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I. INTRODUCTION

Coherent statessCS’sd were introduced by Schrödinger in
1926 f1g while he was studying the one-dimensional har-
monic oscillator system. The same mathematical objects, the
coherent states, were also studied by Glauberf2g and
Klauder f3g four decades ago. Glauber found these states
while he was studying the electromagnetic correlation func-
tion f2g. He also realized that these states have the interesting
property of minimizing the Heisenberg uncertainty relation.
Thus, one could say that these states are the quantum states
with the behavior closest to a classical system. CS’s have
applications in many areas of physicsf4g, and since the birth
of these states, there has always been some interest in inves-
tigating their algebraic propertiesf4,5g.

We would like to point out that there is not one unique
way to construct coherent states. In fact, there are a number
of approaches—for instance, the well known Klauderf6g and
Perelomov-Gilmore approachesf7g. In the first approach the
coherent states are constructed using the basis of the Fock
representation of the harmonic oscillator algebra, while in
the second one this construction is based on notions of group
theory.

In our work we deal with Klauder’s approach, which is
based on the construction of coherent states of the Heisen-
berg algebra. This algebra appears in many areas of modern
theoretical physics and as an example we notice that the
one-dimensional quantum oscillator algebra is an important
tool in the second-quantization approach.

Due to the relevance of Heisenberg algebra, during the
last two decades some effort has been devoted to studying
possible deformations of the harmonic oscillator algebraf8g.
During these years several groups have also generalized the
Heisenberg algebrassee, for instance, Ref.f9–12gd. 1 All
these generalized Heisenberg algebrassGHA’sd are related to

each other. In this paper we will use the GHA given in Ref.
f11g since, in this version of the algebra, the Hamiltonian of
the physical system under consideration belongs explicitly to
the set of generators of the algebra, the other generators in
this set being the step operators of the system.

The version of the GHA given in Ref.f11g is written using
a general functionfsxd called the characteristic function of
the algebra, which is connected with the energy spectrum of
the physical system under consideration. It was shown in
Ref. f13g that there is a class of quantum systems described
by this GHA. This class is characterized by those quantum
systems having energy eigenvalues written asen+1= fsend
whereen anden+1 are successive energy levels andfsxd is a
different function for each physical system.

Motivated by the procedure for constructing the standard
coherent states of the harmonic oscillator, in this paper we
build a state which is an eigenstate of the annihilation opera-
tor of the GHA having infinite-dimensional representations.
In the main part of this paper we discuss the circumstances
under which this general vector state, the eigenstate of the
annihilation operator of the GHA, satisfies the minimum set
of conditions required to construct Klauder’s coherent states
for the following systems:sid harmonic oscillator,sii d de-
formed harmonic oscillator,siii d a general class of spectra,
and sivd free particle in a square well potential.

This paper is organized as follows: In Sec. II we summa-
rize the GHA; in Sec. III we present a general expression for
an eigenstate of the annihilation operator of the GHA and
show that this expression satisfies the minimum set of con-
ditions required to construct Klauder’s coherent states for the
cases enumerated above; in Sec. IV we present our conclu-
sions.

II. GENERALIZED HEISENBERG ALGEBRA

Let us begin by reviewing the version of the GHAf9–12g
given in Ref.f11g. We stress once more that all these gener-
alized Heisenberg algebras are related to each other. The ver-
sion of the GHA we are going to review is described by the
generatorsJ0,A,A†, satisfyingf11g

J0A
† = A†fsJ0d, s1d
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AJ0 = fsJ0dA, s2d

fA†,Ag = J0 − fsJ0d, s3d

where A=sA†d†, J0=J0
† is the Hamiltonian of the physical

system under consideration, andfsJ0d is an analytic function
of J0, called the characteristic function of the algebra. A large
class of type Heisenberg algebras2 can be obtained by choos-
ing the appropriate functionfsJ0d. It is interesting to note that
in order to study generalized sus2d algebras we have to use a
slightly different algebraic structure, as can be seen in Ref.
f14g. The Casimir operator of the GHA has the expression

C = A†A − J0 = AA† − fsJ0d. s4d

This algebra has a connection with the algebra independently
proposed in Ref.f12g, where the authors introduced the
Heisenberg algebra through the set of elementssa−,a+,Id,
satisfying

fa−,a+g = a−a+ − a+a− ; D8, s5d

fa−,Dg = D8a−, s6d

fD,a+g = a+D8, s7d

with D=a+a−. The connection between Eqs.s1d–s3d ands5d–
s7d can be made by means of the simple identification

D8 = fsJ0d − J0, s8d

a+ = A†, s9d

a− = A, s10d

a+a− = J0, s11d

a−a+ = fsJ0d. s12d

Before starting the construction of the coherent states asso-
ciated with some physical systems by means of their related
algebra, let us give a summary of its representation theory:
the n-dimensional irreducible representations of the algebras
s1d–s3d and s5d–s7d are given through the lowest eigenvalue
of J0 with respect to the vacuum stateu0l:

J0u0l = a0u0l. s13d

It is clear that for each value ofa0 and for a set of parameters
of the algebrasrelated to the functionfd, we have a different
vacuum, all of them denoted here, for simplicity, byu0l. The
solution of the representation theory problem is given in Ref.
f11g for the linear and quadratic polynomials. The
n-dimensional representation theory is given through a gen-
eral vectoruml that is required to be an eigenvector ofJ0,

J0uml = amuml, s14d

wheream= f smdsa0d, themth iterate ofa0 under f, and under
the action ofA andA† we have

A†uml = Nmum+ 1l, s15d

Auml = Nm−1um− 1l, s16d

whereNm
2 =am+1−a0.

In Ref. f11g it was shown that choosing for the character-
istic function of the GHA the linear functionfsxd=x+1 the
algebra in Eqs.s1d–s3d becomes the harmonic oscillator al-
gebra and forfsxd=qx+1 we obtain in Eqs.s1d–s3d the de-
formed Heisenberg algebra. Moreover, it was shown in Ref.
f13g that there is a class of quantum systems described by
these generalized Heisenberg algebras. This class is charac-
terized by those quantum systems having energy eigenvalues
written as

en+1 = fsend, s17d

whereen+1 anden are successive energy levels andfsxd is a
different function for each physical system. This function
fsxd is exactly the same function that appears in the construc-
tion of the algebra in Eqs.s1d–s3d, which was called the
characteristic function of the algebra. In the algebraic de-
scription of this class of quantum systems,J0 is the Hamil-
tonian operator of the system, andA† andA are the creation
and annihilation operators. This Hamiltonian and the ladder
operators are related by Eq.s4d whereC is the Casimir op-
erator of the representation associated to the quantum system
under consideration.

III. COHERENT STATES

Now, we are in a position to build the coherent states
corresponding to some particular form of the characteristic
function corresponding to the GHA with infinite-dimensional
representations. Let us construct a stateuzl which is an eigen-
state of the annihilation operator of the GHA introduced in
the previous section—i.e.,

Auzl = zuzl, s18d

where z is a complex number. We expand the stateuzl as
uzl=on=0

` cnunl. Acting the annihilation operator of the GHA
on uzl and using Eqs.s16d and s18d we have

Auzl = o
n=0

`

cn+1Nnunl = zo
n=0

`

cnunl. s19d

Equating the coefficients ofunl givescn+1Nn=zcn. The solu-
tion of this equation for arbitrarycn is

cn = c0
zn

Nn−1!
, s20d

where by definitionNn! ;N0N1¯Nn and by consistency
N−1! ;1. We will see in what follows that this definition of !
reduces to the standard definition of the factorial for the har-
monic oscillator case. With the solution given in Eq.s20d we
obtain, for the stateuzl,

uzl = Nszdo
n=0

`
zn

Nn−1!
unl, s21d

where we have usedNszd instead ofc0.

2A type Heisenberg algebra is an algebra having annihilation and
creation operators among its generators.
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It is worth mentioning that special characteristic functions
will provide the GHA with finite-dimensional representa-
tions. We are going to consider here only characteristic func-
tions generating the GHA with infinite-dimensional represen-
tations.

Let us now recall what the minimal set of conditions to
obtain Klauder’s coherent statessKCS’sd are.

A state uzl is called a KCS if it satisfies the following
conditions:

sid normalizability

kzuzl = 1; s22d

sii d continuity in the label

uz− z8u → 0, i uzl − uz8li → 0; s23d

siii d completeness

E d2zwszduzlkzu = 1. s24d

We are going now to analyze the above minimal set of con-
ditions to obtain a KCS for the state given in Eq.s21d in
several examples.

A. Harmonic oscillator

As commented on in the previous section, the GHA re-
duces to the Heisenberg algebra by choosing the linear func-
tion fsxd=x+1 for its characteristic function. In this case we
have Nn−1

2 =n and Eq.s21d becomes the standard coherent
state for the harmonic oscillator with normalization coeffi-
cient given byN;Nszd=exps−uzu2/2d and the weight func-
tion wsrd, r = uzu, required by the third condition iswsrd
=1/p.

B. Deformed Heisenberg algebra

As discussed in Ref.f11g by choosing the characteristic
function of the GHA asfsxd=qx+1 we obtain a deformed
Heisenberg algebra. In this case sinceNn−1

2 =N0
2fngq, where

N0
2=a0sq−1d+1, the Gauss number beingfngq=sqn−1d / sq

−1d anda0 is the eigenvalue of the Casimir for the represen-
tation.

In the case we are analyzing Eq.s21d becomes

uzl =
Nsuzud

N0
o
n=0

`
zn

Îfngq!
unl, s25d

where fngq! ;f1gqf2gq¯ fngq and f0gq! ;1. Using the nor-
malizability condition we have

uzl = Fo
n=0

` uzu2n

fngq!
G−1/2

o
n=0

`
zn

Îfngq!
unl. s26d

As discussed in Ref.f15g the functiongszd=on=0
` uzu2n/ unuq!

which appears in the above equation is convergent within a
circle of radius 1/s1−qd for 0,q,1 and outside this circle
the function is defined by analytic continuation. For the clas-
sical casesq=1d it was shown that the completeness condi-

tion is achieved withwszd=1/p ssee Ref.f15g for details on
the construction of the weight function for this cased.

C. Class of spectra

Let us now apply Eq.s21d to a simple class of spectra and
then to the physically important case of the free particle in a
square well potential. The key point is to know the analytical
expression of the energy levels as shown below.

1. Spectrum type 1

Let us consider a system whose spectrum is given by the
expression

«n = 1 −
1

n + 1
=

n

n + 1
, with n ù 0. s27d

To obtain the characteristic function of the generalized alge-
bra associated with this spectrum, we remark that

«n+1 =
n + 1

n + 2
=

1

n

n + 1
+

2

n + 1

. s28d

As

«n =
n

n + 1
and 1 −«n =

1

n + 1
, s29d

the substitution of Eq.s29d in Eq. s28d allows us to obtain the
recurrence equation

«n+1 =
1

2 − «n
. s30d

Thus,

«n+1 = fs«nd =
1

2 − «n
, s31d

allowing us to identify the characteristic functionf to be
used in the algebra associated with this energy spectrum:

fsxd =
1

2 − x
. s32d

As for the present spectrum

an = «n =
n

n + 1
, a0 = 0, s33d

it is thus easy to see that

Nn−1
2 =

n

n + 1
, s34d

yielding

Nn−1 ! =
1

sn + 1d1/2. s35d

The vectoruzl defined in Eq.s21d can thus be written as

uzl = Nsuzu2do
nù0

sn + 1d1/2znunl. s36d
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Now, following our proposal concerning the definition of
KCS’s, we have to verify the three conditions mentioned
above. Requiring thatkzuzl=1 snormalizability conditiond
and remembering thatkmunl=dm,n, one obtains

kzuzl = N2suzu2d o
mù0

sm+ 1duzu2m. s37d

As

o
mù0

sm+ 1duzu2m =
1

s1 − uzu2d2 ,

we have, for the normalization factor,

N2suzu2d = s1 − uzu2d2, s38d

where 0ø uzu,1. Let us remark that with this result, ob-
tained from a particular spectrum, the KCS can be con-
structed with a normalization function that is different from
the exponential function which is the standard case. The sec-
ond conditionscontinuity conditiond is automatically veri-
fied. But to satisfy the third one, which is, in general, the
most important, we have to find the weight function allowing
the equality

E d2zwsuzu2duzlkzu = 1. s39d

This expression means the overcompleteness condition in the
KCS domain for the particular case of the spectrum of type
1. Substituting Eqs.s36d ands38d in Eq. s39d and integrating
on the angleu fz=r expsiudg, we obtain the expression

2p o
mù0

umlkmuE
0

1

drwsr2dN2sr2dsm+ 1dr2m+1. s40d

Changingx=r2, this expression can be written as

p o
mù0

umlkmuE
0

1

dxwsxdN2sxdsm+ 1dxm, s41d

and remarking that

E
0

1

dxsn + 1dxn = 1, s42d

it is obvious that we can solve Eq.s39d if we choose the
weight functionw satisfying the condition

pwsxdN2sxd = 1. s43d

The explicit form ofw, allowing the resolution of the com-
pleteness equation can, finally, be written as

wsxd =
1

ps1 − xd2 . s44d

2. Spectrum type 2

Now, we are going to treat the case of the quadratic spec-
trum in this class of spectra. Let us call quadratic spectrum
the spectrum«m having the following expression:

«m = S1 −
1

m+ 1
D2

=
m2

sm+ 1d2 , s45d

wherem=0,1,2,3, . . . . As in theprevious case, we are in-
terested in computing the characteristic function of the GHA
for this particular spectrum. From the above expression, we
have

Î«m − 1 =
− 1

m+ 1
, s46d

leading us to the expression

«m+1 =
sm+ 1d2

sm+ 2d2 = S 1

2 −Îem
D2

. s47d

Consequently, the characteristic equation is given by

«m+1 = fs«md, s48d

with

fsxd = S 1

2 −Îx
D2

. s49d

As before, let us consider Eq.s21d. As a0=«0=0 andNm−1
2

=am−a0=am=«m=fm/ sm+1dg2, after some calculation, the
scalarkzuzl can be written as

kzuzl = N2suzu2d o
mù0

sm+ 1d2uzu2m. s50d

The sum can be easily performed and we obtain

N2suzu2d =
s1 − uzu2d3

1 + uzu2
, s51d

where 0ø uzu,1. We note that once more the normalized
function is not an exponential one.

As mentioned before the most important equation is the
resolution of the completeness equation. To get this, we must
find an adequate weight functionw. Performing a computa-
tion similar as in previous cases, the weight function must
obey sx= uzu2d

p o
mù0

umlkmuE
0

1

dxwsxdN2sxdsm+ 1d2xm = 1. s52d

One can verify that a solution of this equation is given by

wsxd = −
ln x

pN2sxd
. s53d

Using Eq.s51d, we can write the weight function as

wsxd = −
ln x

p

1 + x

s1 − xd3 . s54d

This function ensures the resolution of the completeness
equation, corresponding to the case of the spectrum of type
2, allowing the construction of coherent states for this kind
of spectrum.
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3. General case

The spectra of types 1 and 2 can be generalized to an
arbitrary order. Let us now consider the general spectrum

«n = S1 −
1

n + 1
Da

, s55d

with aù2. The question now is to find the corresponding
GHA. After that, we have to find the characteristic function.
Starting from the fact that

«n
1/a − 1 = −

1

n + 1
, s56d

one can check that

«n+1 = Sn + 1

n + 2
Da

= S 1

1 − «n
1/aDa

. s57d

Then the characteristic function is

fsxd = S 1

2 − x1/aDa

. s58d

Let us now verify the minimal set of conditions for the state
in Eq. s21d in the case of the general spectrum under consid-
eration. For this general case we have

Nn−1 ! =
1

sn + 1da/2 , s59d

allowing us to write Eq.s21d in this case as

uzl = Nsuzu2do
nù0

sn + 1da/2znunl. s60d

As

o
nù0

sn + 1dauzu2n =
Li−asuzu2d

uzu2
, s61d

where Li−asuzu2d is the polylogarithm function, the coefficient
N2suzu2d can be written as

N2suzu2d =
uzu2

Li−asuzu2d
, s62d

and 0ø uzu,1. The expression of the weight function that is
behind the resolution of the unity equation is, nevertheless,
harder to be obtained. Following the method used before, we
find that, for the general case, the weight function can be
written assx= uzu2d

wsxd = s− 1da+1 sln xda−1

pGsadN2sxd
, s63d

whereGsad is the gamma function. As an example, we con-
sider the behavior ofwsxd for a=3:

wsxd =
sln xd2

2p

1 + 4x + x2

s1 − xd4 , s64d

which is shown in Fig. 1.

D. Free particle in a square-well potential

We are now going to compute the coherent states of a
physical system using the formalism described before. The
results in this case are more complicated because they in-
volve a spectrum needing a weight function which is a spe-
cial function. In fact, the latter is relatively not obvious in
comparison with the ones introduced in the previous sec-
tions. Let us begin with the well-known spectrum of a free
particle in a square-well potential:

«n = sn + 1d2, n = 0,1,2,3, . . . . s65d

Then,

«n+1 = sn + 2d2 = «n + 2Î«n + 1. s66d

Using the algebraic formalism shown before and observing
that san=«nd

Nn−1
2 = an − a0 = an − 1 =n2 + 2n, s67d

we obtain

Nn−1 ! =
1
Î2

În!Îsn + 2d! . s68d

We thus obtain for our proposal of coherent states given in
Eq. s21d the expression

uzl = Î2Nsuzudo
nù0

zn

În!Îsn + 2d!
unl. s69d

The normalizability condition can be fulfilled if we satisfy
the expression

2N2suzudo
nù0

uzu2n

n ! sn + 2d!
= 1. s70d

Noting that

o
nù0

uzu2n

n ! sn + 2d!
=

I2s2uzud
uzu2

, s71d

for 0ø uzu,1, whereInszd is the modified Bessel function of
the first kind of ordern, the expression for the normalizabil-
ity coefficient can be written as

FIG. 1. Weight function for the system having characteristic
function given asfsxd=f1/s2−xd1/3g1/3.
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N2suzud =
uzu2

2I2s2uzud
, s72d

where 0ø uzu,`. The behavior of this function can be seen
in Fig. 2.

The resolution of the completeness problem is given by
finding the adequate weight functionwsxd, x= uzu2, satisfying
the equality

po
nù0

unlknu
2

n ! sn + 2d!E0

`

dx
wsÎxdN2sÎxdxn+1

2x
= 1.

s73d

If we take

pwsÎxdN2sÎxd
2x

= K2s2Îxd, s74d

whereKnsxd is the modified Bessel function of the second
kind of ordern, the weight function takes the form

wsÎxd =
2

p

xK2s2Îxd
N2sÎxd

s75d

and can, finally, be written as

wsxd =
4

p
K2s2ÎxdI2s2Îxd, s76d

which is shown in Fig. 3.
With this expression, one can verify that the important

condition, the completeness equation, is satisfied by consid-
ering that

E
0

`

dxK2s2Îxdxn+1 =
1

2
n ! sn + 1d ! . s77d

IV. CONCLUSION

We have investigated in this work a state constructed as
an eigenstate of the annihilation operator of the generalized
Heisenberg algebra. We have shown for several systems
sharmonic oscillator, deformed harmonic oscillator, a class of
spectra, and the square-well potentiald that this state satisfies
the minimum set of conditions required to obtain Klauder’s
coherent states.

The GHA we considered is an algebra having as genera-
tors the Hamiltonian of the physical system under consider-
ation and the annihilation and creation operators of the sys-
tem. The state we have investigated is an eigenstate of the
annihilation operator of the GHA for a general system de-
scribed by this GHA. Thus, this state is a natural generaliza-
tion for a general system described by the GHA of the co-
herent states of the standard harmonic oscillator system.

It is interesting to note that in the prooffEqs.s18d–s21dg
of our expression for coherent states given in Eq.s21d it was
only necessary to admitsid an infinite sum,sii d Au0l=0, and
siii d Aunl=Nn−1un−1l. We see that this formalism is not ap-
plied to finite-dimensional representations of GHA’s and that
the explicit expression ofNn was not necessary in order to
get Eq. s21d. The explicit expression ofNn was necessary
only when we showed, for specific spectra, that the state
satisfied the minimal set of conditions to obtain Klauder’s
coherent states. Thus, we think that the expression in Eq.
s21d could be a consistent definition of coherent states even
for systems which are not described by the GHA but satisfy-
ing the conditionssid–siii d mentioned above.
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FIG. 2. Normalization function for the free particle in a square-
well potential.

FIG. 3. Weight function for the free particle in a square-well
potential.
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