solid circles are the corre-
sponding experimental data.11

FIG. 5. Calculated adiabatic temperature change for
�Gd0.7Tb0.3�5Si4 upon magnetic field variations from 0 to 2 T �dot-
ted line�, from 0 to 5 T �dashed line�, and from 0 to 7.5 T �solid
line�. Open squares, open triangles, and solid circles are the corre-
sponding experimental data.11

FIG. 6. Theoretically calculated magnetic entropy of
�GdxTb1−x�5Si4 in the absence of an external magnetic field.

NOBREGA et al. PHYSICAL REVIEW B 74, 144429 �2006�

144429-4



firmed. From the curves of the total entropy versus tempera-
ture for H=0, H=2T, and H=5T, not shown in this paper,
we calculated both the isothermal entropy change and the
adiabatic temperature change upon magnetic field variations
from 0 to 2 T and from 0 to 5 T. The calculated isothermal
entropy changes in the compounds �GdxTb1−x�5Si4 �x=0, 0.5,
0.9, and 1.0� upon magnetic field variations from 0 to 2 T
and from 0 to 5 T are shown in Figs. 7 and 8, respectively.
From these figures, we can observe an overall agreement
between our theoretical calculations and the experimental

data.11 Some discrepancies between theory and experiments
observed in these figures can be ascribed to the numerical
fluctuations inherent to the Monte Carlo method. The corre-
sponding adiabatic temperature changes upon the same mag-
netic field variations are shown in Figs. 9 and 10, respec-
tively. Notice the good agreement between our calculations
and the available experimental data for x=1. In order to
check our theoretical calculations of the adiabatic tempera-
ture change as a function of Gd concentration further experi-
ments are necessary.

In conclusion, in this work we report on the theoretical
calculations of the magnetocaloric effect in the doped com-
pounds �GdxTb1−x�5Si4 using a model of localized 4f spins,

FIG. 7. Isothermal entropy change for �GdxTb1−x�5Si4 upon
magnetic field variation from 0 to 2 T. The solid lines correspond to
our calculations within the Monte Carlo simulation. Solid squares,
open squares, solid triangles, and open triangles are the experimen-
tal data11 for x=0, x=0.5, x=0.9, and x=1.0, respectively.

FIG. 8. Isothermal entropy change for �GdxTb1−x�5Si4 upon
magnetic field variation from 0 to 5 T. The solid lines correspond to
our calculations within the Monte Carlo simulation. Solid squares,
open squares, solid triangles, and open triangles are the experimen-
tal data11 for x=0, x=0.5, x=0.9, and x=1.0, respectively.

FIG. 9. Adiabatic temperature change for �GdxTb1−x�5Si4 upon
magnetic field variation from 0 to 2 T. The solid lines correspond to
our calculations within the Monte Carlo simulation.

FIG. 10. Adiabatic temperature change for �GdxTb1−x�5Si4 upon
magnetic field variation from 0 to 5 T. The solid lines correspond to
our calculations within the Monte Carlo simulation. Open circles
are the experimental data �Ref. 11� for x=1.0.
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where the 4f spin-spin interaction was treated in the Monte
Carlo simulation. The theoretically calculated magnetoca-
loric quantities �S and �Tad are in good agreement with the
available experimental data.11 It should be emphasized that,
unlike the conventional molecular field theory, which does
not consider disorder at the rare-earth sites, the present
Monte Carlo calculations provide a proper description of the
magnetic and thermodynamic properties as well as the mag-
netocaloric effect in rare-earth doped compounds involving
more than one type of rare-earth ion. The present Monte

Carlo calculations can also be used for calculating the mag-
netocaloric properties of others doped rare-earth compounds
undergoing a second-order magnetic phase transition.
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