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We construct a general state which is an eigenvector of the annihilation operator of the generalized Heisen-
berg algebra. We show, for several systems characterized by different energy spectra, that this general state
satisfies the minimal set of conditions required to obtain Klauder’s minimal coherent states.
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I. INTRODUCTION each other. In this paper we will use the GHA given in Ref.
) ) _[11] since, in this version of the algebra, the Hamiltonian of
Coherent statefCS's) were introduced by Schrddinger in the physical system under consideration belongs explicitly to
1926 [1] while he was studying the one-dimensional har-the set of generators of the algebra, the other generators in
monic oscillator system. The same mathematical objects, thgis set being the step operators of the system.
coherent states, were also studied by Glauf@r and The version of the GHA given in Reff11] is written using
Klauder [3] four decades ago. Glauber found these stateg general functiorf(x) called the characteristic function of
while he was studying the electromagnetic correlation funcype algebra, which is connected with the energy spectrum of
tion[2]. He also realized that these states have the interestinge physical system under consideration. It was shown in
property of minimizing the Heisenberg uncertainty relation.gef. [13] that there is a class of quantum systems described
Thus, one could say that these states are the quantum staigp this GHA. This class is characterized by those quantum
with the behavior closest to a classical system. CS’s haV§ystems having energy eigenvalues written eas =f(e,)

applications in many areas of physieq, and sin_ce the b_irt_h wheree, and ., are successive energy levels ai) is a
of these states, there has always been some interest in iNVefiztarent function for each physical system.

tigating their algebraic properti¢d.,5]. _ Motivated by the procedure for constructing the standard
We would like to point out that there is not one unique ¢oherent states of the harmonic oscillator, in this paper we
way to construct coherent states. In fact, there are a numbey,iy 5 state which is an eigenstate of the annihilation opera-
of approaches—for instance, the well known Klaurand o, of the GHA having infinite-dimensional representations.
Perelomov-Gilmore approachg]. In the first approach the |, the main part of this paper we discuss the circumstances
coherent states are constructed using the basis of the FOogk e, \yhich this general vector state, the eigenstate of the
representation of the harmonic oscillator algebra, while in,pniniation operator of the GHA, satisfies the minimum set
the second one this construction is based on notions of groygy ¢ongitions required to construct Klauder’s coherent states
theory. for the following systemsii) harmonic oscillator,ii) de-

In our work we deal with Klauder's approach, which is or1eq harmonic oscillatoriii) a general class of spectra,
based on the construction of coherent states of the Helse%-nd (iv) free particle in a square well potential

berg algebra. This algebra appears in many areas of modern ;g paper is organized as follows: In Sec. Il we summa-

theorepcal physms and as an example we .”O“C?‘ that thﬁ’ze the GHA,; in Sec. Il we present a general expression for
one-Q|menS|onaI q“am“m qscﬂlator algebra is an importanj eigenstate of the annihilation operator of the GHA and
tool in the second-quantization approach. show that this expression satisfies the minimum set of con-

Due to the relevance of Heisenberg algebra, during th‘?jitions required to construct Klauder’s coherent states for the
last two decades some effort has been devoted to studying,«os enumerated above: in Sec. IV we present our conclu-
possible deformations of the harmonic oscillator algdBia sions. ’ '

During these years several groups have also generalized the
Heisenberg algebrésee, for instance, Ref9-12). LAl
these generalized Heisenberg algeliaidA's) are related to Il. GENERALIZED HEISENBERG ALGEBRA

Let us begin by reviewing the version of the GHi#-12]
. _ o ~given in Ref.[11]. We stress once more that all these gener-
Electronic address: y-hassou@fsr.ac.ma and yassine.ictp.triestegfiza Heisenberg algebras are related to each other. The ver-

Electronic address: evaldo@chbpf.br sion of the GHA we are going to review is described by the
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A generalized Heisenberg algebra is not necessarily a deformed

Heisenberg algebra. JoAT=ATf(Jp), (1)
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AJy=f(JA, () ATlm) = Ny m+ 1), (15)

[ATA]l=J0-f(Jp), (3) Alm) = Npp_qg/m— 1),

where A=(AN, Jy=J] is the Hamiltonian of the physical whereN2=am,;- ap.

system under consideration, afid,) is an analytic function In Ref.[11] it was shown that choosing for the character-

of J, called the characteristic function of the algebra. A largeistic function of the GHA the linear functiofi(x)=x+1 the

class of type Heisenberg algeb2raan be obtained by choos- algebra in Eqs(1)—(3) becomes the harmonic oscillator al-

ing the appropriate functiof(Jy). It is interesting to note that gebra and forf(x)=qgx+1 we obtain in Eqs(1)—3) the de-

in order to study generalized @) algebras we have to use a formed Heisenberg algebra. Moreover, it was shown in Ref.

slightly different algebraic structure, as can be seen in Ref.13] that there is a class of quantum systems described by

[14]. The Casimir operator of the GHA has the expression these generalized Heisenberg algebras. This class is charac-
terized by those quantum systems having energy eigenvalues

C=ATA-Jy=AAT - (Jy). @ e oy g y g energy €19

This algebra has a connection with the algebra independently

proposed in Ref[12], where the authors introduced the

(16)

€1 =T(€n), (17)

Heisenberg algebra through the set of eleméntsa®,l),
satisfying

[a",a']=aa"-a‘a =A’, (5)
[a”,A]=A"a", (6)
[A,a]=a%A’, (7)

with A=a*a". The connection between Eq4)—(3) and(5)—
(7) can be made by means of the simple identification

A" =£(Jo) - Jo, (8)
at=A', 9

a =A, (10)
ata =J,, (11
aa =f(Jy). (12)

wheree,.; and e, are successive energy levels difg) is a
different function for each physical system. This function
f(x) is exactly the same function that appears in the construc-
tion of the algebra in Eqgs(1)—(3), which was called the
characteristic function of the algebra. In the algebraic de-
scription of this class of quantum systendg,is the Hamil-
tonian operator of the system, aAd andA are the creation
and annihilation operators. This Hamiltonian and the ladder
operators are related by E@) whereC is the Casimir op-
erator of the representation associated to the quantum system
under consideration.

Ill. COHERENT STATES

Now, we are in a position to build the coherent states
corresponding to some particular form of the characteristic
function corresponding to the GHA with infinite-dimensional
representations. Let us construct a statevhich is an eigen-
state of the annihilation operator of the GHA introduced in
the previous section—i.e.,

Al2) =22), (18)

Before starting the construction of the coherent states asso-

ciated with some physical systems by means of their relatewhere z is a complex number. We expand the st@eas
algebra, let us give a summary of its representation theory2 ==-,Cn[N). Acting the annihilation operator of the GHA
the n-dimensional irreducible representations of the algebragn |2 and using Eqs(16) and (18) we have

(1)—3) and (5)—(7) are given through the lowest eigenvalue

of J, with respect to the vacuum sta@:

Jol0) = ag|0). (13

It is clear that for each value af, and for a set of parameters
of the algebrdrelated to the functior), we have a different

vacuum, all of them denoted here, for simplicity, |6y. The

solution of the representation theory problem is given in Ref. N
The

[11] for the linear and quadratic polynomials.

Al2) = > CreaNp[n) = 2>, coln). (19
n=0 n=0

Equating the coefficients dhy givesc,,;N,=z¢, The solu-
tion of this equation for arbitrarg, is
ZI’]
Ch=Co—, (20)
n-1:

n-dimensional representation theory is given through a genwhere by definitionN,! =NgN;---N,, and by consistency

eral vectorjm) that is required to be an eigenvectorJf
Jolm) = M), (14

wherea,=f™(«y), the mth iterate ofa, underf, and under
the action ofA and A" we have

n type Heisenberg algebra is an algebra having annihilation and

creation operators among its generators.

N_;! =1. We will see in what follows that this definition of !
reduces to the standard definition of the factorial for the har-
monic oscillator case. With the solution given in E80) we
obtain, for the stat¢z),

Zﬂ

12 =N>2)>

> i, (29

where we have useN(z) instead ofc,.
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It is worth mentioning that special characteristic functionstion is achieved wittw(z) =1/ (see Ref[15] for details on
will provide the GHA with finite-dimensional representa- the construction of the weight function for this case
tions. We are going to consider here only characteristic func-
tions generating the GHA with infinite-dimensional represen- C. Class of spectra

tations. o N Let us now apply Eq(21) to a simple class of spectra and
Let us now recall what the minimal set of conditions to then to the physically important case of the free particle in a
obtain Klauder’s coherent stat@sCS’s) are. square well potential. The key point is to know the analytical

A state |Z> is called a KCS if it satisfies the following expression of the energy levels as shown below.
conditions:

(i) normalizability 1. Spectrum type 1
Let us consider a system whose spectrum is given by the
(#@2=1; (22 expression g P ’ g
(ii) continuity in the label 1 N
/ / . =1l-——=——, withn=0. 27
-2~ 0, [l2-[2)—0; (23 R 27
(i) completeness To obtain the characteristic function of the generalized alge-
bra associated with this spectrum, we remark that
fdzzw(z)|z><z| =1. (24) n+1 1
8n+1=n+2= n 2 (28)
We are going now to analyze the above minimal set of con- +
ditions to obtain a KCS for the state given in EQ1) in n+l n+l
several examples. As
A. Harmonic oscillator £,= _n and 1-—e,=——, (29
n+1 n+1

As commented on in the previous section, the GHA re-
duces to the Heisenberg algebra by choosing the linear fun¢he substitution of E(29) in Eq. (28) allows us to obtain the
tion f(x)=x+1 for its characteristic function. In this case we recurrence equation
have N2_,=n and Eq.(21) becomes the standard coherent

state for the harmonic oscillator with normalization coeffi- Epe1= i (30)
cient given byN=N(z)=exp-|z?/2) and the weight func- 2-en
tion w(r), r=|z, required by the third condition isv(r)  Thys,
=1/m.
ene1=flen) = P (31)
— e,

B. Deformed Heisenberg algebra

As discussed in Ref11] by choosing the characteristic &/lowing us to identify the characteristic functidnto be
function of the GHA asf(x)=qx+1 we obtain a deformed used in the algebra associated with this energy spectrum:

Heisenberg algebra. In this case sidg,;=Ng[n],, where 1
N3=ap(q-1)+1, the Gauss number beirig],=(q"-1)/(q f(X):ZT- (32
. . S X
-1) anday is the eigenvalue of the Casimir for the represen-
tation. As for the present spectrum
In the case we are analyzing E@1) becomes N
% =en= , =0, 33
Nl < 2 ey 59
|2) = > —1n), 25
No n=o0 V[n]g! it is thus easy to see that
where[n],! =[1][2]4 --[n], and[0],! =1. Using the nor- ) n
malizability condition we have No-1= 7 (34)
o0 -1/2 »
Z z ieldin
|2)= [2 —,] > ==l (26 YOS
n=0 [n](r n=0 V[n]q! 1
. . . o on Nn—l! = 1/2° (35)
As discussed in Ref15] the functiong(z)=3;42/>"/|nl! (n+1)

which appears in the above equation is convergent within
circle of radius 1{1-q) for 0<g<1 and outside this circle
the function is defined by analytic continuation. For the clas- 120 =N(|Z3 > (n+ 1)Y22"n). (36)
sical casgg=1) it was shown that the completeness condi- n=0

&he vector|z) defined in Eq.(21) can thus be written as
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Now, following our proposal concerning the definition of 1 \? 2
KCS’s, we have to verify the three conditions mentioned 8m_< Tt 1) = (m+ 12’ (45)
above. Requiring thatz|z)=1 (normalizability condition
and remembering thdm|n)=4,,,, one obtains wherem=0,1,2,3,... . As in therevious case, we are in-
terested in computing the characteristic function of the GHA
(Z2) =N4|Z? >, (m+1)|z>™ (37)  for this particular spectrum. From the above expression, we
m=0 have
As — -1
Vep—1l=——, (46)
1 m+1
2 (m+1))zPM= ——,
m=0 (1-[2) leading us to the expression
we have, for the normalization factor, (m+ 1) ( 1 )2
N%(2?) = (1-|7%?2, (39) fmlT e \oo Vem “4)

where O<|Z<1. Let us remark that with this result, ob- Consequently, the characteristic equation is given by

tained from a particular spectrum, the KCS can be con-

structed with a normalization function that is different from eme1= fem), (48)

the exponential function which is the standard case. The sec-.
. o o . -~ with

ond condition(continuity condition is automatically veri-

fied. But to satisfy the third one, which is, in general, the 1 \2
most important, we have to find the weight function allowing f(x) = T (49
the equality 2=Vx

As before, let us consider E€R1). As ag=g,=0 andN?_,
szzw(|z|2)|z><z| =1. (39  =am—ag=an=en=[M/(m+1)]% after some calculation, the
scalar(z|z) can be written as
This expression means the overcompleteness condition in the

KCS domain for the particular case of the spectrum of type @2y =N¥|z) 2 (m+ 1)%z>™. (50)
1. Substituting Eqs(36) and(38) in Eq. (39) and integrating m=0
on the anglef [z=r exp(if)], we obtain the expression The sum can be easily performed and we obtain
! _1[2)3
27> [my(m| | drw(rANAr?)(m+ Dr2™l (40) NP(122) = L1 51)
m=0 0 1 +|Z|2 !
Changingx=r?, this expression can be written as where 0<|zZ<1. We note that once more the normalized
1 function is not an exponential one.
T, [my}{m| [ dxw(x)N?(x)(m+ 1)x™, (41 As mentioned before the most important equation is the
m=0 0 resolution of the completeness equation. To get this, we must

find an adequate weight functiom. Performing a computa-

and remarking that tion similar as in previous cases, the weight function must

1 obey (x=(2)
f dx(n+1)x"=1, (42)
0 1
m}(m| [ dxw(x)N?(x)(m+ 1)>x™=1. (52
it is obvious that we can solve E¢39) if we choose the WE},' h(m 0 WO ) 52
weight functionw satisfying the condition
One can verify that a solution of this equation is given by
aW(X)N?(x) = 1. (43)
. . . I
The explicit form ofw, allowing the resolution of the com- w(x) = - % (53
pleteness equation can, finally, be written as N“(%)
Using Eq.(51), we can write the weight function as
wW(X) = ——. (44)
(1 -X) Inx 1+x

w(x) =— (54

T (1-%*
2. Spectrum type 2 This function ensures the resolution of the completeness

Now, we are going to treat the case of the quadratic specequation, corresponding to the case of the spectrum of type
trum in this class of spectra. Let us call quadratic spectrun®, allowing the construction of coherent states for this kind
the spectrunz,, having the following expression: of spectrum.
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3. General case 9

The spectra of types 1 and 2 can be generalized to an s
arbitrary order. Let us now consider the general spectrum

1 a
=(1-— 6
5
with «=2. The question now is to find the corresponding
GHA. After that, we have to find the characteristic function.
Starting from the fact that 3
1 2F
1la
elt=-1=- , 56
n 1 (56) 0.1 0.2 0.3 04 05 0.6 0.7
one can check that FIG. 1. Weight function for the system having characteristic
i R — _y\1/371/3
n+1\ 1 @ function given asf(x)=[1/(2-x)/3]\/3,
En+1 ™= n+2 = 1 —glle (57)
&n D. Free particle in a square-well potential
Then the characteristic function is We are now going to compute the coherent states of a
1 \e physical system using the formalism described before. The
f(x) = (ﬁ) ) (58)  results in this case are more complicated because they in-

volve a spectrum needing a weight function which is a spe-
ecial function. In fact, the latter is relatively not obvious in
gcomparison with the ones introduced in the previous sec-
tions. Let us begin with the well-known spectrum of a free
particle in a square-well potential:

Let us now verify the minimal set of conditions for the stat
in Eq. (21) in the case of the general spectrum under consi
eration. For this general case we have

1

Np-q! :W’ (59 en=(N+1)2 n=0,1,2,3,... . (65)
. . . _ Then,
allowing us to write Eq(21) in this case as _
2>, 12 et = (N+2)%=gn+2\en+ 1. (66)
2)=N(|z n+ 1)*<zZ"n). 60
[2=N2 )nzo( ) I (60) Using the algebraic formalism shown before and observing
As that (o, =¢,)
Li_.(2P N2, = a- ag=a,- 1=n?+2n, (67)
> (n+ 197 = —"5—, (61)  we obtain
n=0 |7
1 —
where Li,(|z?) is the polylogarithm function, the coefficient Nyq! = ?\e’ﬁ\e’(n +2)!. (68)
N?(|Z?) can be written as V2
12 We thus obtain for our proposal of coherent states given in
N2(|z?) = %HZ) (62  Eq.(21) the expression
i_(|7
a ”_ Zn
and 0<|z]< 1. The expression of the weight function that is 2)=V2N(|Z) 2 ——=——=]n). (69

. . R A . ~o Vn'v(n+2)!
behind the resolution of the unity equation is, nevertheless, n=0 \NIN(n+2)

harder to be obtained. Following the method used before, wghe normalizability condition can be fulfilled if we satisfy
find that, for the general case, the weight function can behe expression
written as(x=|z?)

|Z|2n
. 2NA(|Z) D> ————=1. (70)
Inx)«?
W(X) - (_ 1)a+1%, (63) n=0 N ! (n + 2)!
7l (a)NA(x) :
Noting that
wherel'(a) is the gamma function. As an example, we con- on (2
sider the behavior ofv(x) for a=3: 2 = 222 (70)
pmont(n+2) [z
_(Inx)?1+4x+x2
W(x) = 27 (1-%° (64)  for 0=<|z<1, wherel(2) is the modified Bessel function of
the first kind of ordem, the expression for the normalizabil-
which is shown in Fig. 1. ity coefficient can be written as
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20 40 60 80 100
x

FIG. 2. Normalization function for the free particle in a square- ~ FIG. 3. Weight function for the free particle in a square-well
well potential. potential.

122 IV. CONCLUSION
(72

N?(|2)) = . . I
(1) We have investigated in this work a state constructed as

) _ ) an eigenstate of the annihilation operator of the generalized
where 0< |z] <. The behavior of this function can be seen Heisenberg algebra. We have shown for several systems
in Fig. 2. ) o (harmonic oscillator, deformed harmonic oscillator, a class of
_ The resolution of the completeness problzem is given bysnectra, and the square-well potentiaiat this state satisfies
finding the adequate weight functiov(x), x=|2% satisfying  the minimum set of conditions required to obtain Klauder’s

215(22)’

the equality coherent states.
> % W(\«“';)NZ(V"Q)X”+1 The GHA we considered is an algebra having as genera-
T, G f =1. tors the Hamiltonian of the physical system under consider-
=0 nt(n+2)!J, 2x ation and the annihilation and creation operators of the sys-

(73)  tem. The state we have investigated is an eigenstate of the
annihilation operator of the GHA for a general system de-

If we take scribed by this GHA. Thus, this state is a natural generaliza-
2 [ tion for a general system described by the GHA of the co-
TWEVINTVX) = Kz(z\&)’ (74)  herent states of the standard harmonic oscillator system.
2x It is interesting to note that in the profEgs. (18)—(21)]

g of our expression for coherent states given in €9 it was
only necessary to admit) an infinite sum(ii) A|0)=0, and
(i) Aln)=N,_4Jn=1). We see that this formalism is not ap-

- 2 XKZ(Z&) plied to finite-dimensional representations of GHA's and that

W(\VX) = ———=— (75 the explicit expression of,, was not necessary in order to

where K,(x) is the modified Bessel function of the secon
kind of ordern, the weight function takes the form

2(\[y
™ N(V) get Eq.(21). The explicit expression oN,, was necessary
and can, finally, be written as only when we showed, for specific spectra, that the state
4 satisfied the minimal set of conditions to obtain Klauder’s
- . [ coherent states. Thus, we think that the expression in Eq.
W(X) = —K5(2VX)15(2VX), 76 !
t T 2(2V0)12(2\%) (76) (21) could be a consistent definition of coherent states even

for systems which are not described by the GHA but satisfy-

which is shown in Fig. 3. ing the conditiongi)—(iii) mentioned above.

With this expression, one can verify that the important
condition, the completeness equation, is satisfied by consid-
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