
PHYSICS OF PLASMAS 12, 122509 �2005�
Nonlinear viscosity and its role in drift-Alfvén modes
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The moment approach is used to analyze the part of the magnetized plasma viscosity related to the
nonlinear character of the Landau collision integral in the Boltzmann kinetic equation �nonlinear
viscosity�, pointed out by Catto and Simakov �Phys. Plasmas 11, 90 �2004��. It is shown that the
results of these authors, who have used an alternative procedure based on a more detailed analysis
of the kinetic equation, correspond to a 15-moment approach. In comparison with the 13-moment
approach �density, temperature, velocity, heat flux, and the viscosity tensor� of Grad, the 15-moment
approach takes into account two higher-order moments, one of which is the vector-type moment
similar to the parallel heat flux and the second is the tensor-type moment similar to the parallel
projection of the viscosity tensor. Both these higher-order moments enter into the Braginskii
approximation. The nonlinear viscosity calculated in the scope of the 13-moment Grad approach is
qualitatively the same as that found by Catto and Simakov. Its role is investigated for drift-Alfvén
modes, driven by the combined effect of the dissipative part of perpendicular heat conductivity and
the standard collisional viscosity, and it is shown to be essential for the radial transport of these
modes. It is shown that the wave packet of drift-Alfvén modes, propagating in the diamagnetic drift
direction and driven for reversed temperature gradient, is transported down the pressure gradient. In
contrast to this, the wave packet propagating in the electron diamagnetic drift direction and driven
for positive temperature gradient is transported up the pressure gradient. © 2005 American Institute
of Physics. �DOI: 10.1063/1.2151169�
I. INTRODUCTION

The plasma temperature at the plasma edge in magnetic
confinement systems can be sufficiently low for the Pfirsch-
Schlüter regime to be valid in this region �see Ref. 1 and
references therein�. The plasma behavior in this regime can
be described by transport equations derived from the Boltz-
mann kinetic equation by an expansion in the inverse of the
collision frequency, taking into account the simplifying as-
sumption that it is much smaller than the cyclotron frequency
for all particle species. An example of the transport equations
can be found in Refs. 2–4.

In the standard formalism, the transport equations are

derived in the approximation that the collisional integral is
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linear with respect to deviation of the particle distribution
function from a Maxwellian. One of the main results ob-
tained in this approximation is the expression for viscosity
tensor. Catto and Simakov5 have recently suggested that, in
deriving the expression for the viscosity tensor, the nonlinear
part of the collisional integral related to the heat flux should
be taken into account. With allowance for this part of the
collisional integral, terms appear in the viscosity tensor that
depend on the square of the heat flux, so that they can be
referred to as the nonlinear plasma viscosity or, alternatively,
the CS terms, in tribute to the original work of Catto and
Simakov. Further analysis of the nature of the CS terms and

their applications can be found in Ref. 6–8.

© 2005 American Institute of Physics9-1
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The standard viscosity, i.e., the linear one, was calcu-
lated in Refs. 2 and 3 by the moment approach generalizing
the 13-moment Grad approach9 for a larger number of mo-
ments. One of the goals of the present paper is to show that
the nonlinear terms in the viscosity, i.e., the CS terms, also
can be derived in the moment approach formulation. This
seems to be relevant because it is not evident from Refs. 5–8
that the moment approach can be used for calculating the
nonlinear part of viscosity. Thereby, we give a moment in-
terpretation of the results of Refs. 5–8 and elucidate which
moments should be taken into account for obtaining the CS
terms.

In addition to the problem of deriving the nonlinear vis-
cosity, it is also relevant to point out specified problems
where this viscosity can be essential. One more goal of the
present paper is to show that the nonlinear viscosity can be
essential in the problem of drift-Alfvén modes.

In Sec. II we derive the starting equations for the non-
linear viscosity. In Sec. III we solve these equations and
obtain the expression for the nonlinear viscosity.

The results presented in Sec. III are obtained for arbi-
trary magnetic field geometry. Their simplification for the
particular case of magnetic field lines aligned along one of
the axes, in a Cartesian coordinate system, is given in Sec.
IV. In Secs. V and VI we study the instability of drift-Alfvén
modes, driven by the standard collisional effects, and their
radial transport sensitive to the nonlinear viscosity. The com-
plete analyses of this problem require both the linear and
nonlinear viscosities. The expressions for the linear viscosity
tensor found in Ref. 2 �see also Refs. 3, 4, and 10� are given
in the Appendix. The dispersion relation for the drift-Alfvén
modes is derived in Sec. V. Its analysis is performed in Sec.
VI.

Historically, the study of instabilities related to drift-
Alfvén modes, driven by the combined effect of the perpen-
dicular collisional heat conductivity and the collisional per-
pendicular viscosity, has been started in Refs. 2 and 10. In
both these references the modes propagating across the equi-
librium magnetic field, i.e., those with kz=0 �see the defini-
tions in Sec. V� were considered. Neglecting finite-beta ef-
fects, such modes reduce to the ion drift diamagnetic modes.
Then, assuming that the equilibrium ion temperature is uni-
form, it was found in Ref. 2 that the growth/decay rate of
these modes turns out to be vanishing. In contrast to Ref. 2,
in Ref. 10, the temperature inhomogeneity was allowed for
and it was found that the ion drift diamagnetic modes are
unstable in the case of inverse temperature gradient, i.e.,
when the temperature and pressure gradients have opposite
directions.

This result of Ref. 10 is confirmed in Sec. VI. In addi-
tion, in Sec. VI the modes with kz�0 are studied. Then, as is
well known �see Refs. 11 and 4�, besides the modes propa-
gating in the ion diamagnetic drift direction, modes propa-
gating in the electron diamagnetic drift direction appear. In
Sec. VI we show that these modes are driven in the case of
positive ratio of relative temperature and pressure gradients,
if this ratio exceeds some threshold. The action of the non-

linear viscosity on the drift-Alfvén modes consists of con-
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tributing to their radial transport. The main results of this
work are summarized in Sec. VII.

II. DERIVATION OF EQUATIONS FOR NONLINEAR
VISCOSITY

A. General equations of moment approach

We take the distribution function of a particle species f
in the form

f = f0�1 + �� . �1�

Here, f0 is the “shifted” Maxwellian,

f0 = n�M/2�T�3/2 exp�− Mw2/2T� , �2�

where w=v−V is the random velocity of particles, v is their
total velocity, V is the macroscopic velocity, n is the plasma
number density, and T is the temperature of the considered
plasma species. The function � is a small additive, ��1.

1. Approximation for �

We take the function � in the form

� = qi�
i + qi

*�i + �ij�
ij + �ij

* �ij . �3�

The subscripts and superscripts mean the contravariant and
covariant components, respectively.

The functions ��i ,�i�, and ��ij ,�ij� are defined by

��i,�i� = −
2wiM

5nT2 �L1
�3/2��x�,L2

�3/2��x�� �4�

and

��ij,�ij� =
M

2nT2�wiwj −
1

3
w2gij��L0

�5/2��x�,L1
�5/2��x�� . �5�

Here, x= �w /vT�2, vT= �2T /M�1/2 is the thermal velocity,
Ll

�m+1/2��x� are the Sonine-Laguerre polynomials, where m
and l are integers, and gij is the metric tensor.

The values q and � are the heat flux and viscosity ten-
sor, respectively. They are given by

qi =
M

2
� wiw

2fdw �
5

2

nT3

M
� �i fdw , �6�

�ij = M � �wiwj − w2gij�fdw � 2nT2� �ij fdw , �7�

where gij is the metric tensor. The values q* and �* are
related to the distribution function by �cf. Eqs. �6� and �7��

qi
* = −

5

2

nT3

M
� �i fdw , �8�

�ij
* = 2nT2� �ij fdw . �9�

The function �, given by Eq. �3�, is a particular case of
that of Ref. 3. �Note that Eq. �2.5� of Ref. 3 for the function

i
� contains a misprint; instead of 16/35 it should be 4/5.�
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Although both ions and electrons can be included in the
formulation, in the present paper we restrict ourselves only
to ions and omit the indices characterizing the particle spe-
cies.

2. Boltzmann kinetic equation

As in Refs. 2–4, we represent the Boltzmann kinetic
equation in the form

df

dt
+ w · �f +

�f

�w
· 	F − w · �V + �w � �c�
 = C . �10�

Here,

d

dt
=

�

�t
+ V · �, F =

eE

M
+ �V � �c� −

dV

dt
, �11�

where C is the Landau collision integral,12 E is the electric
field, e is the electric charge, �c=eB / �Mc� is the cyclotron
frequency vector, B is the magnetic field, and c is the speed
of light. Integrating Eq. �10� over velocity w with a weight-
ing factor X leads to

d

dt
�X� − 
 dX

dt
� + � · �wX� − �w · �X� − 
F ·

�X

�w
�

+ �X� � · V − 
��w � �c� − w · �V� ·
�X

�w
�

= �CX� , �12�

where

�X� =� fXdw . �13�

Using Eq. �1� and the expression for the collision
integral,12 we find

�CX� = �CX�L + �CX�NL, �14�

where �CX�L and �CX�NL are the linear and nonlinear parts of
the value �CX�, respectively. The value �CX�L is given by

�CX�L =
2��e4

M2 � � dwdw�
�X

�w�

U�	��
�f0�

�w	�
− ��

�f0

�w	
� .

�15�

Here, � is the Coulomb logarithm, f0� and �� are functions of
w�, and

U�	 = �u2
�	 − u�u	�/u3, u = w − w�. �16�

Integrating by parts, the value �CX�NL can be represented in
the form

�CX�NL =
2��e4

M2 � � dwdw�f0f0�� �X

�w�

−
�X�

�w��
�U�	�

���

�w	�
.

�17�

Note that, when describing plasma perturbations, both
the shifted Maxwellian f0 and the additive function � in-
clude not only the equilibrium terms but also the perturbed
ones. For instance, the temperature T in Eq. �2� for the func-

tion f0 is the total temperature of the respective plasma com-
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ponent, including both the equilibrium and perturbed parts,
so that T=T�0�+
T, where T�0� and 
T are the equilibrium
and perturbed temperatures, correspondingly. Therefore, if
one uses Eq. �17� to investigate plasma perturbations, one
should take f0= f0

�0�+
f0, �=��0�+
�, where f0
�0� and ��0�

are the equilibrium parts, while 
f0 and 
� are the perturba-
tions. Then one obtains, for instance, the term ��0��
f0�2 in
the integrand of Eq. �17�.

In accordance with the above explanations, the left-hand
side of the kinetic equation, Eq. �10�, includes both the equi-
librium and perturbed temperature gradients. Therefore, our
results can be used, in particular, in the problem of the ion
temperature gradient �ITG� modes �see Ref. 11 and refer-
ences therein�.

3. Braginskii’s approximation for q¸
*

Using Eq. �4� and the above-given Boltzmann kinetic
equation, one can calculate the function q�

*�h ·q*, where h
=B /B is the unit vector along the magnetic field. Then, one
finds2,3 that, in Braginskii’s approximation,12

q�
* = − �4/15�q� , �18�

where q� �h ·q is the parallel heat flux. The function q�
*

�q*−h�h ·q*� is not important for our problem. Then, the
vector �i defined by Eq. �4�, allowing for Eqs. �6� and �8�,
reduces to

�i = −
2

5

M

nT2�qiL1
�3/2��x� −

4

15
hiq�L2

�3/2��x�� . �19�

This expression is in accordance with Eq. �17� of Ref. 5.
Therefore, it is clear that Ref. 5 has used the Braginskii’s
approximation for q�

*.

B. Starting equations for nonlinear viscosity

Let us choose

X = 2nT2�kl, �20�

and separate the viscosity tensor � into the linear and non-
linear parts, i.e.,

� = ��L� + ��NL�. �21�

Using the expression for �, given by Eq. �2.5� of Ref. 3, and
Eqs. �12� and �15�, we arrive at the expression for ��L� given
in Ref. 3. On the other hand, taking � in the form of Eq. �3�
and allowing for Eq. �17�, we obtain the following equation
for the nonlinear viscosity:

6

5
�i��kl

�NL� +
3

4
�kl

*�NL�� + �ci
̂�kl
�NL� = − nTWkl

�NL�. �22�

The quantity �i is the ion collision frequency defined in Ref.
12. The tensor �*�NL� is the nonlinear part of the tensor �*.
The operator 
̂ is given by3,4


̂akl = h��
�
��a
kgl� + a
lgk�� � �h � ak�l + �h � al�k,

�23�

where ��
� is the antisymmetric tensor with the components
� �
±1/ g� ±1/J, where J� g is the Jacobian of the coordi-
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nate transformation, and ak is the vector with the covariant
components akj, j= �1,2 ,3�. The tensor Wkl

�NL� is determined
by

Wkl
�NL� = − 2T�C��kl��NL. �24�

Using the explicit form of the Sonine–Laguerre polynomials
and calculating the velocity integral in Eq. �17�, we arrive at

2nT2�C�kl�NL =
9

25

�i

nMvT
4���qq��kl +

7

4
��qq*��kl

+
63

64
��q*q*��kl� , �25�

where the value ��AB��kl is determined by

��AB��kl = AkBl + AlBk − �2/3�gklA · B . �26�

The function q* is given by Eq. �18� and q�
* =0.

Since Eq. �22� contains the tensor �*�NL�, we should
complement it by an equation for this tensor. Then, we use
Eq. �17� with X in the form

X = 2nT2�kl. �27�

As a result, we find �cf. Eq. �22��

12

35
�i�3

4
�kl

�NL� +
205

48
�kl

*�NL�� + �ci
̂�kl
*�NL� = −

2

5
nTWkl

*�NL�,

�28�

where �cf. Eq. �24��

Wkl
*�NL� = − 5T�C�kl�NL. �29�

Similarly to Eq. �25�, one obtains

2nT2�C�kl�NL =
267

1750

�i

nMvT
4���qq��kl +

865

356
��qq*��kl

+
5915

5696
��q*q*��kl� . �30�

Equations �22� and �28� are the starting ones for calculating
the nonlinear viscosity.

III. CALCULATION OF NONLINEAR VISCOSITY

A. Parallel nonlinear viscosity

1. General expression for �
¸

„NL…

Let us introduce the scalar of the parallel nonlinear vis-
cosity ��

�NL� determined by

��
�NL� = hkhl�kl

�NL�. �31�

Multiplying Eqs. �22� and �28� by hkhl, we arrive at

��
�NL� +

3

4
��

*�NL� = −
5

6�i
nTW�

�NL�, �32�

3

4
��

�NL� +
205

48
��

*�NL� = −
7

6�i
nTW�

*�NL�. �33�

*�NL� k l *�NL�
Here, �� �h h �kl and
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W�
�NL� =

6

25

�i

n2TMvT
4�q2 − 3q�

2 −
7

2
q�q�

* −
63

32
q�

*2� , �34�

W�
*�NL� =

89

350

�i

n2TMvT
4�q2 − 3q�

2 −
865

178
q�q�

* −
5915

2848
q�

*2� .

�35�

It follows from Eqs. �32� and �33� that

��
�NL� = −

nT

89�i
�1025

12
W�

�NL� − 21W�
*�NL�� . �36�

Substituting here Eqs. �34� and �35�, we obtain

��
�NL� = −

379

8900

M

pT
�q2 − c�q�

2� , �37�

where

c� = 3 +
5

379

q�
*

q�

�229 +
4683

32

q�
*

q�

� . �38�

2. The case of finite q¸
* calculated in Braginskii’s

approximation

For q�
* given by Eq. �18�, Eq. �38� reduces to

c� =
8837

3790
= 2.33. �39�

Equation �37�, with c� given by Eq. �39�, is in correspon-
dence with that following from Ref. 5 �see the expression of
Ref. 5 for p� − p� allowing for p� − p�=3�� /2�.

3. The q¸
*=0 approximation

For q�
*=0 Eq. �38� yields

c� = 3. �40�

Comparing this expression with Eq. �39�, one sees that the
q�

*=0 approximation leads qualitatively to the same result as
the Braginskii approximation.

4. The Grad approximation

In the Grad approximation, one should omit the term
with ��

*�NL� in the left-hand side of Eq. �32� and the term with
q�

* in Eq. �34�. Then, one finds

��
�NL� = −

1

20

M

nT2 �q2 − 3q�
2� . �41�

One can see that Eq. �41� differs from the corresponding
result of Ref. 5 in two aspects. First, Eq. �39� for the coeffi-
cient c� is changed by Eq. �40�, which is a consequence of
the q�

*=0 approximation, and second, the factor 379/8900 is
changed as follows:

379/8900 � 0.04 → 1/20 = 0.05, �42�

which is a consequence of the ��
*=0 approximation. Then,

we conclude that the Grad approximation leads qualitatively

to the same result as that obtained in Ref. 5.
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B. Perpendicular nonlinear viscosity

1. Solution of equation for perpendicular nonlinear
viscosity

Using Eq. �22�, in accordance with Ref. 3, the perpen-
dicular nonlinear viscosity tensor ��NL��, for arbitrary tensor
Wkl

�NL�, is given by

�ik
�NL�� = ��3�W�3�ik

�NL� + ��4�W�4�ik
�NL� . �43�

Here,

��3� = nT/�2�c�, ��4� = nT/�c, �44�

the tensors W�3�ik
�NL� and W�4�ik

�NL� are related to the tensor Wik
�NL� by

W�3�ik
�NL� = �1/2��ĝi

�gkt�
t	� + ĝk

�git�
t	��h	W��

�NL�, �45�

W�4�ik
�NL� = �hih

�gkt�
t	� + hkh

�git�
t	��h	W��

�NL�, �46�

and

ĝi
� = gi

� − hih
�. �47�

Note that Eq. �43� is in formal correspondence with Bra-
ginskii’s expression for the oblique viscosity
�gyroviscosity�.12 Therefore, the tensor �ik

�NL�� can be called
the dissipative part of gyroviscosity.

2. Transformation of expression for perpendicular
nonlinear viscosity

Equations �45� and �46� can be represented in the form

W�3�ik
�NL� = �1/2�	�h � �Wi

�NL� − hih · W�NL���k

+ �h � �Wk
�NL� − hkh · W�NL���i
 , �48�

W�4�ik
�NL� = hi�h � h · W�NL��k + hk�h � h · W�NL��i. �49�

Here, the value Wi
�NL� means the vector with covariant com-

ponents Wi�
�NL�, �= �1,2 ,3�.

Using Eqs. �44�, �48�, and �49� and allowing for Eqs.
�24� and �25�, we transform Eq. �43� to

�ik
�NL�� = −

9

200

�M

nT2�c
	�qi + c�q�hi��h � q�k

+ �h � q�i�qk + c�q�hk�
 , �50�

where

c� = 3 + �7/2�q�
*/q� . �51�

3. The case of finite q¸
* calculated in the Braginskii

approximation

Substituting Eq. �18� into Eq. �51�, we obtain

c� = 31/15 = 2.07. �52�

Equation �50� with c� given by Eq. �52� coincides with Eq.
�61� of Ref. 5.

4. The Grad approach
*
Omitting the terms with q� , Eq. �51� reduces to
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c� = 3. �53�

It is clear from comparison of Eqs. �52� and �53� that, as in
the case of ��

�NL�, the Grad approach results qualitatively in
the same �ik

�NL�� as in the Braginskii approximation.

IV. NONLINEAR VISCOSITY FOR THE SIMPLEST
MAGNETIC FIELD GEOMETRY

Studying the ion dynamics, we can neglect perpendicular
components of the magnetic field in the plasma viscosity. For
better understanding the effects of the nonlinear viscosity
and bearing in mind the application to the problem of drift-
Alfvén modes, we consider a nonuniform plasma in plane
geometry, with the equilibrium magnetic field B=ezB�x ,y�,
in a Cartesian coordinate system �x ,y ,z�; ez is the unit vector
along z.

One can find from Eq. �31� that

�zz
�NL� = ��

�NL�, �54�

where ��
�NL� is defined by the right-hand side of Eq. �37� with

q� =qz. At the same time, the parallel nonlinear viscosity con-
tributes to �xx and �yy, so that

�xx
�NL�� = �yy

�NL�� = − ��
�NL�/2, �55�

where the superscript � means the corresponding contribu-
tions.

On the other hand, it follows from Eq. �50� that

��xx
�NL�� �xy

�NL��

�yx
�NL�� �yy

�NL�� � =
9

200

�iM

nT2�c
� 2qxqy qy

2 − qx
2

qy
2 − qx

2 − 2qxqy
� ,

�56�

��xz
�NL�� �yz

�NL��

�zx
�NL�� �zy

�NL�� � =
9

200
�1 + c��

�iMqz

nT2�c
�qy − qx

qy − qx
� ,

�57�

�zz
�NL�� = 0. �58�

Note that Eqs. �56� do not contain the coefficients c� and
c�. Therefore, they can be derived in the scope of the 13-
moment Grad approach.

V. DERIVATION OF LOCAL DISPERSION RELATION
FOR DRIFT-ALFVÉN MODES

According to Ref. 4, the drift-Alfvén modes in the pres-
ence of viscosity are described by the mode equation of the
form

�� � �Mn
dVi�

dt
+ � · � −

1

c
j � B��

z
= 0, �59�

where Vi� is the perpendicular ion velocity and j is the elec-
tric current density. For simplicity, we consider Eq. �59� in
the local approximation, assuming the plasma inhomogeneity
to be directed along x and taking the mode dependence on
time and coordinates in the eikonal form exp�−i�t+ i��kxdx
+kyy+kzz��. Then, using the results of the Appendix, similar

to Eq. �10.21� of Ref. 4, Eq. �59� reduces to
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Ey�� −
kz

2vA
2

�
+

9

40
i��1 − i

�p

2kx
�� −

ikyp̃i

en0
�� + i�� 93

160

− i
6

5

�T

kx
− i

81

80

�p

kx
�� −

�kyT0ñ

en0
� 57

160
− i

117

80

�p

kx
�

−
B0ky

cMn0kx
2Q = 0. �60�

Here, Ey is the y projection of the perturbed electric field, p̃i

is the perturbed ion pressure, ñ and n0 are the perturbed and
equilibrium plasma number density, respectively, T0 is the
equilibrium temperature, vA is the Alfvén velocity, B0 is the
equilibrium magnetic field, �p=�p0i /�x, �T=�T0 /�x. The pa-
rameter � means

� = �4/3��ikx
2�i

2, �61�

where �i= �T0 /M�1/2 /�ci is the ion Larmor radius. We restrict
ourselves only to modes with kx�ky since, according to Ref.
11, they prove to be “most dangerous” if one allows for
shear.

The value Q allows for the perpendicular nonlinear vis-
cosity and is defined by

Q = �� � � · 	��NL�
��z. �62�

Using the results of Sec. IV, we calculate

Q = − i
27

64
�

kx�Tn0

�ci
T̃i. �63�

Here, T̃i is the perturbed ion temperature related to p̃i and ñ
by

T̃i = p̃i/n0 − T0ñ/n0. �64�

In addition to the variable Ey, Eq. �60� also contains the
variables ñ and p̃i. In order to express these variables in
terms of Ey, we use the electron continuity equation and the
ion heat balance equation. These equations are the following
versions of Eqs. �10.1� and �10.20� of Ref. 4, respectively:

− i�
ñ

n0
+

cEy

B0
�n = 0, �65�

− i
p̃i

n0T0
�� + i��1 − i

�p + �T

kx
�� + �

ñ

n0
�1 − i

�p

kx
�

+
cEy

B0
�p = 0, �66�

where �n=� ln n0 /�x. Using Eqs. �60� and �63�–�66�, we ar-
rive at the dispersion relation,

��� − �pi
* � − kz

2vA
2 + i�� 9

40
�� − �pi

* � +
103

160
�Ti�

+
�

kx
�27

64
�T�Ti +

9

20
�p�� + 29/9�pi

* −
223

36
�Ti

+
775

144

�T

�p
�Ti�� = 0. �67�

*
Here, �pi and �Ti are the ion diamagnetic drift frequencies
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determined by the pressure and temperature gradients, so that

�pi
* = kycT0�p/�eB0�, �Ti = ��T/�p��pi

* . �68�

The first term in the first square brackets in Eq. �67�
corresponds to the dissipative effects due to the perpendicu-
lar ion heat conductivity and the collisional part of the stan-
dard perpendicular viscosity. The last term in the left-hand
side of this equation is due to the same effects and the effect
of nonlinear viscosity. Since we use the local approximation,
it contains the formally small parameters �T /kx and �p /kx

compared with the standard dissipative term. Nevertheless,
the last term is physically important by two reasons. First, if
one goes beyond the local approximation, i.e., considers the
eigenvalue problem, it turns out to be of the same order of
magnitude as the standard dissipative term. Second, the last
term is real, in contrast to the standard dissipative term,
which is imaginary. Therefore, the nonlinear viscosity does
not influence growth or damping rate of the modes but con-
tributes to their radial group velocity or, in other words, into
their radial transport �see in detail below�.

VI. INSTABILITY OF DRIFT-ALFVÉN MODES DUE TO
STANDARD COLLISIONAL EFFECTS AND
THEIR COLLISIONAL RADIAL TRANSPORT

A. Drift-Alfvén modes in neglecting their radial
transport

In this subsection we consider the drift-Alfvén modes,
neglecting their radial transport. Then, Eq. �67� reduces to

��� − �pi
* � − kz

2vA
2 + i�� 9

40
�� − �pi

* � +
103

160
�Ti� = 0.

�69�

Since the parameter � is small compared with the mode fre-
quency, ���, Eq. �69� can be analyzed by the method of
successive approximations, using a series expansion in the
ratio � /�.

1. Modes propagating in the ion diamagnetic drift
direction

In the present section we analyze modes propagating in
the ion diamagnetic drift direction, Re � /�pi

* �0, for the
simplest case kz→0. Then, Eq. �69� is transformed to

� − �pi
* + i�� 9

40
�1 −

�pi
*

�
� +

103

160

�Ti

�
� = 0. �70�

Following the analysis of this dispersion relation presented
in Ref. 10, we find from Eq. �70�

Re � = �pi
* �71�

and

Im � = −
103

160

�T

�p
� , �72�

so that these modes become unstable for reversed tempera-

ture gradient,
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�T/�p � 0. �73�

Turning to Eq. �61� for �, we find that their growth rate is
equal to

Im � = −
103

120

�T

�p
�ikx

2�i
2, �74�

in coincidence with that obtained in Ref. 10.

2. Modes propagating in the electron diamagnetic
drift direction

For simplicity, in studying the modes propagating in the
electron diamagnetic drift direction, Re � /�pi

* �0, we take
�pi

* �kzvA. Then, Eq. �69� reduces to

� +
kz

2vA
2

�pi
* − i��103

160

�T

�p
−

9

40
� = 0. �75�

Hence, we find

Re � = − kz
2vA

2/�pi
* �76�

and

Im � =
103

160
���T

�p
−

36

103
� . �77�

In contrast to the modes with Re � /�pi
* �0, these modes are

unstable for positive ratio of the relative temperature and
pressure gradients, �T /�p �cf. Eq. �73��,

�T/�p � 36/103. �78�

In terms of �T /�n �and positive �T /�n�, this inequality means
�T /�n�36/67.

B. Radial transport of the modes

1. Modes propagating in the ion diamagnetic drift
direction

Allowing for the last term on the left-hand side of Eq.
�67�, we find, instead of Eq. �71�,

Re � = �pi
* −

1

5
�ikx�i

2�p� , �79�

where

� =
38

3
−

293

12

�T

�p
+

775

46

�T
2

�p
2 . �80�

A remarkable feature of Eq. �79� is the fact that the nonlinear
viscosity contributes to the radial group velocity vg of the
modes. This radial group velocity is equal to

vg �
� Re �

�kx
= −

1

5
�i�i

2�p� . �81�

Since ��0, for a standard decreasing ion pressure pro-
file, �p�0, it follows from Eq. �81� that vg�0. This means
that the wave packet of the drift-Alfvén modes, propagating
in the ion diamagnetic drift direction, is transported in the

direction of larger x, i.e., down the pressure gradient.

Downloaded 30 Jan 2006 to 152.84.50.52. Redistribution subject to A
2. Modes propagating in the electron diamagnetic
drift direction

Using Eq. �67�, we find the following modification of
Eq. �79�:

Re � = −
kz

2vA
2

�pi
* +

1

5
�ikx�i

2�p� . �82�

It hence follows that

vg =
1

5
�i�i

2�p� . �83�

The sign of vg is opposite to that of the radial group velocity
determined by Eq. �81�. Therefore, the wave packet of the
drift-Alfvén modes, propagating in the electron diamagnetic
drift direction, is transported in the direction of smaller x,
i.e., up the pressure gradient.

VII. DISCUSSION

Following the moment approach, we have confirmed the
expressions for the nonlinear viscosity derived in Ref. 5 and
elucidated which moments should be taken into account to
obtain these expressions. Then, we have shown that, in ad-
dition to the 13 moments entering the Grad approach �den-
sity, temperature, velocity, heat flux, and the viscosity ten-
sor�, one should allow for two higher-order moments. One of
them is the vector-type moment, similar to the parallel heat
flux, and the second is the tensor-type moment, similar to the
parallel component of the viscosity tensor. The additional
moments are characterized by the terms with qi

* and �ij
* in

Eq. �3�, assuming that the vector q* contains only the parallel
component q�

* and the tensor �ij
* consists only of the parallel

component ��
* determined similarly to Eq. �31�. Both these

moments enter the two-polynomial Braginskii
hydrodynamics.12 The rigid attachment of Ref. 5 to the mo-
ment q�

* is demonstrated by the concordance of Eq. �19� with
Eq. �17� of Ref. 5.

It is then clear that the numerical coefficients in the ex-
pressions of Ref. 5 for the nonlinear viscosity are not univer-
sal; they depend on number of higher-order moments taken
into account in their derivation. This fact can be seen, in
particular from Eqs. �37� and �50�, containing the coeffi-
cients c� and c� given by Eqs. �38� and �51�, respectively,
which are functions of the ratio q�

* /q�. Evidently, allowing
for additional higher-order vector-type moments should re-
sult in changing these coefficients. At the same time, turning
to Eqs. �32� and �33�, one can see that Eq. �37� for ��

�NL� is
also not universal, since it is obtained only when the single
higher-order tensor-type moment is allowed in the calcula-
tions.

Therefore, a reasonable question is, what is the minimal
number of moments necessary to derive analytically the cor-
rect nonlinear viscosity? The answer is the total Grad 13
moments. Using it, one arrives at the expressions for the
parallel nonlinear viscosity ��

�NL� given by Eq. �41� and the
perpendicular nonlinear viscosity �ik

�NL�� defined by Eq. �50�

with c� given by Eq. �53�.
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The only universal coefficient in the nonlinear viscosity
is the factor 9 /200 in Eq. �50� for the tensor �ik

�NL��. Such a
universality can be understood if one allows for the known
universality of the standard gyroviscosity and the fact that,
according to Eqs. �43�–�47�, this tensor can be treated as the
dissipative part of the gyroviscosity.

We have explained that separation of the collision opera-
tor into nonlinear and linear parts is not the same as separa-
tion of a value into the linear and nonlinear parts of the
perturbation amplitude in the nonlinear plasma theory; see in
detail the discussion after Eq. �17�. Respectively, the expres-
sions for the nonlinear viscosity derived in the paper can be
used in both the linear and nonlinear plasma theories as well
as in the theory of plasma equilibrium.

We have analyzed the problem of linear drift-Alfvén
modes in a collisional plasma using the transport equations
including the nonlinear and linear viscosities and the perpen-
dicular heat conductivity. Then, we have considered specifi-
cally the case of small-scale modes only, so that the local
approximation could be used; see in detail Sec. V. In this
approximation, the nonlinear viscosity contributes to the ra-
dial transport of the modes, i.e., to their radial group velocity,
while the growth/decay rate is determined by the linear vis-
cosity and perpendicular heat conductivity.

Note that our analysis of the drift-Alfvén modes gener-
alizes the analysis of Ref. 10, addressed to the ion diamag-
netic drift modes, by inclusion of the effects of finite parallel
wave vector and the nonlinear viscosity. In addition to the
modes unstable for negative ratio of temperature and pres-
sure gradients, studied in Ref. 10, we have brought up the
modes unstable for positive ratio of these gradients. We have
shown that the wave packet of drift-Alfvén modes, propagat-
ing in the diamagnetic drift direction and driven for reversed
temperature gradient, is transported down the pressure gradi-
ent. In contrast to this, the wave packet propagating in the
electron diamagnetic drift direction and driven for positive
temperature gradient is transported up the pressure gradient.
We think that the instability studied can be of interest for the
problem of interpretation of the edge localized modes
�ELMs� in tokamaks.13

The recent nonlinear tokamak plasma theory14 includes a
rather wide trend of the ITG modes going back to Refs.
15–17 and many other works cited in Ref. 11. We have per-
formed preliminary analysis of whether the nonlinear viscos-
ity contributes to the problem of linear ITG modes. However,
we have not revealed significant contributions.

Though we have applied the nonlinear viscosity in Secs.
V and VI only for the case of slab geometry, there are prob-
lems that require knowing the viscosity tensor in general
toroidal geometry. An example of such problems is the prob-
lem of plasma rotation in toroidal systems �see Refs. 18 and
19 and works cited therein�. The role of nonlinear viscosity
in this problem can be elucidated using the general-geometry
results given in Sec. III.
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APPENDIX: PERPENDICULAR LINEAR VISCOSITY

In correspondence with Eq. �21�, in describing the vis-
cosity effects, we should allow for, in addition to the nonlin-
ear viscosity ��NL�, also the linear viscosity ��L�. For the
problem of drift-Alfvén modes in the simplest magnetic field
geometry, considered in Sec. V, we need the tensor compo-
nents ���

�L�, where �� ,��= �x ,y�. Similarly to Refs. 2–4 and
10, we separate this tensor into two parts, the oblique viscos-
ity �gyroviscosity�, denoted ��L�∧, independent of collisions,
and the collisional perpendicular viscosity, denoted ��L��, so
that

��L� = ��L�∧ + ��L��. �A1�

The gyroviscosity tensor is given by

�xx
�L�∧ = − �yy

�L�∧ = −
pi

2�ci
Wxy

�1�, �A2�

�xy
�L�∧ = �yx

�L�∧ =
pi

4�ci
�Wxx

�1� − Wyy
�1�� , �A3�

where pi=nTi,

W��
�1� = ���V�i���� +

2

5pi
���q�i����. �A4�

The collisional part of the linear viscosity tensor is as fol-
lows:

�xx
�L�� = − �yy

�L�� = −
3

20

pi�i

�ci
2 �Wxx

�1� − Wyy
�1� +

3

10
�Wxx

�2�

− Wyy
�2��� , �A5�

�xy
�L�� = �yx

�L�� =
3

10

pi�i

�ci
2 �Wxy

�1� +
3

10
Wxy

�2�� , �A6�

where

W��
�2� =

1

pi
���pi

pi
q�i − �q�i��

��

. �A7�

In contrast to Secs. II–IV, here we have restored the ion
indices. The subscript � at the vectors Vi and qi means the
components of these vectors perpendicular to the magnetic
field. It is implied that, in substituting these vectors into the
viscosity, they are taken in the form V�i=V

�i
�0�, q�i=q

�i
�0�

�1�
+q
�i, where
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V�i
�0� =

1

n�ciMi
�h � �pi� +

c

B
�E � h� , �A8�

q�i
�0� =

5

2

pi

�ciMi
�h � �Ti� , �A9�

q�i
�1� = −

2pi�i

�ci
2 Mi

��Ti. �A10�

Equations �A1�–�A10� are used in Sec. V in deriving Eq.
�60�. In addition, Eq. �A9� for q

�i
�0� is used for transition from

Eq. �62� to Eq. �63� for Q by means of Eq. �56�.

1ITER Physics Expert Groups on Confinement and Transport Modelling
and Database et al., Nucl. Fusion 39, 2175 �1999�.

2A. B. Mikhailovskii and V. S. Tsypin, Plasma Phys. 13, 785 �1971�.
3A. B. Mikhailovskii and V. S. Tsypin, Beitr. Plasmaphys. 24, 335 �1984�.
4A. B. Mikhailovskii, Electromagnetic Instabilities in an Inhomogeneous
Downloaded 30 Jan 2006 to 152.84.50.52. Redistribution subject to A
Plasma �Institute of Physics, Bristol, 1992�.
5P. J. Catto and A. N. Simakov, Phys. Plasmas 11, 90 �2004�.
6A. N. Simakov and P. J. Catto, Contrib. Plasma Phys. 44, 83 �2004�.
7A. N. Simakov and P. J. Catto, Phys. Plasmas 12, 012105 �2005�.
8P. J. Catto and A. N. Simakov, Phys. Plasmas 12, 012501 �2005�.
9H. Grad, Commun. Pure Appl. Math. 2, 311 �1949�.

10V. S. Tsypin, Sov. Phys. Tech. Phys. 17, 543 �1972�.
11A. B. Mikhailovskii, Theory of Plasma Instabilities, Vol. 2, Instabilities of

an Inhomogeneous Plasma �Consultants Bureau, New York, 1974�.
12S. I. Braginskii, in Reviews of Plasma Physics, edited by M. A. Leontov-

ich �Consultants Bureau, New York, 1965�, Vol. 1, p. 205.
13J. W. Connor, Plasma Phys. Controlled Fusion 40, 191 �1998�.
14B. Coppi, Nucl. Fusion 42, 1 �2002�.
15L. I. Rudakov and R. Z. Sagdeev, Sov. Phys. Dokl. 6, 415 �1961�.
16A. B. Mikhailovskii, Sov. Phys. JETP 25, 831 �1967�.
17B. Coppi, M. N. Rosenbluth, and R. Z. Sagdeev, Phys. Fluids 10, 582

�1967�.
18A. B. Mikhailovskii and V. S. Tsypin, Sov. J. Plasma Phys. 10, 142

�1984�.
19V. S. Tsypin, A. B. Mikhailovskii, R. M. O. Galvão, I. C. Nascimento, M.

Tendler, C. A. de Azevedo, and A. S. de Asis, Phys. Plasmas 5, 3358
�1998�.
IP license or copyright, see http://pop.aip.org/pop/copyright.jsp


