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A unified theory of the Mercier-ballooning and the compensating-electron Alfvén eigenmodes
sCEAEsd in positive-shear tokamaks with large-orbit energetic ions is developed. It is shown that the
cross-field drift effect of electrons compensating the electric charge of energetic ionssthe
compensating-electron effectd leads to rotation of the Mercier-ballooning modes. If the Mercier
stability criterion is satisfied, the ballooning modes rotate in the direction of compensating-electron
frequency, while in violation of this stability criterion the unstable modes rotate against this
frequency. The compensating-electron effect also results in decreasing the growth rate of ballooning
modes, though their instability condition is unchanged. The Mercier and ballooning effects influence
both rotation and decay rate of the CEAEs, the ballooning effect being smaller than the Mercier
effect. As a result, rotation and damping of CEAEs increases/decreases in the case of magnetic
well/hill. © 2005 American Institute of Physics. fDOI: 10.1063/1.1877519g

I. INTRODUCTION

Large-orbit energetic ions influence rather effectively the
Alfvén eigenmodes in tokamak discharges.1–4 In the case
of reversed shear they lead to the reversed-shear Alfvén
eigenmodessRSAEsd sRefs. 1–3d whereas in the case of
positive shear, the compensating-electron Alfvén eigenmodes
sCEAEsd sRef. 4d appear. At the same time, it is known that
Mercier and ballooning modes can exist in tokamak plasmas
when the effect of large-orbit energetic ions is not relevant
ssee, e.g., Chap. 8 of Ref. 5d. The goal of the present paper is
to develop a unified theory of Mercier-ballooning and Alfvén
eigenmodes in positive-shear tokamaks with large-orbit en-
ergetic ions.

The standard theory to describe the effect of energetic
particles on magnetohydrodynamics modes, which we refer
to as energetic-particle modes6,7 theory, is rather well known
and widely employed. However, in a recent paper it has been
shown that this theory is not self-consistent and should be
replaced by the CEAE theory.4 For the sake of completeness,
additional argumentation on the basic error of Refs. 6 and 7
is presented in the Appendix, which also helps on under-
standing the motivation for appearance of the compensating-
electron effect in the basic equations.

The paper is organized as follows. In Sec. II we present
the starting equations. Section III is addressed to derivation
of the dispersion relations. In Sec. IV we study the
compensating-electron effect on ballooning and Mercier
modes using the analytical theory of these modes with finite
growth rates initially developed in Ref. 8 and then summa-
rized in Ref. 5. Section V treats the Mercier and ballooning

effects on CEAEs. Discussion of the results and conclusions
are given in Sec. VI.

II. STARTING EQUATIONS

We work in the weak-ballooning approximation de-
scribed in Sec. 7.5 of Ref. 5. Then, following Ref. 9, we
introduce the ballooning variabley by formally replacingu
→y, whereu is the poloidal angle, whiley, in contrast tou,
runs over an infinite range. Formally, in the weak-ballooning
approximation, the ballooning representation looks like the
radial Fourier representation with the radial wave numberkx

connected with the ballooning variable by

kx = nq8y, s1d

wheren is the toroidal mode number,q is the safety factor,
and the prime is the radial derivative.

According to Sec. 8.5 of Ref. 5, neglecting the energetic
ions and finiteness of the mode frequency, the current conti-
nuity equation, allowing for the Mercier-ballooning effects in
the weak-ballooning approximation, is of the form

d

dt
Fs1 + t2d

df

dt
G − SU0 +

U1

1 + t2
Df = 0. s2d

Here t=kx/ky, ky=nq/ r, the r is the radial coordinate,f is
the electrostatic potential averaged over the metric oscilla-
tions ssee, in detail, Sec. 7.5 of Ref. 5d, U0 and U1 are the
parameters characterizing the Mercier and ballooning effects,
respectively. In the case of weak shear and parabolic profile
of the thermal plasma pressure, the valuesU0 andU1 can be
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taken in the formfsee Eqs.s8.17d, s8.33d, ands8.43d of Ref.
5g

U0 = −
4bpr

2

s2q2R2F1 − q2S1 +
3

2
bp

3 r2

R2 −
e2

2
bp + 6etRDG s3d

and

U1 =
8bp

2r2

s2R2 S3bp
2 r2

R2 − 2sD . s4d

Here bp is the poloidal beta,s=rq8 /q is the shear,R is the
major torus radius,e andt are the parameters characterizing
the ellipticity and triangularity of the magnetic surfaces
stheir definitions can be found in Sec. 2.5.1 of Ref. 5d.

In addition to Eq.s1d, we can take from Ref. 2 an equa-
tion for the Alfvén eigenmodes neglecting the Mercier-
ballooning effects and allowing for the compensating-
electron effect and finiteness of the mode frequency. In the
coordinate representation, this mode equation has the form
fsee Eq.s55d of Ref. 2g

d

dr
FSv2

vA
2 − ki

2Ddf

dr
G − ky

2Sv2

vA
2 − ki

2Df +
4pehvky

cB0

dnh

dr
f = 0.

s5d

Here v is the mode frequencyfthe time-dependence of the
perturbation is taken in the form exps−ivtd, wheret means
timeg, vA

2 =B0
2/ s4pMcncd is the squared Alfvén velocity,B0 is

the equilibrium magnetic field averaged over the poloidal
oscillations,nc is the number density of the thermal ions,Mc

is the thermal ions mass,ki=sm/q−nd /R, m is the poloidal
mode number,eh is the electric charge of energetic ion,nh is
the number density of energetic ions, andc is the speed of
light. For a monotonicq profile, Eq.s5d reduces to

d

dx̂
FSv2

vA
2 − x̂2Ddf

dx̂
G − Sv2

vA
2 − x̂2Df − Qhf = 0. s6d

Herex̂=xky, x is the radial deviation from the corresponding
singular magnetic surface,vA

2 =ssvA/qRd2 is the squared
characteristic Alfvén frequency, andQh describes the
compensating-electron effect and is given by

Qh = v/s4vCEd, s7d

where vCE is the characteristic compensating-electron fre-
quency defined by

vCE = −
1

4

kyvA
2

Vhkh

ncMc

nhMh
, s8d

wherekh=dlnnh/dr, Vh is the cyclotron frequency of ener-
getic ions, andMh is the energetic ion mass.

In the Fourier representation, Eq.s6d yields ssee also
comments in the Appendixd

d

dt
Fs1 + t2d

df

dt
G +

v2

vA
2 s1 + t2df + Qhf = 0. s9d

Combining Eqs.s2d ands9d, we arrive at the mode equation
of the form

d

dt
Fs1 + t2d

df

dt
G +

v2

vA
2 s1 + t2df + Qhf − SU0 +

U1

1 + t2
Df = 0.

s10d

This is our starting mode equation in the ballooningsFourierd
representation. Using the explanations of Sec. 8.5.3 of Ref.
5, it can also be written in the coordinate representation.
Then the term withU1 looks as a nonlocal one.

III. DERIVATION OF DISPERSION RELATIONS

A. Solution of the mode equation in the inertialless
region

Neglecting the inertial effect, i.e., the term withv2/vA
2,

Eq. s10d reduces formally to Eq.s8.44d of Ref. 5, i.e., to

d

dt
Fs1 + t2d

df

dt
G − Fnsn + 1d −

b2

1 + t2
G = 0. s11d

Here

n = − 1/2 +ia, s12d

a = sQh − U0 − 1/4d1/2, s13d

b = s− U1d1/2. s14d

According to Sec. 8.5 of Ref. 5, the even and odd solu-
tions of Eq.s11d, f=f±, are given by

f+ = s1 + t2d−b/2FS−
n + b

2
,
1 + n − b

2
;
1

2
;− t2D , s15d

f− = s1 + t2d−b/2FS1 − n − b

2
,1 +

n − b

2
;
3

2
;− t2D , s16d

whereF is the hypergeometrical function. Similarly to Eqs.
s8.48d–s8.50d of Ref. 5, takingt@1 in Eqs.s15d ands16d, we
find that the short-wavelength inertialless asymptotic of the
solutionsf± in the Fourier space is of the form

f , tns1 + t−s2n+1dD±d, s17d

where

D± = f±sn,bd/fsnd, s18d

f+sn,bd = GS1 + n − b

2
DGS1 + n + b

2
DY

FGS−
n + b

2
DGS− n + b

2
DG , s19d

f−sn,bd = GS1 +
n − b

2
DGS1 +

n + b

2
DY

FGS1 − n − b

2
DGS1 − n + b

2
DG , s20d

fsnd = Gsn + 1/2d/Gs− n − 1/2d, s21d

G is the gamma function.
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B. Dispersion relation for the Mercier-ballooning
modes modified by the compensating-electron effect

For Imv.0 Eq. s10d in the inertial regionst@1d takes
the form

d

dt
St2

df

dt
D − fnsn + 1d + l2t2gf = 0, s22d

where

l2 = − v2/vA
2 . s23d

According to Sec. 5.1.4 of Ref. 5, solution of Eq.s22d
finite at t→` is of the form

f , t−1/2Kiasltd, s24d

whereKia is the Bessel function of the second kind of imagi-
nary argument. We assume Rel, Im v, so that the solution
given by Eq.s24d decreases fort→`.

The asymptotic of Eq.s24d for lt!1 sthe long-
wavelength inertial asymptoticd is

f , tnf1 + slt/2d−s2n+1dfsndg. s25d

Matching Eqs.s17d and s25d leads to the dispersion relation
which coincides formally with Eq.s10.36d of Ref. 5,

sl/2d2n+1 = f2snd/f±sn,bd. s26d

This dispersion relation describes both the ballooning and
Mercier modes.

C. Dispersion relation for the CEAEs modified by the
Mercier-ballooning effects

1. Short-wavelength inertialless asymptotic in the
coordinate space

As in the case Imv.0, in order to derive dispersion
relation for the modes with Imv,0, we should match the
short-wavelength inertialless asymptotic solution with the
long-wavelength inertial one. In Ref. 4 the last asymptotic
solution was obtained in the coordinate representation.
Therefore, following the approach of Ref. 4, we transit in Eq.
s17d from the Fourier space to the coordinate space. Such a
transition can be performed using explanations of Sec. 6.3 of
Ref. 5. As a result, we arrive at the following expression for
the short-wavelength inertialless asymptotic in the coordi-
nate space:

f± , x̂nfD±
b + x̂−s2n+1dg. s27d

Here the parametersD±
b are defined by

D±
b = D

f±sn,bd
f±sn,0d

, s28d

D = 2−s2n+1d/fsnd, s29d

the valuesf±sn ,bd are given by Eqs.s19d and s20d, while
f±sn ,0d are these values forb=0.

2. Solution of the mode equation in the inertial region

Taking t@1 in Eq. s10d and transiting to the coordinate
representation, we arrive at

d

dz
Fs1 − z2d

df

dz
G + nsn + 1df = 0, s30d

where

z= x̂vA/v. s31d

Equations30d coincides with the similar mode equation of
Ref. 4 for generalization of the parametern by including the
Mercier effectU0, see Eqs.s12d and s13d. A peculiarity of
this equation is that for Imv=0 it has the singular pointsz
= ±1.

Similarly to Ref. 4, we express solution of Eq.s30d in
terms of the Legendre functionsPnszd andQnszd, so that

f = CPPnszd + CQQnszd. s32d

HereCP=sCP
+ ,CP

0 ,CP
−d, CQ=sCQ

+ ,CQ
0 ,CQ

− d are numerical co-
efficients and the superscriptss+,0,−d mean the regionsz
.1, −1øzø1, z,−1. Then, we find that foruzu@1 the
function f has the asymptoticsdetails of calculations can be
found in Ref. 4d

f , znF1 +
2−s2n+1dGs− iadGs1 + nd

GsiadGsnd

3S1 − ipthpa
CQ

+

CP
+ Dz−s2n+1dG , s33d

where the ratioCQ
+ /CP

+ satisfies the relation

ip
CQ

+

CP
+ = − sgnvs1 7 cospnd 7 i sinpn. s34d

In obtaining Eq.s34d, it is necessary to allow for the Landau
bypass rule of the pointsz= ±1. The upper/lower signs in the
right-hand side of Eq.s34d correspond to the even/odd solu-
tions.

Requiring that Eqs.s27d ands33d are the same, we arrive
at the dispersion relation

S v

4vA
D−2ia

=
f±sn,bd
f±sn,0d

G2s− iadGs1/2 + iad
G2siadGs1/2 − iad

3S1 − ipthpa
CQ

+

CP
+ D . s35d

This dispersion relation generalizes a similar dispersion rela-
tion of Ref. 4 by including the finiteness of the parameters
U0 andU1.

As in Ref. 4, we are interested in the casea!1. Then
Eq. s35d for the even modes reduces to

v

vA
= 16 expH−

pl

a
− gE −

1

2
FcS1

4
−

b

2
D + cS1

4
+

b

2
D

− 2cS1

4
DG +

p

2
+

ip

2
sgnvJ , s36d

wheregE is the Euler constant,c=G8 /G is logarithmic deri-
vation of the gamma function,l =1,2,3,… . The dispersion
relation of the odd modes fora!1 has a similar form with
substitutions cs1/47b/2d→cs3/47b/2d, cs1/4d
→cs3/4d, p /2→−p /2.
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IV. COMPENSATING-ELECTRON EFFECT
ON BALLOONING AND MERCIER MODES

A. Ballooning modes far from the Mercier stability
boundary

According to Sec. 10.3.1 of Ref. 5ssee also Ref. 8d, for
n not close to −1/2 and smallb−n−1, Eq.s26d reduces to

sl/2d2n+1 = sb − n − 1dcB, s37d

where

cB =
n + 1/2

2p1/2Gsn + 1d
sinFpSn +

1

2
DGG3Sn +

1

2
D . s38d

For U0=0, Qh=0 and

b . 1 s39d

this dispersion relation describes aperiodically unstable bal-
looning modessRev=0d with the growth rate

Im v ; vI =
p

2
sb − 1dvA. s40d

Let us analyze the compensating-electron effect on the
modes considered. Then we assumeQh to be small but non-
zero,Qh!1, and, as before, takeU0=0. As a result, it fol-
lows from Eq.s37d that

vI =
p

2
sb − 1d

vA

1 + p2vA
2/s64vCE

2 d
, s41d

Rev ; vR =
p2

16
sb − 1d

vA
2/vCE

1 + p2vA
2/s64vCE

2 d
. s42d

Hence it can be seen that the stability boundary of ballooning
modes remains unchanged in the presence of compensating-
electron effect. The consequences of this effect are, first, de-
creasing the growth rate, and second, appearance of a real
part of the mode frequency. These consequences are essential
for, qualitatively,

vCE , vA. s43d

According to Eq.s42d, the modes rotate in the direction of
compensating-electron frequencyvCE.

For vCE/vA!1, Eqs.s41d and s42d reduce to

vI =
32

p
sb − 1d

vCE
2

vA
, s44d

vR = 4sb − 1dvCE. s45d

We see that in this limiting case the growth rate is small
compared with the real part of mode frequency as
svCE/vAd2.

B. Ballooning modes near the Mercier stability
boundary

Similar to Sec. 10.3.2 of Ref. 5, we now take

b = 1/2 +d, s46d

n = − 1/2 +b, s47d

where d is a small positive number, 0,d!1, while b is
defined by

b = S1

4
+ U0 − QhD1/2

. s48d

It is assumed that forQh→0 the parameterb is real, so that
the Mercier stability criterion is satisfied.

As in Ref. 5, we transform Eq.s26d to the form similar
to Eq. s10.49d of Ref. 5:

Sl

2
D2b

= H1 + bF3cs1d − cS1

2
DGJ1 − b/d

1 + b/d
. s49d

As in Ref. 5, we are interested in the modes with small
ratio b /d. However, in contrast to Ref. 5, allowingQh we
can not transit to the limitb→0. Then we introduce

b0 = S1

4
+ U0D1/2

s50d

and, assuming Imv@Rev and uQhu!b0
2, expandb in a

series inQh:

b = b0 + ibI , s51d

where

bI = −
vI

8vCEb0
. s52d

As a result, we arrive at the same expression forvI as Eq.
s10.50d of Ref. 5,

vI = 4vAexpS−
1

d
− gED , s53d

and following expression forvR:

vR =
vI

2

16db0
2vCE

. s54d

We see from Eq.s54d that, as in Sec. IV A, the modes rotate
in the direction ofvCE. The valuevCE should be sufficiently
large compared withvA since otherwise the condition
vR/vI !1 would be invalid.

C. Mercier modes neglecting the ballooning effects

Now we assume the ballooning effect to be negligible,
b=0, and the Mercier stability criterion to be violated, 1/4
+U0,0, so that the Mercier modes are unstable. This means
that, in neglecting the compensating-electron effect,Qh→0,
the parametera is real. We designate this limiting value of
the parametera asa0, so that

a0 = s− U0 − 1/4d1/2. s55d

Assuming uau!1, we reduce Eq.s26d for the even
modes to the form of Eq.s5.50d of Ref. 5, i.e., to

042507-4 Mikhailovskii et al. Phys. Plasmas 12, 042507 ~2005!

Downloaded 30 Jan 2006 to 152.84.50.52. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



Sl

2
D2ia

= 1 + 2iaFcs1d − cS1

4
DG . s56d

Similar to expansion of the parameterb in Sec. IV B, we
expand the parametera in the series inQh assumingvI

@vR. Then we have

a = a0 +
i

8

vI

vCE
. s57d

We transform the left-hand side of Eq.s56d to

Sl

2
D2ia

= S vI

2vA
D2ia0F1 +

2a0vR

vI
−

vI

4vCE
lnS vI

2vA
DG .

s58d

Substituting Eq.s58d into Eq. s56d and following the proce-
dure of Sec. 5.1.3 of Ref. 5, we obtain that the growth rate of
the modes is given by Eq.s5.36d of Ref. 5, i.e.,

vI = 16vAexpS−
pl

a0
− gE +

p

2
D , s59d

while the real part of the mode frequency is equal to

vR = −
plvI

2

8a0
2vCE

. s60d

Note that Eq.s60d can be obtained from the condition that
the second and third terms in the square brackets on the
right-hand side of Eq.s58d are mutually canceled.

It follows from Eq. s60d that, in contrast to the balloon-
ing modesssee Secs. IV A and IV Bd, the Mercier modes
rotate in the direction againstvCE. Similar to Eq.s54d, Eq.
s60d is valid only for sufficiently largevCE/vA sthe require-
mentvR/vI !1 should be satisfiedd.

V. MERCIER AND BALLOONING EFFECTS ON CEAES

Now we assume that both the ballooning and Mercier
modes are stable and consider the role of the finite param-
etersU0 andU1 in the problem of CEAEs. We analyze Eq.
s36d similarly to Ref. 4. Then we takev=vR+ ivI, a=aR

+ iaI, wherevR andvI were introduced in Sec. IV A, while
aR andaI are real. According to Eqs.s7d, s8d, ands13d, the
parameteraR is related tovR by

aR =
1

2
S vR

vCE
− 1 − 4U0D1/2

. s61d

It follows from Eq. s36d that, approximately,

vR

vA
= 16 expH−

pl

aR
− gE +

p

2
−

1

2
FcS1

4
−

b

2
D

+ cS1

4
+

b

2
D − 2cS1

4
DGJ , s62d

vI = −
4aR

3

l
uvCEu. s63d

In obtaining Eq.s62d we have used that contribution of the
ballooning effect in this equation is real even for imaginary

b. Since this contribution is small compared with 1/aR, we
neglect it below.

Assuming the ratiovCE/vA to be small parameter, we
can use the method of successive approximations in the
small parameterflnsvA/vCEdg−1. Then we find

vR = vR
s0d + vR

s1d, s64d

aR = aR
s1d, s65d

where

vR
s0d = s1 + 4U0dvCE, s66d

vR
s1d =

4p2l2vCE

flns16vA/vR
s0ddg2 , s67d

aR
s1d =

pl

lns16vA/vR
s0dd

. s68d

Since1/4+U0.0 it follows from Eq. s66d that the sign of
the real part of the mode frequency forU0Þ0 is the same as
for U0=0. This part of the mode frequency increases for
U0.0 sthe case of stabilizing curvature or, in other words,
the case of magnetic welld and decreases forU0,0 sthe case
of destabilizing curvature or the case of magnetic hilld.

Using Eqs.s64d–s68d, Eq. s63d is transformed to

vI = −
4p3l2

flns16vA/vR
s0ddg3uvCEu. s69d

According to Eq.s69d, the damping of the CEAEs in-
creases in the case of magnetic well,U0.0, and decreases in
the case of magnetic hill,U0,0. This result is in agreement
with the general notion of the stabilizing/destabilizing role of
the magnetic well/hill.

VI. DISCUSSIONS AND CONCLUSIONS

The subject of our study was eigenmodes in a thermal
plasma in positive-shear tokamaks in the presence of ener-
getic ions under the assumption that the characteristic Lar-
mor radius of these ionsrh is large compared with the char-
acteristic perpendicular wavelength of the modes,k'rh@1,
so that direct effects of energetic ions can be neglected. Nev-
ertheless, their presence is crucial for our analysis because of
the presence of electrons compensating the equilibrium elec-
tric charge of energetic ions. These electrons contribute into
the mode equation due to their cross-field drift effect called
in our presentation as the compensating-electron effect. This
effects causes appearance of a family of the CEAEs pointed
out in Ref. 4, which are damped eigenmodes rotating in the
direction of the compensating electron frequencyvCE.

In allowing for the Mercier-ballooning effects, i.e., phe-
nomena due to combined action of the equilibrium magnetic
field curvature and the thermal plasma pressure gradient, we
deal with two families of eigenmodes: the Mercier-
ballooning ones and the CEAEs. It is known that, in the
absence of energetic ions and in neglecting the diamagnetic
drift effect of the thermal plasma, the Mercier-ballooning
eigenmodes are aperiodically unstable perturbations. We
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have developed an analytical theory allowing one to yield
benchmarks for problems what is influence of compensating-
electron effect on the Mercier-ballooning modes and what is
modification of the CEAEs in the presence of the Mercier-
ballooning effects.

According to our analysis, the compensating-electron ef-
fect leads to the appearance of the real part of the frequency
of the ballooning-Mercier modes, i.e., to rotation of these
unstable modes. It has been shown that, if the Mercier sta-
bility criterion is satisfied, the ballooning modes rotate in the
direction of the compensating-electron frequencyvCE, while
in violation of this stability criterion the unstable modes ro-
tate againstvCE. The compensating-electron effect results
also in decreasing the growth rate of ballooning modes,
though the instability condition of them remains unchanged.
As for the CEAEs, the Mercier and ballooning effects influ-
ence both real part of their frequency and decay rate. The
ballooning effects on the CEAEs proves to be small com-
pared with the Mercier effect. The last leads to increasing/
decreasing the rotation frequency in the cases of magnetic
well/hill. Similarly, the magnetic well/hill lead to increasing/
decreasing of the CEAEs. In principle, the described analyti-
cal regularities of the Mercier-ballooning modes and CEAEs
can be studied numerically by means of the MISHKA-H
code.1

As known ssee, e.g., Chap. 21 of Ref. 5d, the diamag-
netic drift effect also leads to rotation of the Mercier-
ballooning modes. Therefore, it seems reasonable to incorpo-
rate the diamagnetic drift effect into the theory described
above. One more interesting problem is the generalization of
our theory for arbitraryk'rh. In the scope of this problem,
allowing for direct contribution of energetic ions into the
mode equation seems to be necessary. Evidently, a similar
program can also be of interest for reversed-shear tokamaks.
Thus, we believe that our paper, together with Refs. 1–4, can
be considered as the first links in the chain of subsequent
studies of Alfvén eigenmodes in tokamaks in the presence of
energetic ions.
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APPENDIX: EXPLANATION OF THE ESSENCE
OF ERROR OF REFS. 6 AND 7

The compensating-electron effect is the cylindrical ef-
fect, i.e., that revealed in the cylindrical approximation. In
this approximation and neglecting the Mercier effect, Eq.s2d

takes the form of Eq.s9d. Meanwhile, turning to Eq.s1d of
Ref. 6 or to Eq.s2d of Ref. 7, we see that these equations in
the same approximation are of the form

S d

du
f

d

du
+ V2fDdf = 0. sA1d

Heredf is the same as ourf , u is the same as our balloon-
ing variabley, f =1+s2u2, i.e., in our definitions,

f = 1 + t2, sA2d

V2=v2/vA
2 sin neglecting the diamagnetic drift frequency of

the thermal plasmad. Thus, substitutingdf→f, Eq.sA1d can
be rewritten in the form

d

dt
Fs1 + t2d

df

dt
G +

v2

vA
2 s1 + t2df = 0. sA3d

We see that the only difference between our Eq.s9d and Eq.
sA3d used by Refs. 6 and 7 is the term withQh in Eq. s9d.
Therefore, we should explain why Eq.sA3d does not contain
this term.

Now we elucidate which starting equation has been used
in Refs. 6 and 7 for obtaining Eq.sA1d. Then we conclude
that such a starting equation is Eq.s1d of Ref. 10. Neglecting
the toroidicity and the temperature effects of the thermal
plasma, this equation has the form

− v2rmj = c−1sdj 3 B + j 3 dBd. sA4d

Here j is the fluid displacement vector related to the per-
turbed perpendicular electric fielddE'= ivj3B /c, B is the
equilibrium magnetic field,rm is the mass density of the
thermal plasma,j is the equilibrium electric current,dj and
dB are the perturbed electric current and the perturbed mag-
netic field, respectively.

One can justify oneself that using Eq.sA4d leads to Eq.
sA3d. Therefore, we should elucidate whether Eq.sA4d is
valid for the description of the modes considered. Then we
allow for the following explanation of Ref. 6.

“Our analysis contains effects due to finite-size orbits of
both circulating and trapped energetic particles, such as Lar-
mor radii, magnetic drift orbits, and banana widths, which
render energetic-particle dynamics effective only in the ideal
region instead of the extended inertial region as in the case of
negligible orbit sizes.”

In this connection, our question can be reformulated as
follows: whether Eq.sA4d is valid for description of the ef-
fects of finite-size orbits of energetic particles. Now we al-
low for the explanation of Ref. 10 that Eq.sA4d has been
obtained by summing of the equations of motion for each
species. Then we note that the equation of motion of ener-
getic ions for finite Larmor radius in the cylindrical approxi-
mation is qualitatively of the form

0 = ehnhJ0
2sk'rhddE' + ¯ , sA5d

where J0 is the Bessel function,rh is an effective Larmor
radius of energetic ions, and the ellipses means other terms
of this equation unimportant for our discussion. In addition,
we should allow for that there are groups of electrons com-
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pensating the equilibrium charge of energetic ions. Their
equation of motion can be taken in the form

0 = −ehnhdE' + ¯ , sA6d

where the ellipses means the terms unimportant for our dis-
cussion. After summing Eqs.sA5d and sA6d, and the equa-
tion of motion of the thermal plasma we obtain, instead of
Eq. sA4d

− v2rmj = − ehnhs1 − J0
2sk'rhdddE' + c−1sdj 3 B + j 3 dBd.

sA7d

In accordance with Refs. 6 and 7, we are interested in
the modes withk'rh@1. Then Eq.sA7d reduces to

− v2rmj = − ehnhdE' + c−1sdj 3 B 3 j 3 dBd. sA8d

Thus, we see that, in contrast to Eq.sA4d, Eq. sA8d contains
an additional term withdE'. It is the term that leads to the
term with Qh in Eq. s9d.
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