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In this work, we use the Monte Carlo method to calculate the magnetocaloric effect in the compounds
Gd5�SixGe1−x�4 for x�0.5, where the magnetic phase transition is of second order. The isothermal entropy
change and the adiabatic temperature change upon magnetic field variations are in good agreement with the
available experimental data.
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I. INTRODUCTION

The magnetocaloric effect,1–4 the ability of magnetic ma-
terials to heat up or cool down when placed in or removed
from an external magnetic field, has great importance in the
technology of magnetic refrigeration. The magnetocaloric ef-
fect in the series Gd5�SixGe1−x�4 has been experimentally
studied in the whole range of concentrations.5–13 The phase
diagram2 shows that for x�0.5 the compounds
Gd5�SixGe1−x�4 have an orthorhombic phase and undergo a
second order magnetic phase transition. In this range of con-
centrations, the isothermal entropy change ��S� and the adia-
batic temperature change ��Tad� upon magnetic field varia-
tions for the compounds Gd5�SixGe1−x�4 are comparable with
the ones observed in pure gadolinium. For x�0.5, the com-
pounds Gd5�SixGe1−x�4 undergo a first order magnetic phase
transition coupled with a crystallographic transformation
from the orthorhombic to the monoclinic phase. As a result,
the isothermal entropy changes upon magnetic field varia-
tions for the compounds Gd5�SixGe1−x�4 with x�0.5, reach
large values around the magnetic ordering temperature �TC�.
For instance,5 around TC, the peak in the isothermal entropy
change for a magnetic field variation from 0 to 5 T in the
compound Gd5Si2Ge2 is about 20 J / �kg K�.

Until recently, the theoretical descriptions14–23 of the mag-
netocaloric effect in rare earth based compounds have been
done by using a Heisenberg-like model Hamiltonian in
which the spin-spin interaction is treated in the molecular
field approximation. Within this framework, much of the ex-
perimental data of the magnetocaloric effect in rare earth
based compounds has been explained. Despite the good de-
scription of the magnetocaloric quantities, the molecular
field approach does not explain the experimental data of the
magnetic part of the specific heat around the magnetic order-
ing temperature. At TC, the magnetic specific heat calculated
within the molecular field approximation goes abruptly to
zero in disagreement with experimental data. This discrep-
ancy between theory and experiment, which occurs because
the molecular field theory does not take into account short
range interactions, points out that we should go beyond the
mean field approximation to understand the real physical
mechanisms involved in the magnetocaloric effect in rare
earth based compounds. In this work, we use the classical
Monte Carlo simulation to calculate the magnetocaloric ef-

fect in the compounds Gd5�SixGe1−x�4. We consider here,
only the compounds within the concentration range x�0.5
where there is only the orthorhombic phase and the magnetic
phase transition is of second order. For compounds within
the concentration range x�0.5, where the magnetic phase
transition is of the first order, we should consider the crys-
tallographic transformation from the orthorhombic to mono-
clinic phase around the magnetic ordering temperature. Be-
sides, we also should consider the magnetoelastic interaction.
These considerations are somewhat more complex and are
not in the scope of the present work. This paper is organized
as follows. In Sec. II, we present the theory and we summa-
rize the adopted Monte Carlo procedure as well as some
molecular field results. In Sec. III, we discuss the numerical
results, stressing the similarities and differences between the
magnetocaloric quantities obtained within the Monte Carlo
simulations and the ones obtained within the mean field ap-
proximation. Finally, Sec. IV is devoted to the conclusions.

II. THEORY

In order to describe the magnetocaloric effect in the com-
pounds Gd5�SixGe1−x�4 for x�0.5, we start with the follow-
ing energy:

E = − �
ij

�ijS� i · S� j − �
i

g�BS� i · h�ext, �1�

where �ij is the exchange interaction parameter between
neighboring sites, Si is the spin of the Gd ions, and hext is the
external magnetic field. It is worth mentioning here, that the
classical Monte Carlo method for a system of interacting
spins whose energy can be calculated from Eq. �1�, has been
largely used in the literature24–27 to obtain the magnetic prop-
erties of rare earth metals. In the present work, we are more
interested in the calculation of the isothermal entropy change
��S� and the adiabatic temperature change ��Tad� upon mag-
netic field variations. To obtain the magnetocaloric quantities
�S and �Tad, via the temperature dependence of the total
entropy, it is absolutely necessary to reproduce the maximum
experimental value of the magnetic entropy. It is well known
that the classical Monte Carlo simulation for the Heisenberg
Hamiltonian does not reproduce the saturation value of the
magnetic entropy, Smag=R ln�2S+1�, where R is the gas con-
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stant and the term 2S+1 represents the number of available
states, because the spins are treated as classical variables
which can assume a continuous range of values. Thus, in
order to reproduce the expected saturation value of the mag-
netic entropy we use in this work a Potts-like model,24,25

where the z components of the spins are considered as quan-
tum quantities which can assume discrete values in the inter-
val −S�SZ�S.

In order to calculate the mean energy for a given tempera-
ture, we use the following algorithm:24,25

�i� Generate randomly an initial spin configuration and
calculate the energy of the initial configuration �EI� accord-
ing to Eq. �1�.

�ii� Select a particular site ‘i’ and change at random the
value of the z component of the local spin momentum.

�iii� Calculate the energy for this new configuration �EF�
according to Eq. �1�.

�iv� If EF�EI, accept the new configuration with energy
EF and go to step �viii�.

�v� If EF�EI, calculate the probability factor p
=e−�EF−EI�/kBT, where kB is the Boltzmann constant.

�vi� Generate a random number r such that 0�r�1.
�vii� If r� p, accept the new spin configuration with en-

ergy EF, otherwise preserve the old spin configuration with
energy EI.

�viii� Move to the next site, change at random the value of
the z component of the local spin momentum, and return to
step �iii�.

�ix� Repeat the entire process until all the lattice sites are
swept.

The whole process described before constitutes just one
Monte Carlo step. For a Monte Carlo step, the energy of
system is the energy of the last generated spin configuration,
�Ei� where the label ‘i’ represents the number of a given
Monte Carlo step. For a given temperature, the mean energy
�E� and the mean square energy �E2� are calculated by

�E� =
1

�Nc − N0� �
i�N0

NC

Ei, �2�

�E2� =
1

�Nc − N0� �
i�N0

NC

Ei
2, �3�

where Nc represents the total number of Monte Carlo steps
and N0 is the number of Monte Carlo steps used for thermal-
ization. For one Monte Carlo step, the average of the spin per
lattice site is calculated by summing the spins throughout the
lattice sites of the last spin configuration and dividing by the
number of sites, i.e.,

�S�i =
1

NS
�
k=1

NS

Sk. �4�

Here the label ‘i’ represents the Monte Carlo step and the
label ‘k’ represents the lattice sites. NS represents the number
of lattice sites and Sk is the spin at each lattice site. For a
given temperature, the mean value of the spin per lattice site

is calculated by summing the averages of all Monte Carlo
steps

�S� =
1

�Nc − N0� �
i�N0

NC

�S�i, �5�

where the average �S�i is by Eq. �4�. At a given temperature,
the average magnetization per ion is calculated by M / ion
=g�B�S�, where the average �S� is calculated by Eq. �5�. The
magnetic part of the heat capacity for a given temperature is
calculated by

Cmag�T,hext� =
�E2� − �E�2

kBT2 . �6�

The total heat capacity is given by C=Cmag+Cel+Clat,
where Cmag is the magnetic part calculated in Eq. �6�; Cel is
the contribution from the conduction electrons and �Clat� is
the contribution from crystalline lattice. The contribution
from the conduction electrons is taken as Cel=�T, where � is
the Sommerfeld coefficient. Here we take Clat in the Debye
approximation, which is given by28

Clat�T� = 9RNi�4� T

�D
�3	

0

�D/T x3

�ex − 1�
dx

− ��D

T
� 1

�e�D/T − 1�
 , �7�

where Ni is the number of ions per formula unit; R
=8.31 J /mol K is the gas constant and 	D is the Debye tem-
perature. In the same way, the total entropy of the compound
is given by S=Smag+Sel+Slat. The contribution from the
magnetic ions is given by

Smag�T,hext� = 	
0

T Cmag�T,hext�
T

dT , �8�

where Cmag is the magnetic heat capacity calculated in Eq.
�6�. The contribution from the conduction electrons is taken
as Sel=�T . The contribution from the crystalline lattice, also
taken in the Debye approximation, is given by17,18

Slat�T� = Ni�− 3R ln�1 − e−�	D/T��

+ 12R� T

	D
�3	

0

	D/T x3

ex − 1
dx
 . �9�

Here, we suppose that only the magnetic part of the entropy
and the magnetic heat capacity depend on the applied mag-
netic field. This is a very reasonable approximation for com-
pounds undergoing a second order magnetic phase transition.
For compounds with first order magnetic phase transition, an
extra term to account for the magnetoelastic coupling should
be included in the energy given in Eq. �1�.

For the sake of comparison, between our Monte Carlo
calculations and the mean field ones, we also calculate the
magnetocaloric effect within the molecular field approxima-
tion. In the molecular field approximation, the magnetization
is also calculated by M / ion=g�B�S�, where the average �S�,
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associated with relation �1�, is calculated in terms of the
Brillouin function. The magnetic entropy associated with the
energy �1�, in the molecular field approach is given by17,18

Smag�T,hext� = NmR�ln�
m

e−
Em +
1

kBT

�
m

Eme−
Em

�
m

e−
Em � ,

�10�

where Nm is the number of magnetic ions per formula unit
and Em are the energy eigenvalues for a Heisenberg model
Hamiltonian. In the absence of the crystalline electrical field,
the magnetic entropy can also be written as

Smag�T,hext� = NmR
ln Z − xSBS�x�� , �11�

where Z=�me−
Em is the partition function; BS is the Bril-
louin function, and x=g�B
hext+��S� /g�B� /kBT, where � is
the exchange interaction parameter. The magnetic heat ca-
pacity can be numerically obtained from the thermodynamic
relation Cmag=T�Smag /�T. In the theoretical calculations of
the magnetocaloric quantities �S and �Tad where the spin-
spin interaction is treated within the molecular field approxi-
mation, the electronic entropy and heat capacity are also con-
sidered as Sel=�T and Cel=�T, respectively. The lattice heat
capacity and the lattice entropy are also given by Eqs. �7�
and �9�, respectively.

III. NUMERICAL RESULTS

The calculations presented so far are quite general and
can be used to calculate the magnetocaloric effect in rare
earth based compounds, whose energy can be written in the
form of Eq. �1�. In this work, we apply the Monte Carlo
method to calculate the magnetocaloric effect in
Gd5�SixGe1−x�4 for x�0.5, where the magnetic phase transi-
tion is of second order. We use a tridimensional cluster of
5�5�5 orthorhombic cells with eight Gd atoms per cell
and consider only next neighbors interactions. Notice that in
the Monte Carlo calculations only the magnetic ions �Gd� are
considered in the crystalline structure. However, it is very
important to mention that Ge and Si ions play a fundamental
role in the determination of the magnetic ordering tempera-
ture, which depends on the exchange interaction parameters
�ij. For a given concentration, the exchange interaction pa-
rameters �ij, which take into account the distance between
the neighboring sites occupied by Gd ions, were chosen to
correctly reproduce the experimental data of the magnetic
ordering temperature. The Landè factor was taken as g=2
and the spin momentum of Gd as S=7/2. In order to estab-
lish the magnitude of the z component of the spin momentum
of the Gd ions at each lattice site, we proceed as follows: We
draw a random number r such that 0�r�1 and fix the
value of Sz according to the following scheme: Sz=−3.5 if
0�r�0.125; Sz=−2.5 if 0.125�r�0.25; Sz=−1.5 if 0.25
�r�0.375; Sz=−0.5 if 0.375�r�0.5; Sz=0.5 if 0.5�r
�0.625; Sz=1.5 if 0.625�r�0.75; Sz=2.5 if 0.75�r
�0.875; and Sz=3.5 if 0.875�r�1.0. For a given tempera-
ture, we perform Monte Carlo simulation using 5000 Monte

Carlo steps, where 2000 were used for thermalization of the
system and 3000 were used to compute the average values of
the physical quantities. The mean values of the energy and
spin were calculated from Eqs. �2�–�5�. The magnetic part of
the heat capacity was calculated using Eq. �6� and the mag-
netic entropy was obtained from Eq. �8�. The electronic heat
capacity was calculated using �=5.4 mJ/ �mol K2� and the
lattice heat capacity and entropy were calculated using 	D
=430 K. The parameters � and 	D are in the usual range of
values used in the literature.14 For the sake of comparison,
we also calculated the magnetocaloric quantities of the com-
pounds Gd5�Si1−xGex�4 by using the magnetic entropy given
by Eq. �10� obtained within the molecular field approxima-
tion.

In Fig. 1, we plot the magnetization of the compounds
Gd5Si4 �a� and Gd5�Si0.8Ge0.2�4 �b� obtained within the
Monte Carlo calculation for hext=0 T �solid circles� and
hext=5 T �open squares�. The solid and dotted lines represent

FIG. 1. Temperature dependence of the magnetization per Gd
ions of the compounds Gd5Si4 �a� and Gd5�Si0.8Ge0.2�4 �b�. The
solid and dotted lines represent the calculations within the molecu-
lar field approximation for hext=0 and hext=5 T. Solid circles and
open squares represent the curves obtained within the Monte Carlo
simulation for hext=0 and hext=5 T.
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the magnetization curves obtained within the molecular field
theory for hext=0 T and hext=5 T, respectively. We can ob-
serve that at low temperatures, the magnetizations obtained
within the Monte Carlo calculation and the ones calculated in
the molecular field approach agree quite well. However,
around the magnetic ordering temperature, there are some
deviations between them. This can be ascribed to the short
range interactions which are not well considered in the mean
field approach. In Fig. 2, we plot the magnetic heat capacity
in the absence of an external magnetic field for the com-
pounds Gd5Si4 �a� and Gd5�Si0.8Ge0.2�4 �b� obtained within
the Monte Carlo calculation �open circles�. The solid lines
are the corresponding calculations obtained within the mo-
lecular field theory. From this figure, we can observe that the
curves obtained with the Monte Carlo calculation and the
ones obtained in the molecular field are very similar at low
temperature. However, around the magnetic ordering tem-
perature, the curves obtained in the molecular field approxi-

mation go abruptly to zero, whereas the ones obtained in the
numerical Monte Carlo calculation go smoothly to zero, as it
is usually observed experimentally in the literature.14 Again
the failure of the molecular field theory around the magnetic
phase transition is ascribed to the short range interactions
which are not well considered in the mean field approxima-
tion.

In Fig. 3, we plot the total heat capacity �C=Cel+Cmag

+Clat� for the compounds Gd5Si4 �a� and Gd5�Si0.8Ge0.2�4 �b�
calculated in the absence of an external magnetic field. In
this figure, the open circles represent the total heat capacity
where the magnetic part was obtained within the Monte
Carlo calculation. The solid lines represent the total heat ca-
pacity where the magnetic part was calculated within the
molecular field approximation. In this figure, we can observe
that the curves obtained via the Monte Carlo calculation and
the ones obtained within the molecular field theory agree
quite well at low and high temperatures. Notice that the high

FIG. 2. Magnetic heat capacity of the compound Gd5Si4 �a� and
Gd5�Si0.8Ge0.2�4 �b� calculated in the absence of an external mag-
netic field. Open circles represent the Monte Carlo calculations
while the solid lines represent the molecular field calculations.

FIG. 3. Total heat capacity of the compound Gd5Si4 �a� and
Gd5�Si0.8Ge0.2�4 �b� in the absence of an external magnetic field.
Open circles represent the Monte Carlo calculations and the solid
lines represent the molecular field calculations.
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temperature value is in good agreement with the Dulong-
Petit law. However, some deviations occur around the mag-
netic ordering temperature, where the molecular field ap-
proach fails to describe the magnetic part of the heat
capacity.

In Fig. 4, we plot the magnetic entropy for the compound
Gd5Si4 �a� and Gd5�Si0.8Ge0.2�4 �b� in the absence of an ap-
plied magnetic field and for an applied magnetic field of 5 T.
Solid squares and open circles are the Monte Carlo calcula-
tions for hext=0 and hext=5 T, respectively. The solid and
dotted lines represent the calculation of the mean field theory
for hext=0 and hext=5 T, respectively. Notice that the satura-
tion value of the magnetic entropy around 17 J /mol K is
consistent with the expected value given by Smag=R ln�2S
+1�. We can observe that the curve obtained within the mo-
lecular field approximation for hext=0 exhibits a break
around the magnetic ordering temperature. This type of be-

havior is directly associated with the abrupt drop in the mag-
netic heat capacity. On the contrary, the corresponding curve
obtained via the Monte Carlo calculation increases smoothly
until it reaches the saturation value.

Using the temperature dependence of the total entropy for
hext=0 and hext=5 T, we calculate both the isothermal en-
tropy change and the adiabatic temperature change. For the
sake of comparison, we also calculate the isothermal entropy
change by using the Maxwell relation �S=���M /�T�dhext.
In Figs. 5 and 6, we plot the isothermal entropy change under
a magnetic field variation from 0 to 5 T for the compounds
Gd5Si4 and Gd5�Si0.8Ge0.2�4, respectively. Solid lines repre-
sent the calculations using the total entropy, whereas solid
triangles represent the calculations using the Maxwell rela-
tion. In these figures, we also plot the isothermal entropyFIG. 4. Temperature dependence of the magnetic entropy of the

compound Gd5Si4 �a� and Gd5�SixGe1−x�4 �b�. Solid squares and
open circles represent the Monte Carlo calculations for hext=0 and
hext=5 T. The solid and dotted lines represent the molecular field
calculation for hext=0 and hext=5 T.

FIG. 5. Isothermal entropy change in the compound Gd5Si4 for
a magnetic field variation from 0 to 5 T. The solid line and solid
triangles correspond to the Monte Carlo calculations using the total
entropy and Maxwell relation, respectively. The dotted line repre-
sents the molecular field calculations. Open circles are experimental
data �Ref. 11�.

FIG. 6. Isothermal entropy change in the compound
Gd5�Si0.8Ge0.2�4 for a magnetic field variation from 0 to 5 T. The
solid line and solid triangles correspond to the Monte Carlo calcu-
lations using the total entropy and Maxwell relation, respectively.
The dotted line represents the molecular field calculations. Open
circles are experimental data �Ref. 11�.
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change obtained within the molecular field theory �dotted
lines�. From these figures, we can observe a better agreement
between the Monte Carlo calculations �solid lines� and ex-

perimental data11 �open circles�. In Fig. 7, we plot the adia-
batic temperature change for the compounds Gd5Si4 �a� and
Gd5�Si0.8Ge0.2�4 �b� obtained within the Monte Carlo calcu-
lations for a magnetic field variation from 0 to 5 T �solid
lines�. The results from the molecular field theory are shown
by the dotted lines. From Fig. 7�a�, we again observe a better
agreement between the Monte Carlo calculations �solid line�
and the available experimental data �triangles�.12

IV. CONCLUSIONS

In this work, we report on the Monte Carlo calculations of
the magnetocaloric effect in the compound Gd5�SixGe1−x�4 in
the concentration range in which the magnetic phase transi-
tion is of second order. For the concentration range in which
the first order magnetic phase transition takes place, the
present calculation should be modified in order to incorpo-
rate the magnetoelastic coupling. It is worth mentioning that
although the molecular field approximation fails to explain
the magnetic heat capacity around the magnetic ordering
temperature, the magnetocaloric quantities �S and �Tad ob-
tained within this mean field theory are very reasonable.
Since the molecular field theory is much less time consuming
than the Monte Carlo calculations, it can be used as a first
attempt to obtain the trend of the magnetocaloric quantities
in rare earth based compounds. However, for a more rigorous
description of the physical mechanism involved in the mag-
netocaloric effect of rare earth based compounds, we should
use the Monte Carlo calculations. Besides, the Monte Carlo
simulation enables us to calculate the magnetocaloric effect
in disordered systems containing more than one type of rare
earth ions, where the molecular field theory is not a good
approximation at all. The Monte Carlo method also enables
us to simulate new rare earth based compounds which may
exhibit sizeable magnetocaloric effect as well as to calculate
the magnetocaloric effect in antiferromagnetic compounds.
Therefore, this work on the theoretical calculations of the
magnetocaloric effect based on the Monte Carlo simulation
opens a brand new horizon in the theoretical study of the
magnetocaloric effect in rare earth metals and their com-
pounds.
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