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We propose generalized quantum key distribution schemes using spatially encoded d-dimensional qudits
based on fractional Fourier transform operations. We determine the necessary conditions on the orders of the
transforms which ensure a shared secret random key string and briefly discuss the transmission rate and a
possible encoding procedure. We also show that the fractional Fourier transform can be used to analyze more
general eavesdropping strategies, including an intermediate-basis attack. The error rate and information gain
for the intercept-resend and intermediate-basis attacks are briefly analyzed for a particular example. Effects of
atmospheric turbulence in a free-space transmission are considered.
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I. INTRODUCTION

For centuries, cryptographers have exploited all types of
available technology in order to establish secure communi-
cation. In this respect, quantum cryptography or, more ap-
propriately, quantum key distribution �QKD�, is perhaps one
of the most beautiful applications of quantum mechanics.
Not only is QKD based on very fundamental concepts of
quantum mechanics such as the complementarity principle
and the no-cloning theorem, and highly linked to classical
and quantum information theory, but also commercial quan-
tum cryptography systems are readily available �1�.

The object of key distribution in general is to establish a
random key string between two separate parties Alice and
Bob. Once a secret key string is established, Alice and Bob
can communicate secretly using the classical one-time pad
protocol �2�, which allows for secure communication be-
tween two parties provided they can establish a sufficiently
large string of random characters �i.e., bits�. In seminal work
by Wiesner �3� and Bennett and Brassard �4�, it was shown
that the nature of quantum states would allow for the secure
transmission or storage of a random key. The first experi-
mental demonstration of QKD was performed in 1989 �5�,
and since then experimental QKD has been implemented up
to about 120 km in optical fibers �6� and over 144 km in
free-space systems �7,8�.

Although the main roadblocks to real-world QKD are
technical issues, there is still interest in fundamental re-
search: one would like to develop QKD protocols which in-
crease the bit transmission rate and increase the sensitivity to
eavesdropping. It has been pointed out that one can increase
both the transmission rate and sensitivity to eavesdropping
by increasing the dimensionality of the system �9,10�. It is
straightforward to generalize the Bennett-Brassard �BB84�
protocol �4� to entangled qudits, for which it is possible to
send on average log2 d /2 sifted bits per photon, while an
eavesdropper employing an intercept-resend strategy would
induce an error rate of Ed= 1

2
d−1

d , since half the time she
measures in the wrong basis and consequently sends the

wrong state with a probability of �d−1� /d. One can easily
see that while there is no bound for the bit transmission rate,
the upper bound for the bit error rate induced by an intercept-
resend attack for this two-basis protocol is 1/2.

Photons are the obvious choice for quantum key distribu-
tion, since they are easily transported through free space or
optical fibers. Experimentally, there are several methods of
encoding d-dimensional qudits in photons, including time
bin �11–13�, orbital angular momentum �14–16�, Hermite-
Gaussian modes �17,18�, the polarization state of more than
one photon �19,20�, position and linear momentum of en-
tangled photons �21,22�, and multiple degrees of freedom
simultaneously �23–26�. Higher-dimensional QKD has been
implemented for time-bin qudits �13� and orbital angular mo-
mentum qutrits �16�.

Recently, we performed a demonstration of quantum key
distribution using higher-order d-dimensional alphabets en-
coded in the transverse spatial degrees of freedom of single
photons �27�. We used conjugate optical lens systems to en-
code and decode information: an imaging system, which is
similar to measuring the position of the photon in a given
transverse plane, and a Fourier transform system, which is
equivalent to measuring the momentum of the photon. One
might think of these optical systems as complementary
bases. Here we show theoretically that a spatial QKD system
can be implemented with general fractional Fourier trans-
form �FRFT� operations. The FRFT is reviewed in Sec. II
and the QKD system is presented in Sec. II C. We discuss
simple eavesdropping attacks based on the FRFT in Sec. III.
In Sec. IV, free-space transmission of spatial qudits is briefly
considered.

II. SPATIAL QUANTUM KEY DISTRIBUTION

A. Fractional Fourier transform

The FRFT has found widespread use in signal processing
and optics �28� as well as quantum mechanics �29–31�. The
FRFT of order � of a function E��� can be defined as �32�*swalborn@if.ufrj.br
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F��E���� �� exp�−
i�2 cot �

2
�exp�−

i�2 cot �

2
�

�exp� i� · �

sin �
�E���d� , �1�

where � and � are two-dimensional variables. We note that
�=� /2 corresponds to the usual Fourier transform. It has
been shown that the FRFT appears naturally in the context of
Fresnel diffraction �32�, just as the Fourier transform appears
in the Fraunhofer diffraction regime. One might also recog-
nize the FRFT kernel as the propagator associated with the
harmonic oscillator �28�. It has also been shown that one can
implement a FRFT using lenses �33,34�. For example, con-
sider the symmetrical optical system shown in Fig. 1. Here �
is the focal length of the lens and z is the propagation dis-
tance before and after the lens. Using z=2� sin2�� /2� and
f =� sin �, this optical system implements a transformation
given by

F��E���� �� exp�−
ik�2 cot �

2f
�exp�−

ik�2 cot �

2f
�

�exp� ik� · �

f sin �
�E���d� . �2�

Choosing scaled adimensional coordinates ��=�k / f� and
��=�k / f�, the transformation �2� is equivalent to the FRFT
given in Eq. �1�. An important and useful property of the
FRFT is additivity. That is, applying transformation �2� twice
gives

F�1
	F�2

�E����
 = F�1+�2
�E���� . �3�

Thus, propagation through lenses and free space is well
described by FRFT operations, provided one uses properly
scaled coordinates �32�.

1. Fractional Fourier transform in geometric optics

The FRFT can also be described using geometric optics.
Generally, a ray s= �s ,�� at some transverse plane is de-
scribed by its position s and angle � with respect to the
optical axis. Free propagation of an optical ray can be repre-
sented by the ABCD matrix �35�

Sz = �1 z

0 1
� , �4�

where z is the propagation distance. Passage through a thin
lens is given by the matrix

Ll = � 1 0

− 1/l 1
� , �5�

where l is the focal length of the lens. Again, we set z
=2l sin2�� /2� and define f = l sin � as a scaled focal length.
Let us switch coordinates to r=s /�f and �=�f�, so that the
complete optical FRFT system is given by the matrix

F� = SzLlSz = � cos � sin �

− sin � cos �
� . �6�

Matrix �6� represents a �-order FRFT and transforms a ray
r= �r ,�� as

F��r

�
� = � cos���r + sin����

− sin���r + cos����
� . �7�

Then, recognizing that the ray matrix in Eq. �6� describes a
rotation, it is straightforward to show that the FRFT is
additive—that is, F�1

F�2
=F�1+�2

—such that the order of the
combined optical FRFT is �1+�2.

B. Single-photon Fourier optics

Our QKD system will be based on propagation of single
photons through simple optical lens systems. Let us assume
that the input field to the lens system is a single-photon state
described by

�	� =� v�q��q�dq , �8�

where q is the transverse component of the wave vector k
and v�q� is the angular spectrum defined by

v�q� =�W��,0�eiq·�d� , �9�

and W�� ,0� is the transverse part of the input field at z=0.
We assume that the field is polarized and is well described by
the paraxial approximation around the z axis. We use �

�x ,y� as the transverse component of the position vector.
The detection probability at position r is given by

P�r� = �
�r��2, �10�

where 
�r� is the detection amplitude,


�r� = �vac�E+����	� , �11�

and E+��� is the field operator in the paraxial approximation.
In the special case of a monochromatic single-photon state
�	� with well-defined polarization, the detection amplitude

�r� plays the role of the spatial wave function �36�.

First, let us consider a single-lens system as shown in Fig.
1. In the paraxial approximation, the field operator that de-
tects a photon at the output plane is

E+��� �� dq� dq� a�q��ei�/2k�q − q��2ei�q·�−q2/2kz−q�2/2kz�,

�12�

where a�q� is the usual destruction operator and � is the
focal length of the lens. Again, to identify the FRFT opera-

z

l

z

IN OUT

FIG. 1. �Color online� Optical system used to implement a
FRFT.
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tion we can define the angle � and length f such that z
=2� sin2�� /2� and f =� sin �. Substituting in Eq. �12�, we
obtain the field operator associated with the FRFT operation:

E���� � exp�− i
tan �

2
�2�� dq exp�− i

tan �

2
q2�

�exp�i
� · q

cos �
�b�q� , �13�

where from here on we adopt the adimensional scaled coor-
dinates �k / f�→� and �f /kq→q and defined b�q� as the
adimensional destruction operator. One can see that Eq. �13�
is similar, but not identical to the FRFT defined in Eq. �2�. In
fact, the tangent and cosine functions appear in �13� instead
of cotangent and sine functions due to the fact that the FRFT
is now being performed in q space. For the special case of
the usual Fourier transform ��=� /2�, Eq. �12� gives

E�/2��� � b��� . �14�

When applied to the input field given by Eq. �8�, the detec-
tion amplitude is proportional to the angular spectrum of the
input field:


�/2��� = A�/2v��� , �15�

where A�/2 is a normalization constant. Similarly, it is pos-
sible to derive a field operator for an imaging system ��
=��:

E���� �� dq b�q�e−iq·�. �16�

When applied to the input field �8�, the detection amplitude
is


���� = A�W�− �� . �17�

Moreover, due to the additivity property �3�, any combina-
tion of lenses that implements an overall FRFT of order
�2n+1�� /2 results in a detection amplitude


�n+1/2����� = A�n+1/2��v��− 1�n�� , �18�

while a lens system that implements an overall FRFT of n�
results in a detection amplitude


n���� = An�W��− 1�n�� . �19�

With these basic building blocks, we will now construct a
spatial QKD system.

C. QKD system

The basic idea of our spatial QKD system is illustrated in
Fig. 2. Alice and Bob randomly implement one of two FRFT
systems, denoted by the angles �1 and �2 �Alice� and �1 and
�2 �Bob�. The FRFT angles are chosen so that

�1 + �1 = n� , �20a�

�2 + �2 = m� , �20b�

�1 + �2 = �s +
1

2
�� , �20c�

�2 + �1 = �t +
1

2
�� , �20d�

where n, m, s, and t are integers. We note that conditions
�20a�–�20d� state that �2−�1= �s−n+1 /2�� and �1−�2
= �t−m+1 /2��, requiring that �1 and �2 ��1 and �2� differ
by odd multiples of a Fourier transform �� /2�, which guar-
antees that “1” and “2” are conjugate lens configurations. In
the experiments reported in Refs. �27,37,38�, the angles �1
=�1=� /2 and �2=�2=� were used, which clearly satisfy
conditions �20a�–�20d�.

Choosing randomly between optical systems 1 and 2, Al-
ice and Bob’s overall optical system, which consists of a
series of FRFT operations, always corresponds to an imaging
system or a Fourier transform system. Using the additivity
property �3�, the conditions Eqs. �20a�–�20d�, the FRFT op-
erator �13�, and the input state �8�, the resulting detection
amplitudes at Bob’s plane PB are


11��� = An�W��− 1�n�,0� , �21�


22��� = Am�W��− 1�m�,0� , �22�


12��� = A�s+1/2��v��− 1�s�� , �23�

and


21��� = A�t+1/2��v��− 1�t�� . �24�

The QKD system is based on the fact that when Alice and
Bob implement the correct configuration ��1 ,�1 or �2 ,�2�,
the output field at plane PB is proportional to the field profile
of the input field at plane PAin, as shown in Eqs. �21� and
�22�. When Alice and Bob employ incorrect configurations,
the output field at PB is proportional to the angular spectrum
of the input field, as shown in Eqs. �23� and �24�. Suppose
that Alice encodes information into the spatial properties of
the input field by positioning a narrow aperture A��−�A� at
position �A in plane Pin. If the initial field is constant over
the area of the aperture, the field profile at plane Pin will
reproduce the aperture function: W�� ,0�=A��−�A�. When
Alice and Bob use correct configurations, Bob should detect
photons only at the detector position corresponding to the
position of the aperture. However, if they use conjugate lens
configurations, the field at Bob’s detection plane corresponds
to the angular spectrum of the single-photon field. In this
case Bob, or equivalently an eavesdropper Eve, obtains no
information about the position of the aperture, since a shift in
position space manifests as a phase in the Fourier transform
�F� space: F�A��−�A��=exp�i��A /2��F�A����. Thus the
detection probabilities P12�r� and P21�r� contain no informa-
tion concerning the aperture position �A.

zα
IN OUT

α β

zα zβ zβ

Alice Bob

FIG. 2. �Color online� Lens system for quantum key
distribution.
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1. Geometric optics explanation of spatial QKD

It is rather interesting that spatial QKD can also be under-
stood using geometric optics. In particular, suppose that
Alice encodes an input ray rA= �rA ,0�. When �=�+�=n�,
the ray at Bob’s output plane given by Eq. �7� is rB
= ��−1�nrA ,0�. If Bob detects the position of the single-
photon field at his output plane, he obtains rA. When �+�
= �t+1 /2��, we have rB= �0, �−1�t�A�, and Bob obtains no
information from a position measurement. Alice and Bob
will thus discard these cases. For a single-photon field one
can measure either the position or the angle component of
the ray. In this way, since Alice and Bob each implement sets
of conjugate lens systems, an eavesdropper will necessarily
measure incorrectly in half the cases, which causes an in-
crease in the error rate, which can be detected by Alice and
Bob.

2. Encoding and decoding

Let us suppose that Alice positions her aperture A at po-
sition �A as described above and that Bob employs a set of
detectors B��−�B� placed at different positions �B. When
Alice and Bob use the same lens configurations, their com-
bined optical systems map Alice’s input plane to Bob’s de-
tection plane. In order to create a QKD system based on this
feature, they must define a set of aperture positions
	�A0 , . . . ,�Ad−1
 �Alice� and a corresponding set of detection
positions 	�B0 , . . . ,�Bd−1
 �Bob�, which are associated with
the characters in some d-dimensional alphabet. Ideally, these
sets of positions should be defined so that when both Alice
and Bob use correct configurations, they see a perfect corre-
lation: P��k�j�=
 jk, where P��k�j� is the probability that Bob
detects the photon at detector position �Bk given that Alice’s
aperture position was �Aj. Furthermore, to guarantee security,
when ���, they expect to see P��k�j��0 for all j ,k. In an
actual implementation, Bob would employ an array of d de-
tectors, one detector located at each position 	�B0 , . . . ,�Bd−1
.

It is advantageous to work with a narrow aperture A���
whose Fourier transform is much broader than A, as this will
allow Alice and Bob to increase the size of their alphabet by
defining many aperture positions. Let us consider an aperture
given by a Gaussian function, so that the input field is
equivalent to the aperture function,

W��,0� = A��� =
1

w��
e−�2/�2w2�, �25�

and the angular spectrum v�q� is equal to the Fourier trans-
form of the aperture function,

v�q� = F�A���� =
w2

��
e−w2q2/2, �26�

where w is a dimensionless parameter. As a reminder, we
note that dimensionless � and w are related to the dimen-
sional variables �� and w� by �=�k / fw� and w=�k / fw�,
where k is the wave number and f� the fractional focal
length. It is well known that 99% of the intensity falls within
a circle with radius of three standard deviations, so let us
define 3w and 3 /w as cutoff parameters for the Gaussian

distributions. Then, to each aperture position we can associ-
ate a circle of radius 3w, while the Fourier pattern is charac-
terized by 3 /w. If Bob uses a circular detector with radius
3w, properly aligned at the proper position, he will detect
99% of the input light.

Alice and Bob must decide on the most advantageous
encoding scheme: a d-dimensional “alphabet” of aperture
and detection positions that maximizes the transmission rate
while limiting the information available to an eavesdropper.
This problem is somewhat related to the “packing problem”
of how to best arrange a set of d circles of the same radius r
so that they fit into a larger circle with smallest possible
radius R. The most efficient method is the hexagonal packing
scheme, in which the circles are centered on a lattice com-
posed of equilateral triangles �39�. As an example, Fig. 3
shows a possible coding scheme for an alphabet of dimen-
sion d=37. The small circles �radius r
3w� correspond to
the 37 aperture and detection positions, while the large circle
corresponds to the R
3 /w area of the Fourier transform of
the aperture function. For d=37, it is most efficient to main-
tain the ratio R /r=6.758 77 �40�, which gives an aperture
width of w=1 /�6.758 77�0.3847 �we note again that w is
adimensional, as are � and q�. The packing density is
37�r2 /�R2�0.81. In the limit of small r and R=1, the pack-
ing density is d�r2 /�R2=� /�12�0.907 �39�. Decreasing w,
it is possible to increase the dimension d of the alphabet
used, which increases the transmission rate as well as sensi-
tivity to eavesdropping of the QKD protocol.

It can be seen that there is an unused area ��19%� be-
tween and around the black circles. In these regions, Bob or,
equivalently, the eavesdropper Eve will only detect photons
corresponding to complementary configurations �1+�2 or
�2+�1. If Eve can deduce that she has chosen the wrong
FRFT system, she can choose not to resend the photon. Her
presence would then be marked only as a photon loss and not
a registered error. Thus, it is advantageous for Alice and Bob
to try to eliminate these unused regions from Bob’s detection
plane. One possible solution to this problem is for Alice to
use additional aperture positions to fill in the gaps. Photons
sent with these aperture positions could be used only as se-
curity checks, and not part of the actual key �22�. Another
option is to arrange the aperture positions using a smaller
hexagonal lattice, which will eliminate excess space, but in-

3w

3/w

FIG. 3. Aperture layout following a hexagonal pattern. The
large circle �radius R=3 /w� is the two-dimensional slice of the
angular spectrum v, while the smaller circles �radius r=3w� corre-
spond to the different detector and aperture positions.
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creases the quantum bit error rate. This type of encoding
pattern was in fact used in �27�.

Following the usual BB84 protocol �4�, Alice would send
a number of photons to Bob, each randomly choosing a lens
system for each photon. They then perform basis reconcilia-
tion and evaluate the bit error rate using a sample of their key
strings. If the error rate is below a certain threshold, they can
use classical privacy amplification to minimize Eve’s infor-
mation �2�.

3. Transmission rate

A principal difference between this QKD scheme and
those based on polarization or phase is that the detection
probabilities for complementary measurements are not con-
stant for all characters of the alphabet �P12=P21�1 /d�, but
rather weighted according to a Gaussian distribution. Thus,
some characters in the key string appear more frequently
than others. To obtain a completely random key string, Alice
and Bob can discard some of the more frequent results after
sifting.

Since the security of QKD lies in the fact that an eaves-
dropper Eve cannot gain any information when she chooses
the wrong basis, in order to minimize Eve’s information,
Alice should choose characters �aperture positions� accord-
ing to the distributions P12 and P21. Suppose that Alice sends
each character k with probability Pk, which we will define as

Pk =� d� A�� − �A�P12��� . �27�

The total amount of information IA that Alice can encode in
each photon is given by the entropy

IA = − �
k=0

d−1

Pk log2 Pk. �28�

For the encoding scheme shown in Fig. 3 with d=37 and
w=0.3847, we have IA�4.45 bits, as compared to log2 37
�5.21 bits for P12=P21�1 /37. Therefore, for nonuniform
P12,P21, the amount of encoded information is reduced. The
ratio IA / log2d generally increases as w decreases �27�, indi-
cating that the efficiency of the protocol grows with the al-
phabet dimension d. In the limit in which k is a continuous
parameter, the aperture A��−�A�→
��−�A� and Pk
→P21��k�=P21��k�. For the Gaussian distribution given in
Eq. �26�, we have �41�

IA = − �
−�

�

P12��k�log2 P12��k�d�k = log2��e

w2 � bits,

�29�

which is the upper limit on the amount of information which
Alice can safely encode into a single photon. Figure 4 shows
the information per photon as a function of w. For w
=0.3847, we have IA=5.85 bits, which is larger than the
value of 5.21 bits calculated above due to the fact that we are
considering a continuous distribution �41�. Recalling that the
adimensional width w is equal to the actual aperture width �

scaled by �k / f �10 mm−1, one can encode log2��ef /k�2�
�1 byte of information per photon with an aperture with
size on the order of about �=15 �m. The P12 distribution in
this case would have a width of about a centimeter.

The amount of information that is sent from Alice to Bob
in the presence of noise and errors corresponds to the mutual
information �2,10� given by the decrease in entropy:

IAB = Hi − Hf , �30�

where the entropy is averaged over all possible results
k: Hf =�kPkH��j�k�, with H��j�k�=−� jP��j�k�log2 P��j�k�, and
P��j�k� is the a posteriori probability that Alice had sent j
when the result was k. The conditional probability P��k�k�
depends only on the error rate, P��k�k�=1−Ek, while the con-
ditional probability P��j�k�= PkE j / �1− Pj�, where Pk / �1− Pj�
is the probability to detect incorrect k given that an error
occurred. Thus, the amount of information sent from Alice to
Bob in the presence of noise or eavesdropping is then �2�

IAB = IA + �
k=0

d−1

Pk�1 − Ek�log2�1 − Ek�

+ �
j=0

d−1

�
k=0,j�k

d−1
PjE jPk

1 − Pj
log2

E jPk

1 − Pj
. �31�

III. EAVESDROPPING

Let us now consider some basic eavesdropping strategies.
The mutual information between Alice and Bob is given in
Eq. �31� and depends on the error rate Ek. Eve’s objective is
to obtain a large amount of information IE without inducing
a large error rate Ek, which can be detected by Alice and Bob.
There are many possible eavesdropping strategies. Here we
focus on attacks on individual photons, in which Eve steals
the photon while in the transmission line from Alice to Bob,
measures it, and then prepares and resends a second photon
to Bob. Let us further assume that Eve performs a FRFT

w

In
fo
rm
at
io
n
(b
it
s)

��� ��� ��� ��� ���
�

��

��

��

FIG. 4. Information capacity per photon as a function of the
adimensional width w.
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operation of order � on Alice’s output field and then detects
the position of the incident photon. The single-photon field
incident on Eve’s detector is given by a FRFT operation:


���� = �0�E�����
� , �32�

where �=�+�. For the Gaussian field given in Eq. �25�, we
have


���,�A�

=

w2 exp�−
i tan �

2
�2�exp�−

�� − cos ��A�2

2 cos2 ��w2 + i tan ���
���w4 cos2 � + sin2 ��

.

�33�

The probability D that Eve detects the correct state is given
by the overlap of the field at her detection plane with Alice’s
initial field:

D���A� = �� d� 
A���
����� . �34�

Using the Gaussian distribution �25�, gives

D���A� = �2w2 exp�−
2�A

2w2�1 − cos ��
w4�1 − cos �� + �1 + cos ��

�
�4w4 cos2 � + �1 + w4�2sin2 �

�
1/2

.

�35�

Figure 5 shows the probability D as a function of ��A� and
the FRFT angle �. One can see that for all ��A�, the overlap
between Eve’s field with Alice’s initial field is close to 1 only
near �=0. Since Alice randomly chooses between two con-
jugate FRFT systems �which differ by FRFT order � /2�, it is

impossible for Eve to correctly choose �=�+�=0 �or mul-
tiples of �� for both �1 and �2 configurations. Consequently,
Eve will obtain at best partial information about Alice’s ap-
erture position �A in some cases and will be unable to per-
fectly reproduce the field when she resends a photon to Bob.
This inevitably causes detectable errors in Bob’s key string.
In the following, we will calculate the error rate and infor-
mation obtained by Eve in two important cases.

A. Intercept-resend attack

In the usual intercept-resend attack strategy, Eve measures
the field using the same optical configurations as Alice and
Bob. So for half of her measurements Eve will discover the
correct aperture position ��=0�, while for half she will have
only little information ��=� /2�. The error rate for each
character k is Ek= �

2 �1− pk�, where � is the fraction of pho-
tons that Eve measures and pk is the probability that Eve
measures character k. In this case, Eve’s information is given
by IE=− �

2 �k=0
d−1pk log2 pk bits/photon.

For the Gaussian distribution in Eq. �11�, the error rate is
Ek= �

2 �1− Pk�, where Pk is defined in Eq. �27�. The average
error rate is obtained by averaging over all characters k: E
=��kPkEk�0.425� for the 37-dimensional coding scheme
illustrated in Fig. 3. That is, for each photon Eve intercepts
and resends, Bob detects the wrong character with probabil-
ity 0.425. Figure 6 shows Eve’s information and the Alice-
Bob mutual information �31� as a function of � for an
intercept-resend attack. Also shown is the average error rate
�right y axis� corresponding to �. In order to employ classi-
cal error correction and privacy amplification, it is necessary
that IAB� IE �2�, which occurs at about �=0.8565, corre-
sponding to a maximum allowable error rate of E=0.364, for
which IAB= IE=1.906 bits/photon. This is a considerable im-
provement over the usual BB84 protocol with d=2, in which
the maximum allowed error rate is about 0.15 for which
IAB= IE�0.4 bits/photon.

B. Intermediate-basis attacks

Using the FRFT operators given in Eq. �13�, it is also
possible for Eve to implement attacks in an intermediate ba-
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sis �2�. This is the basis for which Eve has equal �but proba-
bilistic� information about the character Alice sends, regard-
less of Alice’s choice of basis. In our scheme, these are
FRFTs for which D�1+���A�=D�2+���A�. Examining Eq. �35�,
we see that this relation is true whenever cos��1+��
=cos��2+�� and sin2��1+��=sin2��2+��. Using the condi-
tions for the FRFT orders Eq. �20�, we find tan��2+��
=−�−1��t−m�, which limits �2+� to an odd multiple of � /4,
�2+�= �2c+1�� /4, and gives �1+�= �t−m− c

2 + 1
4 �� /4. Us-

ing the detection positions corresponding to Fig. 3, we define
P��j�k� as

P��j�k� = �� d� 
7�/4��,� j�A�� − �k�� . �36�

Eve’s information is IE= IA−�kPkH��j�k��0.88 bits/photon,
which is considerably less than the intercept-resend strategy
��2.23 bits /photon�. Assuming that when Eve detects char-
acter k she sends 
7�/4�� ,�k� to Bob, the error rate is

EIB = �
j

Pk�
k

P��j�k��
m

P��k�m� . �37�

In our example, Eve introduces an error rate of EIB=0.89 in
Bob’s key string, while obtaining only 0.88 bits of informa-
tion per photon. Thus, the intercept-resend attack is much
more advantageous than an intermediate-basis attack.

Using quantum cloning operations, it is possible to imple-
ment more advantageous eavesdropping attacks. The maxi-
mum bit error rate allowed for quantum cloning attacks for
the two-basis BB84 protocol using d-dimensional systems
was computed in Ref. �42�. For example, for d=37, the
maximum allowed error rate for secure transmission is 0.42.
However, we expect this limit to be lower for our system,
since the characters are not sent with equal probability, but
rather are chosen according to a Gaussian distribution, which
has a lower Shannon entropy than a constant distribution.

Recently, eavesdropping strategies which take advantage
of dark counts and channel losses have been considered for
QKD based on spatial variables of entangled photon pairs
�43�. It was shown that the Gaussian nature of Alice and
Bob’s fields provides higher allowable bit error rates. This is
due to the fact that dark counts appear as a constant back-
ground count, and thus the total distribution of dark counts
and actual photons is non-Gaussian, which limits Eve’s
eavesdropping strategies and allows for higher acceptable er-
ror rates. We expect QKD with spatial variables of single
photons to present this same advantage.

IV. TRANSMISSION OF SPATIAL QUDITS

Real-world implementation of QKD over long distances
is a considerable technical challenge, regardless of the type
of qubit used or whether they be sent in optical fibers or free
space �2�. Certain problems, such as photon losses, are prob-
lematic in nearly all systems. Let us focus here on technical
problems of long-distance transmission which are particular
to our spatial encoding. The spatial structure of the field rules
out the use of ordinary optical fibers in our scheme, and thus
it is more appropriate for free-space transmission. However,

there do exist image-carrying conduits �coherent bundle of
fibers� which could be employed. In terms of free-space
transmission, we expect the scheme proposed here to be
similar to the orbital angular momentum of light, as both rely
on the spatial structure of the field. In Ref. �44�, light beams
carrying orbital angular momentum were sent over a short-
distance free-space link �15 m length�, and in Refs. �45,46�,
the effect of atmospheric turbulence on orbital angular mo-
mentum was considered.

Aside from losses due to absorption, the most prevalent
effects of atmospheric turbulence are phase fluctuations, in
which the field 
��� becomes exp�i�����
���. Here ����
describes the effect due to changes in the index of refraction
due to atmospheric turbulence. The probability Pc that the
correct field arrives at Bob’s input plane is given by the
overlap integral of the actual field exp�i�����
��� with the
ideal field 
���:

Pc = �� d� 
���exp�i�����
����
= �� � d� d���
����2�
�����2ei�����−�������1/2

.

�38�

It is customary to assume that the phase fluctuations
are isotropic and a random Gaussian process. Then, taking
the ensemble average, we have

�exp	i����� − ������
� = exp�− ������ − ������2�/2�

= exp�− 6.88����/r0�5/3/2�

�45,47�, where �=�−��. Here r0 is the Fried parameter,
which corresponds to the length scale of the phase fluctua-
tions. We then have

Pc = �� � d� d��
����2�
�� + ���2e−6.88/2����/r0�5/3�1/2

.

�39�

In the QKD scheme discussed above, the intensity distribu-
tion of the field sent by Alice is always described by a shifted
Gaussian distribution, independent of the FRFT angle she
uses. As a concrete example, let us consider a Gaussian field
profile W��−�0� as given by �11�, but with dimensional
width w. It is straightforward to calculate

Pc = � 2

�w�z�2� d� e−
2/2w�z�2
e−6.88/2����/r0�5/3�1/2

. �40�

We note that the probability Pc is independent of the mean
position �0 and that we have explicitly included the depen-
dence of the beamwidth on the propagation distance z:
w�z�=w0

�1−z2 /z0
2, where w0 is the beam waist and z0 the

Rayleigh range. When the beamwidth is much smaller than
the turbulence length parameter, the disturbance of the trans-
mitted field is negligible. However, as the beam diverges, the
atmospheric phase fluctuations become quite important.
Typical values for r0 are 10−60 cm �48�. Let us assume
a beam with waist w0=1 mm and �=500 nm, so that
z0=2� m. The beamwidth w�z� is then comparable to r0
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after 1–4 km. Figure 7 shows the error probability 1− Pc
as a function of z using these parameters for r0=10 cm and
r0=60 cm. The dashed line marks the allowable error rate
��0.36�, calculated for the intercept resend strategy for the
d=37 example considered above. One can see that the maxi-
mum transmission distance is about 0.3 km for r0=10 cm
�dashed black line� and 2 km for r0=60 cm �solid red line�.
In these cases the transmission rate, given by the mutual
information �31�, is about 1.9 bits/photon.

Thus, atmospheric fluctuations will certainly limit the
transmission length and transmission rate of a spatial QKD
system. However, recent work in optical communications
suggests that it is possible to partially correct these effects
with adaptive optics, even in the case of high turbulence
�48–50�. One might also consider an optical relay system
consisting of a series of confocal lenses �51�, which maintain

a beamwidth smaller than the diameter of the lenses. In this
way diffraction effects are circumvented and the beam waist
can be kept smaller than the turbulence length.

V. CONCLUSION

We have presented a generalized quantum key distribution
scheme using spatial degrees of freedom of single photons,
which allows for d-dimensional encoding. Alice and Bob
each use lens systems to implement a fractional Fourier
transform on their fields. We determine the orders � and �
which allow for secure key transmission. Alice encodes in-
formation into the transverse field profile by positioning a
small aperture in the input plane, and Bob registers the de-
tection position of the photon. The transmission rate and sen-
sitivity to eavesdropping are briefly analyzed. We estimate a
transmission of about 4.45 bits/photon for a 37-dimensional
alphabet, taking into account the characteristics of a Gauss-
ian beam and the geometry of the apertures. For the usual
intercept-resend strategy, the allowable error rate is about
0.425. Using the fractional Fourier transform, we define
intermediate-basis attacks for this system and show that Eve
obtains considerably less information with this strategy than
the intercept-resend attack, while inducing a higher error
rate. A brief analysis of free-space transmission of spatial
qudits was performed, showing that this kind of system can
be reliably implemented in free space for distances of the
order of about 1 km. This distance might be considerably
increased using adaptive optics or other means to correct
distortion of the transverse field.
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