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a b s t r a c t

The Prisoner’s Dilemma (PD) game is applied in several research fields due to the emergence of

cooperation among selfish players. In this work the PD is studied in a one-dimensional lattice, where

each cell represents a player, which in turn can interact with the neighbors playing the PD (cooperate or

defect). The update of states adopts the Pavlovian Evolutionary Strategy (PES) or Darwinian

Evolutionary Strategy (DES). Adopting PES, if a player receives a positive payoff greater than his/her

aspiration level, he/she keeps the current state, and switches otherwise. Adopting DES, player compares

his/her payoff with payoff of opponents. If it is not the highest, he/she copies the state of fittest player,

switching the state if it is different of his/her current state. The critical temptation values obtained

analytically are reported, and the cluster patterns that emerge from the interactions among the players

are shown. Also we defined analytical functions that calculate the maximum/minimum size of

defective/cooperative clusters. Also, the parameter space is explored with exhaustive computational

simulations, which confirm the analytical results and reinforce that Pavlovian strategy foments

cooperation among players. In steady state, system can reach the cooperative or quasi-regular phases,

when adopting the PES, and cooperative, defective or chaotic phases, adopting the DES. The new

quasi-regular phase occurs when several players switch their states in each round, but the proportion of

cooperators does not show significant variation. Additionally, the present work shows that the lowest

temptation level (T¼1) may be considered a trivial case only for the particular case where the players

interact with only one neighbor, otherwise system presents the same features that for higher

temptation values.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Prisoner’s Dilemma (PD) is a game where two players confront
each other and they can either cooperate or defect. Players receive
a payoff R (reward) in the case of mutual cooperation and a payoff
P (punishment) if they are both defectors. If one player cooperates
and the other defects, they receive S (sucker) and T (temptation),
respectively. These payoff values must satisfy the inequalities
T4R4P4S and TþSo2R to create the dilemma (Axelrod, 1984).
In a single round game, the best choice is the defection, since it
assures a larger payoff compared with cooperation, independent
of the opponent’s decision (Nash equilibrium). However, a local
minimum occurs under mutual defection, thereby generating the
dilemma.
ll rights reserved.
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When the PD is played repeatedly, it is called Iterated Prisoner
Dilemma (IPD). In the computer tournament proposed by Axelrod
and Hamilton (1981) and Axelrod (1984) to compare different
strategies employed when playing the IPD, a simple strategy
called tit-for-tat (TFT), with only one time step memory, was by
far the most stable one. The player using TFT cooperates in the
first round and subsequently copies the action of the opponent in
the last round. In this game, the cooperation emerged as a
profitable action among selfish agents. The dilemma and the
cooperation make the PD the most prominent game in the Game
Theory. It is used to model problems in several research fields
such as Politics (Sociophysics) (Stauffer, 2004), Economics
(Econophysics) (Anteneodo et al., 2002; Bouchaud, 2002), and
Biology (Nowak and Sigmund, 1998; Cooper and Wallace, 1998;
Turner and Chao, 1999).

Consider a one-dimensional automaton, where each cell is a
player that can play the IPD with z neighbors. All players play
against their respective neighbors and update their states. This
process is called round and is the system time unit. After long
enough time, the system may reach a steady state, and the
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asymptotic proportion of cooperators—r1Fbecomes time
independent.

Consider a lattice model being discrete, where each lattice site
represents an individual, which can take several states. This
lattice can be separated into domains (subpopulation) that
maintain topological structure. Some models depend on this
structure, such as interacting particle systems, but others do not,
for instance the voter model (Durret and Levin, 1994b) or the
model we consider in this study. To avoid the model dependence
on the spatial structure, consider only the number of occurrence
of a given state, not its specific by their localization in the lattice.
In this case, the populations are divided into local homogeneous
domains, which are called patches, very different one from
another (Chesson, 1981). The patch modeling takes into account
the importance of space at local scales, nevertheless the union of
patches does not present a spatial structure (Durret and levin,
1994a, b). Physically, a lattice model with asynchronous indivi-
dual state update breaks the topological structure such as a
stochastic process would do. The mathematical proof is given in
Durret and Restrepo (2008) and Thomson and Ellner (2003). In the
present model each patch is equivalent to one player and his/her
neighborhood, similarly to voter model, so the one dimensional
modeling proposed here can be an useful surrogate for real lattice
systems of finite dimension to derive a condition of the evolution
of cooperation.

Concerning the biological applications and the one-dimen-
sional approach, think of migratory groups sharing resource spots,
where the ‘‘interface’’ members, agents who interact simulta-
neously with inner and outer members of their groups. Also, one
can think in hunter groups that interact with competitors in a
common hunting area. In these situations, the group members are
not constrained to have a specific spatial distribution, the only
constraint that we impose is that each agent should to interact
with the same members, wherever they are located, i.e. keep their
links during time.

The player state update process varies according to the
adopted evolutionary strategy (Pincus, 1970), such as Darwinian
Evolutionary Strategy (DES) (Nowak and May, 1992) or Pavlovian
Evolutionary Strategy (PES) (Fort and Viola, 2005). These are non-
stochastic strategies, i.e., players interact according to determi-
nistic rules during dynamics. In DES, the update process consists
in copying the state of the best adapted player (known as the
fittest player, who receives the greatest payoff). This is also known
as the ‘‘survival of the fittest’’ and is equivalent to the Darwin
natural selection principle (Beyer and Schwefel, 2002). In our case,
each player compares his/her own payoff to the neighboring ones,
and then copies the state of the fittest neighbor.

Let us consider the following learning techniques for PES:
(i)
 Win-stay, lose-shift (WSLS) is a general learning method used
for iterated decision problems of all kinds. It was proposed by
Thorndike (1911), assuming that actions that yield satisfac-
tion will be reinforced and actions leading to discomfort will
be weakened. This strategy is also called Pavlov. Kraines and
Kraines (1989) have used positive and negative reinforcement
to teach an individual to respond. In the PD context, an
individual is a player. For example, in the first round, a player
randomly chooses the action C or D (to cooperate or to defect).
He/she plays the game and evaluates the outcome. If he/she
receives a reward due to action C, this player will be more
prone to keep doing action C. Otherwise, if he/she is punished
due to action C, it will be more probable that the player
changes his/her action to D. This process can be thought as the
strategy ‘‘never change a winning team’’. If it is desirable that
a player acts like C, then he/she must be rewarded, or
punished, repeatedly according to his/her choice, to reinforce
action C. In the PD, under these conditions, a player keeps a
given action when he/she receives a payoff R or T and
switches actions if his/her payoff is S or P. Namely, a player
keeps his/her action when playing against a cooperator and
switches it when he/she confronts a defector.
(ii)
 Setting up an aspiration level (AL) for the IPD player (Posch,
1999; Fort and Viola, 2004). The payoff can be lower, equal to,
or greater than the AL. If they receive a payoff greater than AL,
they do not change their states, otherwise they switch them.
In PES all players generally have the same aspiration level.
The Pavlov-based strategy is very robust in situations such as (i)
the presence of noise, i.e., a player can switch his/her state at any
moment, with probability p40, regardless of the strategy
adopted by this player (mutation) (Kraines and Kraines, 1993b);
(ii) playing against deceiving or profiteer strategies (Kraines and
Kraines, 1993a); (iii) competition for surviving in coevolutionary
games (Lorberbaum et al., 2002; Nowak and Sigmund, 1993). The
most important features of Pavlov-based strategy are that (i) it
does not forgive a defection; (ii) it exploits altruistic strategies
while it is not punished with a defection; (iii) it can correct
occasional mistakes (noisy environment), which is not possible
with the tit-for-tat strategy. Nevertheless, if the Pavlovian strategy
is used as WSLS with an aspiration level, so that a player interacts
with more than one neighbor, then the strategy presents a
weakness: it can be exploited by defective strategies. This
happens because each player is concerned with his/her own
payoff only, thus ignoring the opponent’s payoff. So the player can
achieve their aspiration level despite being exploited by the
neighbors.

The PD order parameter is the proportion of cooperators, and
the main variable is the temptation. The system dynamics shows a
transient regime and eventually reaches a steady state, which
defines the phase of the system. Some temptation values yield a
total payoffs that force players to switch their states, thereby
generating a phase transition, these are the critical temptations
values. They depend on the adopted strategy and system
connectivity.

Concerning the one-dimensional structure, it can map higher
dimensions, if the agent spatially distribution can be neglected
and only the number of interacting agents is important (as it is the
case in Darwinian and Pavlovian strategies). It is necessary only
that they keep the relationships among the agents (interaction
links) during time and disregard the constrained geometrical
spatial distribution. In the migratory and hunter groups examples,
the clusters interactions (external) occur at the resource spot and
the inner interactions, occur in the group itself, which can be in a
different location.

In this paper we present an analytical treatment and a new
steady state regime, called quasi-regular phase. The analytical
results are the general payoff function for the PD (for any strategy
considered), and the new functions for the critical temptation
values and the maximum/minimum sizes of the defective/
cooperative clusters (for the Pavlovian strategy).

For the numerical results we adopted the PES for the one-
dimensional cellular automaton with variable number of inter-
acting neighbors as considered in Pereira et al. (2008a, b). In these
works players adopt the Darwinian strategy. In first work, the
system evolution concerning the local interactions have been
described. The one-dimensional geometry allowed to follow the
dynamics evolution (history in a static two-dimensional image)
and to explain the mechanism of cluster invasions and the
temporal evolution of the proportion of cooperators during
transient regime and their oscillation at the steady state. In later
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work, an exhaustive study of the same system has been made and
verified that the phase transition values are the same as for
system with higher dimensionality. Also have been verified that
the steady state phases are the same of those obtained in square-
lattices (Nowak and May, 1992), i.e. the system can reach the
cooperative, defective and chaotic phases. The asymptotic values
for one-dimensional and square-lattices are similar.

Comparing the present work with these results one can see
that for the Pavlovian strategy only the cooperative and quasi-
regular phases may occur. Chaotic and defective phases are absent
and appeared the new quasi-regular phase. The present work is
presented as follows. In Section 2 the model is introduced. In
Section 3 the critical temptation values for PES are analytically
derived. In Section 4 the quasi-regular phase, which is a new
phase emerging from our numerical results, is presented. Further,
the cluster patterns that emerge during dynamics evolution and
the exploration of parameter space (temptation T to defect and
initial proportion r0 of cooperators) for some connectivity
values—z are shown. Final remarks are presented in Section 5.
The pattern formation from the quasi-regular phase is presented
in a cater detail in Appendix A.
Fig. 2. Neighborhood representation in square lattice: (a) von Neumann, z¼4 and

(b) Moore, z¼8. And their representations in the one-dimensional lattice to:

(c) z¼4 and (d) z¼8. Black: central player; dark gray: first neighbors; and light

gray: second neighbors. Remember that for even z there is no self-interaction.
2. The one-dimensional model

Consider a one-dimensional cellular automaton with L cells.
Each cell represents a player, who has two possible states: y¼ 0
(defector) or y¼ 1 (cooperator) (see Fig. 1). The automaton has no
empty cells, so that rcðtÞþrdðtÞ ¼ 1, where rcðtÞ ¼ ð1=LÞ

PL
i ¼ 1 yiðtÞ

is the proportion of cooperators at time t, and rdðtÞ is the
proportion of defectors. The initial proportion of cooperators,
0rrcð0Þ � r0r1, is a parameter in this problem. Therefore, the
total number of cooperators is Lr0, and they are positioned
randomly in the automaton, following a uniform deviate. The
initial configuration is the only stochasticity in the model.

Consider the i-th player, his/her neighborhood (or connectiv-
ity) is given by z¼{1,2,y,L}. If z is even, there are a¼ z=2 adjacent
players in the right-hand side and a¼ z=2 in the left-hand side. If z

is odd, each side has a¼ ðz�1Þ=2 adjacent players and player i

interacts with himself/herself (self-interaction) (Pereira et al.,
2008a, b, Soares and Martinez, 2006). Nowak and Sigmund
(1993) argue that self-interaction makes sense, for example, if
several animals (a family) or molecules can occupy a single cell.
The self-interaction is considered an intra-group interaction.

In the one-dimensional topology, it is possible to vary the
lattice connectivity z (coordination number) to any integer value
in the range 1rzrL. This is not possible, for instance, in a square
lattice, because it is limited to von Neumann (z¼4, see Fig. 2a) or
Moore (z¼8, see Fig. 2b) neighborhoods. In a square lattice, if z is
different from z¼{4; 8; 24}, the neighborhood is asymmetric. For
example, to obtain z¼6, one must consider the honeycomb
lattice. Since the critical temptation depends only on the
coordination number, this neighborhood may be considered in a
one-dimensional lattice, where z¼{4; 5} corresponds to the von
Neumann neighborhood, z¼{8; 9} matches the Moore one, and
Fig. 1. Cellular automaton in the one-dimensional lattice with L¼11 players and open b

(For interpretation of the references to color in this figure legend, the reader is referre
z¼{6; 7} is related to the honeycomb case, with and without self-
interaction, respectively. Periodic boundary conditions (PBC) were
employed, so every player has the same connectivity. Once the
lattice is one-dimensional, the boundary effect is smaller than
that observed in d dimensional lattices (Pereira et al. 2008a, b).
3. Analytical calculation of critical temptation

Let us start with a brief review of the results obtained by Durán
and Mulet (2005) for the Darwinian strategy. Consider the
parameters T, R, P, and S for the payoff evaluation and two
players i and j playing PD in a cellular automaton. The player i

payoff with respect to player j is

gi,j ¼ T½ð1�yiÞyj�þR½yiyj�þP½ð1�yiÞð1�yjÞ�þS½ð1�yjÞyi�, ð1Þ

where yk is the player k state, with k¼{1; 2;y;L}. The total payoff
of player i is Gi ¼

Pz
j ¼ 1 gi,j. For odd values of z, it is noteworthy

that there is an extra payoff component gi,i, due to the self-
interaction. From Eq. (1), the payoff of player i due to the
interaction with a single defector ðyj ¼ 0Þ and a single cooperator
ðyj ¼ 1Þ is

gi,j ¼
Pð1�yiÞþSyi if yj ¼ 0,

Tð1�yiÞþRyi if yj ¼ 1:

(
ð2Þ

Due to interactions with ci cooperators within the z neighbors,
the payoff of player i is GðciÞ

i ðyiÞ ¼ ½Tð1�yiÞþRyi�ci, and in the case of
di defectors, the payoff is GðdiÞ

i ðyiÞ ¼ ½Pð1�yiÞþSyi�di. Due to the
interactions with all the z neighbors, the sum of payoffs leads to the
i-th player total payoff: GiðyiÞ ¼ ½Tð1�yiÞþRyi�ciþ½Pð1�yiÞþSyi�di.
Since the number of cooperators and defectors in a given
oundary condition. Blue cell (dark gray): cooperator, red cell (light gray): defector.

d to the web version of this article.)
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neighborhood are complementary, d¼z�c:

GiðyiÞ ¼ TciþPðz�ciÞþ½ðR�TÞciþðS�PÞðz�ciÞ�yi: ð3Þ

Therefore, the total payoff is

GiðyiÞ ¼
TciþPðz�ciÞ if yi ¼ 0,

RciþSðz�ciÞ if yi ¼ 1:

(
ð4Þ

In the following, we show the payoffs for DES and PES and the
critical temptation values, which depend on the adopted strategy.

3.1. Darwinian evolutionary strategy (DES)

Nowak and May (1992) used the set parameters R¼1, P¼S¼0,
the only free parameter was temptation 1rTr2, which ensures
the conflict conditions. These values are different from those
originally defined by Tucker (Dresher, 1961) (T¼5, R¼3, P¼1,
S¼0). The conditions T4R4P4S and TþSo2R were relaxed
(P¼S; for T¼1, T¼R; and for T¼2, T+S¼2R) without any harm to
the DP conflict features. This modification is known as Weak
Prisoner Dilemma. Placing the values adopted by Nowak and May
in Eq. (1), the payoff becomes gi,j ¼ Tð1�yiÞyjþyiyj. A similar
result has been obtained by Durán and Mulet (2005)
gi,j ¼ Tð1�yiyjÞyjþyiyj. The difference between our and the result
of Durán and Mulet is the presence of yj multiplying yi inside the
parenthesis, which is unnecessary and does not alter the result, in
this case.

However, in the case where the state of the players can assume
rational values, the result of Durán and Mulet is not valid. This
situation occurs in the Continuous Prisoner’s Dilemma (CPD) (Ifti
et al., 2004; Wahl and Nowak, 1999a, b), where a player has a
cooperation level (CL) with 0rCLr1, instead of only defecting or
cooperating. For the CPD, our results give the correct payoff values,
considering the linear interpolation for intermediate values.

For R¼1, P¼S¼0 in Eq. (3), we have GiðyiÞ ¼ ½T�ðT�1Þyi�ci.
Notice that (i) the payoff for a cooperator who plays with ci

cooperators is GðciÞ

i ðyi ¼ 1Þ ¼ ci, while (ii) a defector who plays with

ci cooperators has a payoff equal to GðciÞ

i ðyi ¼ 0Þ ¼ ciT . For T41: (i)

GðciÞ

i ðyi ¼ 0Þ4GðciÞ

i ðyi ¼ 1Þ; and (ii) GðcÞi ðyÞZGðc�1Þ
i ðyÞ. In DES, the

payoff of each player is always non-negative, GiZ0. After all
players calculate their payoffs, they update their states. During
this process, each player i compares his/her payoff Gi with Gk,
where Gk is the payoff of his/her k-th neighbor, with k¼{1; 2; y; z}.
If GioGk and Gk ¼max½GAz�, player i replicates the player k state,
otherwise he/she maintains his/her current state.

The system evolves till it eventually reaches the steady state,
where the proportion of cooperators r1 is stationary. The r1
phase transitions occur when the temptation value passes through
critical values Tc. In the conflict region, 1oTo2, these transitions
have been calculated (Durán and Mulet, 2005): Tc(n,m)¼(z�n)/
(z�n�m), where 0rnoz and 1rmr int½ðz�n�1Þ=2� are inte-
gers.1 For example, for z¼8, these values are Tc¼(8/7, 8/6, 8/5, 8/4).

3.2. Pavlovian evolutionary strategy (PES)

The parameters used are P¼�R and S¼�T, which are placed
in Eq. (4):

GiðyiÞ ¼
Tci�Rðz�ciÞ if yi ¼ 0,

Rci�Tðz�ciÞ if yi ¼ 1:

(
ð5Þ

For a system using PES, each player payoff can be either
positive or negative in the range: �zToGiozT (Eq. (5) extreme
1 For x positive, the function int(x) gives the largest integer less than or equal

to x.
cases are: ci¼0 and ci¼z). Each player i evaluates his/her payoff
Gi. If the payoff is greater than the aspiration level (Gi4AL, with
AL¼0), the player maintains his/her current state, otherwise,
he/she switches the current state. The aspiration level was
defined as a null payoff here, but any other value can be chosen.

Player i switches his/her state only if his/her payoff is null or
negative, that is GiðyiÞr0. Applying this condition to the null
payoff situation ðGiðyiÞ ¼ 0Þ in Eq. (5), one has

GiðyiÞ ¼
ciT�ðz�ciÞRr0 if yi ¼ 0,

ciR�ðz�ciÞTr0 if yi ¼ 1:

(
ð6Þ

For a defector to maintain his/her current state, T must provide
a null gain ciTc�(z�ci)R¼0, which leads to the critical temptation
value Tc¼[(z�ci)/ci]R. In the case of a cooperator, the null payoff
occurs when ciR�(z�ci)Tc¼0 and Tc¼[ci/(z�ci)]R. These two
cases can be written by a simple equation:

Tcðz,ciÞ ¼ ½ðz�ciÞ=ðciÞ�
ð�1Þyi R: ð7Þ

The relevant variable is ½ðz�ciÞ=ci�
yi , which is directly related to the

problem variables, in contrast with the DES relevant variable
(z�n)/(z�n�m). However, as in DES, notice that Tc does not
depend on the spatial configuration of the ci cooperators within
the z neighbors; it depends only on the absolute values of ci and z.
For this reason, we can use the one-dimensional geometry in the
following.

An interesting feature observed for Tc in PES was its dependence
on the player state. Critical temptation values are the same for
defectors and cooperators, but they appear in reverse order. For
example, consider a cooperator playing against z¼4 neighbors, if
there is no cooperator in the neighborhood, then Tc(4,0)¼0; if there
is one cooperator, Tc(4,1)¼1/3R and so on. Then Tcð4,ciÞ ¼

f0;1=3R;R;3R;1g, for ci¼{0, 1, 2, 3, 4}. Now consider a defector
in the same situation, then Tcð4,ciÞ ¼ f1;3R;R;1=3R;0g, for ci¼

{0, 1, 2, 3, 4}.
4. Numerical results: emergence of a new quasi-regular phase

PD has been simulated by adopting PES in a one-dimensional
cellular automaton. The system has L¼1000 cells2; Lr0 are set as
cooperators and Lð1�r0Þ as defectors. We have used t¼1000 steps
because the steady state is reached rapidly if compared to number
of steps (approximately 100 steps in slower systems, see figures in
Appendix) and it is faster for higher connectivity.3 The asymptotic
proportion of cooperators, r1, is averaged over 1000 realizations.
The quantity T varies in fixed steps of DT ¼ 0:01 in the range
1rTr2, and r0 varies in steps of Dr0 ¼ 0:1 in the range
0or0o1. We explored the connectivity in the range 2rzr30.
For the spatio-temporal patterns generated by the cooperative/
defective clusters, smaller systems were employed (L¼500).

Despite the equivalence with d dimensional lattices for the
determination of the critical temptation values, the one-dimen-
sional case has several advantages (Pereira et al., 2008a, b): it
facilitates explanation of the process of invasion of cooperative/
defective clusters as well as the oscillations of r1 during the
steady regime, as observed in the pioneer work of Nowak and May
(1992) and Nowak and Sigmund (1993). In addition to explaining
these phenomena, it is also possible to save the system history in
a single static image (see the spatio-temporal patterns).
one-dimensional geometry, they do not significantly alter the results for Lbz.
3 Each numerical simulation requires time¼10z (seconds) in a 3 GHz

processor. Simulations are basically processor demanding and low memory

requiring. Our computational codes were done using C++ language.
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After a transient regime, the system reaches the steady state
with the asymptotic proportion r1. In the steady state, the
system can present the cooperative, chaotic or defective phases
by adopting DES, and the cooperative or quasi-regular phases
(which was not characterized in the literature before) by adopting
PES. The cooperative phase is characterized by the majority of
players being cooperators. If the majority of players are defectors,
the system is in defective phase. These two phases are not
sensible to the initial configuration. In these cases the fluctuations
of r1, given by the value of the standard deviation (SD), are
almost null. In contrast, the chaotic phase is highly sensitive
to small changes in the initial configuration (larger r1
fluctuations—SD� 0:5). In the quasi-regular phase, r1 displays
small oscillations around r1 � 0:5. Although, there is a very large
number of players switching their states, they balance them-
selves, and the system is not sensitive to the initial configuration
ðSD� 0Þ.
Fig. 3. Histograms of 1000 simulations of systems that reach the cooperative,

defective, chaotic, and quasi-regular phases. Each color gives the distribution of r1
for the different steady state in the system that reached: (a) blue: quasi-regular

phase—r1 � 0:5 (system adopting the EEP; z¼8; r0 ¼ 0:5; T¼1.67); red:

cooperative phase—r1 � 1:0 (EED; z¼8; r0 ¼ 0:8; T¼1.45); green: defective

phase—r1 � 0 (EED; z¼8; r0 ¼ 0:8; T¼1.75). (b) chaotic phase—r1 � 0:5, but a

large standard deviation (EED; z¼8; r0 ¼ 0:5; T¼1.35). Inset: magnification of

region r1 � 1:0, notice the existence of more than two possible stationary states

for the system. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)
Fig. 3 depicts the histograms generated by these phases. The
pattern of the distribution is a normal deviate centered in r1,
with small standard deviation compared with the mean value.
Chaotic phase is an exception because its mean value is r1 � 0:5,
but the histogram reveals a distribution with two main poles: one
where the cooperation emerged and another where the defection
dominated the system. Notice that this result is not an oscillation
with period two.

In the following figures we show the phase-diagram of
systems adopting PES, which consist of cooperative and quasi-
regular phases, and the patterns that emerge during the transient
time and the ones which persist in the steady state. The patterns
are a visual way to understand the phases. Simulation results
reveal that the defective and chaotic phases are absent when
players adopt PES. The defective phase does not occur because a
defective cluster yields negative payoff to its members, and
players change their states. The absence of chaotic phase is
demonstrated by the small standard deviation ðSD� 0Þ over all
the parameter space.
4.1. Transient and steady regimes: exploration of the parameter

space

To depict the asymptotic proportion of cooperators in the
steady state, we have used surfaces to show r1 as a function of
T and r0. Figs. 4 and 5 display these r1 surfaces for even (without
self-interaction) and odd z values (with self-interaction),
respectively. This phase-diagram presents abrupt variations
after Tc and, eventually, it may go from cooperative to quasi-
regular phase or decrease the proportion of cooperators in the
system. The standard deviation of r1 is almost null for all these
systems.

An interesting aspect is the r1 symmetry with respect to
the r0 ¼ 1=2, that is, r1ðr0 ¼ 1=2�fÞ ¼ r1ðr0 ¼ 1=2þfÞ with
0rfr1=2. In a given region of the parameter space, the
presence or absence of the self-interaction changes Tc values
and may change the phase (cooperative or quasi-regular).

In PES, if all players are cooperators ðr0 ¼ 1Þ, they always
receive a positive payoff, and no player changes his/her state, so
r1ðT;r0 ¼ 1; zÞ ¼ 1. Otherwise, if all players are defectors ðr0 ¼ 0Þ,
in the first round all players receive a negative payoff and all of
them switch their states, returning to the previous mentioned
situation. Consequently, r1ðT;r0 ¼ 0; zÞ ¼ 1. Thus, the r1 sym-
metry around r0 ¼ 1=2 is a consequence of PES. For r0 ¼ b (any
value in the range [0,1]), rN players receive a positive payoff and
(1�r)N players a negative payoff, whereas when r0 ¼ 1�b,
(1�r)N players receive positive payoff and rN players obtain
negative payoff, thereby generating the symmetry.

The surface projection r1ðT ,r0,zÞ at plane r1T shows r1 as a
function of T for different r0 values. In Fig. 6, one sees the plots for
some even and odd z values. The transitions in r1 can be seen
when the parameter T passes through critical temptation
thresholds, Tc, given by Eq. (7). In these plots, the Tc values are
marked by dashed vertical lines. For example, in Fig. 6c
(z¼8—without self-interaction) Tc¼5/3. Meanwhile, in Fig. 6d
(z¼9—with self-interaction) Tc¼{5/4; 2}.

The results show that the cooperative phase is more prominent
than the quasi-regular phase. Increasing the z values, the quantity
of Tc values rises. When the system goes through Tc, r1 varies.
The non-dependence on a group provides more freedom for
each player to seek the best action, so that his/her aspiration
level is reached. When the quasi-regular phase emerges, mean
total payoff is an average between cooperation and defection
payoffs, which is worse than cooperation but better than
defection.
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4.2. Lowest temptation level

Consider the particular case T¼1, the lowest temptation level
to defect. We adopted the following payoffs: R¼1 and P¼S¼0 for
DES; and R¼1, P¼�R¼�1, and S¼�T¼�1 for PES. For T¼1 and
R¼T, when a cooperator plays against a defector both receive the
same payoff. This result led Duran and Mulet to explicitly
consider, T¼1 as a trivial case (other authors do not even
mention this case), since players do not switch their states during
dynamics. Meanwhile, this statement is true only for players
using DES in the case of each player interacting with only one
neighbor. In this case, all players do not switch their states during
dynamics and the system keeps its initial configuration ðr1 ¼ r0Þ

for every set parameters. Then, for T¼1, the r1 plot is a flat
surface as a function of r0 and z, as depicted in Fig. 7. If players
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play with more than one neighbor, they can switch their states
and in fact they do. It is shown below that T¼1 is indeed a non-
trivial case.
4.2.1. Players adopting Darwinian evolutionary strategy

The r1ðT ¼ 1;r0; zÞ plots and their standard deviation are
depicted in Fig. 8 with and without self-interaction ((a) odd and
(b) even z values, respectively). They show that players do not
maintain their initial states during system evolution. Players
switch their states because r1 is not a straight line as displayed in
Fig. 7. This occurs because players compare their total payoff
instead of the payoff per play. In these systems the cooperative
phase is more prominent than the defective one. Self-interaction
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increases the cooperative phase, once a cooperator has at least
one positive payoff and a defector has a null payoff. In this way,
self-interaction is advantageous to the cooperator and they can be
replicated more easily (greater payoff), so cooperation emerges in
the system.

In Fig. 8a, r1 is larger or lower than the ‘‘expected’’ value
r1 ¼ r0. For r0o0:4, r1or0 and SD� 0:5. On one hand, if the
proportion of cooperators is small ðr0 � 0Þ, these cooperators
receive several null payoffs (from interactions with defectors) and
their payoffs decrease, while the defector payoffs increase.
Consequently, cooperators switch their states and cooperation
does not emerge. On the other hand, when r040:4, the system
has more cooperators in the beginning of the dynamics.
Cooperators playing against themselves receive a positive payoff.
The total payoff of cooperators become greater than the one of
defectors that confronted other defectors, so these cooperators do
not switch their states. In Fig. 8b, the cooperation emerges for
r0Z0:1 due to self-interaction, which increases the cooperators
payoff, as explained previously.

Some defectors, despite exploiting neighboring cooperators,
may also confront other defectors, which lead to a decrease in
their total payoff. So they switch their states by copying the
cooperative neighbors, with a greater payoff, driving the system
to the cooperative phase. Meanwhile, for z¼2, there is one
exception: the cooperation does not emerge because cooperator j,
which plays against cooperator i and defector k, has a payoff
Gj¼1. If defector k interacts with another cooperator, he/she has a
payoff Gk¼2, so the cooperator j copies the player k state. In this
way, defection becomes the main behavior of the players, raising
the defective phase. This allows one to conclude that greater
connectivity favors cooperation, since it increases the chance of a
cooperator to interact with other cooperators.

Figs. 8c and d show the fluctuations of r1 for even and odd z

values, respectively. If SD� 0:5, the system is in the chaotic phase
for that region on the parameter space. Chaotic phase is present
only for even z values (Fig. 8c) and occurs between the
cooperative and defective phases as r0 decreases (see the cliff in
Fig. 8a). For self-interacting players, cooperation increases and the
chaotic phase does not appear at all (see Fig. 8d).
4.2.2. Players adopting Pavlovian evolutionary strategy

For PES, when two defectors are playing against themselves,
their payoff is negative (P¼�T¼�1). This is enough for both to
switch their states, but they can still interact with other
cooperators of their neighborhoods. If even by exploiting the
neighbors, their payoffs do not become positive, they switch their
states and cooperation emerges in the system. The r1ðT ¼ 1;r0; zÞ
plots are depicted in Fig. 9.

Fig. 9a without self-interaction (even z values) and Fig. 9b with
self-interaction (odd z values) are very different from those
observed for DES (Figs. 8a and b). Nevertheless, they also confirm
that proportion of cooperators is not trivial for T¼1. Here, the
majority of the players cooperate in all the parameter space. The
exceptions occur for z¼2 and 4 (without self-interaction, see
Fig. 9a), where the quasi-regular phase emerges with r1 � 0:5.

Notice that r1 decreases as z increases, with a more
pronounced stiffness in the presence of self-interaction, because
defectors always receive a null payoff due to his/her self-
interaction. Besides, a r1 symmetry occurs regarding the
r0 ¼ 1=2, because for r0 ¼ b, rL players receive a positive payoff
and (1�r)L player receives a negative one, where as, for r0 ¼ 1�b,
(1�r)L players receive a positive payoff and rL players receive a
negative one, where r is an arbitrary proportion of players that
depends on the distribution of the players in each time step.

In all the parameter space SD values are small, what confirms
the non-existence of the chaotic phase. The plots demonstrate
that the cooperative phase is dominant. The quasi-regular phase
occurs only for z¼2 and 4. The proportion of cooperators is lower
than the ‘‘expected’’ only when the quasi-regular phase occurs.
4.3. Spatio-temporal patterns

As the system evolves, some cooperative/defective clusters
emerge and their patterns are generated from local interactions
among players. When the players adopt DES, the differences
between the border player payoffs are fundamental to determine
the system dynamics (Pereira et al., 2008b). In PES, these border
payoff differences are not as crucial as in DES. For a more detailed
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Fig. 10. Illustration of intersections of glider with fingers and other gliders. The parameters of these simulations are: L¼500, t¼300, all without self-interaction, and

(a) T¼1.40, r0 ¼ 0:7, z¼14; (b) T¼1.70, r0 ¼ 0:3, z¼26; (c) T¼1.40, r0 ¼ 0:5, z¼12; and (d) T¼1.40, r0 ¼ 0:3, z¼24.

4 The Tragedy of Commons occurs when multiple individuals act indepen-

dently, aiming only his own interest. When this action is done by multiple

individuals simultaneously, it can destroy the advantage desired by all of them, for

example, finishing the desired resources in the environment.
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explanation of pattern formation, see Appendix A. In the pattern
images, the cell color scheme is the following: blue is a
cooperator; red is a defector; green is a cooperator that was
defector in a previous round; yellow is a defector that was
cooperator in a previous round. The spatio-temporal representa-
tion shows us that these clusters can form fingers and gliders, and
they can interact with each other.

A finger is a cluster that extends along a straight line during
dynamics. It can be simple (flat) or complex (composed by regular
oscillations, like a saw-tooth, for example). The finger interior can
consist in cooperators/defectors or intricate combinations of
cooperators and defectors. It may present symmetry with respect
to the central player of the pattern and periodicity in the player
states. A glider is a cluster that extends itself diagonally, and it has
the same features as the fingers.

One may notice that clusters composed exclusively by
cooperators sustain themselves by maintaining cooperation
among them. However, cooperation remains only when the size
of the cooperative cluster is large enough to maintain a positive
payoff for its members. The members placed in the borders
are exploited by defectors, but they do not switch their states
because their payoffs are positive, even though their payoffs are
lower than the payoffs of exploiters and inner players of the
cooperative cluster. Remembering the migratory animals, which
cooperative interface members can be exploited by defective
ones, but these cooperators do not need to retaliate, because they
can get the necessary for their well being (resource/help to feed)
from the interactions within their own cooperative group. The
same for the hunters that cooperate within their group and even
with rivals (another group or lonely animals). This is possible
when the group has a minimum number of cooperative skilled
hunters, because they can ‘‘provide’’ enough resources to the
group survival, besides the rival exploitation/concurrency.

Nevertheless, if several skilled selfish hunters get together, the
group may split due to the severe competition that they impose to
themselves. If a defective cluster is large enough to produce
negative payoffs of their members, it will not be stable. Thus,
players with negative payoffs will switch their states immedi-
ately. Therefore, Tragedy of Commons4 does not occur because the
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Fig. 11. Formation and evolution of the quasi-regular system. The parameters of
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Fig. 12. Formation and evolution of the quasi-regular system. The parameters of

this simulation are: L¼500, t¼300, T¼2.00, r0 ¼ 0:9 and z¼6 (without self-

interaction). (a) Magnification of the region around to t¼1 for the players close to

player 90; (b) magnification of the region: t¼260 around player 160.

5 In systems that adopt DES, the inclination of glider is determined by the

direction of upgrade of player states. If the system adopts PES, the glider can

propagate both from left to right or vice versa.
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negative payoff of the players does not persist for more than one
round, as in the case of players adopting DES. In this way, the
mean payoff of the population is greater when PES is adopted
rather than DES, where the Tragedy of Commons takes longer to
vanish (if it vanishes) (Pereira et al., 2008a, b). In PES, a player
uses his/her own payoff to decide whether he/she will switch his/
her state or not. It is an individual decision based on the personal
aspiration level. Therefore, collective features may not occur.

Different neighborhood configurations may generate positive
or negative payoffs for the players. It is simple to calculate the
maximum defective and the minimum cooperative cluster size,
which can remain together during system evolution (stable
clusters). In the case of the cooperative cluster, player i does not
switch his/her state if there are at least cmin cooperators in his/her
neighborhood. This guarantees a positive payoff Gcmin

i ðyi ¼ 1Þ40.
Thus, from Eq. (3) one has

cmin4z=ð1þR=TÞ: ð8Þ

The situation is reversed in the case of a defective cluster, where
the player i must have a maximum of dmax defectors in his/her
neighborhood, so that Gdmax

i ðyi ¼ 0Þ40, and

dmaxoz=ð1þR=TÞ: ð9Þ

For example, defective fingers may be composed of, at most,
dmax defectors, and cooperative ones of, at least, cmin cooperators.
For instance, for z¼2, fingers formed by up to two players are
always smooth and continuous (see simple and complex fingers in
Appendix A). In general, the stable clusters are the cooperative
ones (with at least cmin cooperators) and small defective ones.
Defective clusters that are greater than dmax destabilize them-
selves rapidly in a few rounds.

The transient regime is the time necessary for the pattern
interactions to cease or stabilize, and it varies depending on the
employed set parameters (see Fig. 10). Other possibility is the
emergence of the quasi-regular phase, which is stationary, but
there is a very large number of players who switch their states but
do not emerge fingers or gliders, and r1 � 0:5.

The intersection among cluster patterns generates very
interesting structures. For example, Fig. 10 illustrates the
presence of gliders5 that interact among themselves and with
fingers. These interactions can generate either simple (Figs. 10a–d)
or complex (Fig. 10c) fingers.

One can understand the quasi-regular phase by observing the
behavior of cooperative/defective clusters. If defectors of a
particular cluster receive a negative payoff at moment t, these
players switch their status to cooperators at t+1. If this action is
synchronized among different clusters, cooperation may emerge.
Otherwise, if they are not synchronized and one cluster switches
at the instant t and its neighbors at the instant t+1, these clusters
alternate between cooperation and defection consequently, there
is a balance among cooperators, who switch their states to
defectors and vice versa, keeping the proportion of cooperators
almost constant, with small oscillations due to the different size of
clusters.
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Fig. 13. Sequence of numerical simulations that show how the variation of the temptation—T—alters the cooperative/defective cluster patterns. In the interval between

the presented T values there are no changes in patterns. The parameters of these simulations are: L¼500, t¼300, r0 ¼ 0:3 and z¼24 (without self-interaction).

To: (a) T¼1.00; (b) T¼1.01; (c) T¼1.19; (d) T¼1.40; (e) T¼1.41; (f) T¼1.67; and (g) T¼2.00.
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Figs. 11 and 12 show some examples where the synchroniza-
tion among clusters has not occurred, r1 � 0:5, and many players
switch their states at each round, giving rise to the quasi-regular
phase. The triangles appear when adjacent defectors switch their
states to cooperation at the same time. Fig. 11a shows a transient
followed by the quasi-regular phase with periodicity. It also shows
another triangular pattern, but its interior is not exclusively
composed by cooperators or defectors, but by complex
cooperative and defective fingers. This pattern is a triangle with
not well defined sides, called triangle-like, see Fig. 11a. In Fig. 11b,
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one can notice that the size of cooperative clusters is large for a
system with greater connectivity, but the system phase remains
quasi-regular.

In Fig. 12, few defective clusters are enough to drive the
system to quasi-regular phase instead of a cooperative one,
despite the high initial proportion of cooperators. This occurs
because T¼2. In Fig. 12a, one can see a magnification of the
defective clusters. Fig. 12b illustrates a so-called triangle-like that
emerges at t¼260 around player 160.

There are T intervals where increases or decreases in its value
do not alter the system dynamics and r1 for the same system
(identical initial configuration of cooperators in the lattice and z).
In Fig. 13, for z¼24, when the system passes through the critical
temptation values Tc¼{1; 13/11; 7/5; 15/11; 8/5; 17/9}, transient
changes and patterns increase in quantity and variety,
characterizing the phase transitions. For instance, from T¼13/11
(see Fig. 13c), some gliders appear in the initial steps and a
complex finger emerges and propagates during all system
evolution. From T¼7/5 (see Fig. 13d) the initial gliders are
increased and propagate during the dynamics, and the finger

does not emerge as before. Furthermore, for 1rTo2, the system
presents the cooperative phase in the steady regime, and for T¼2
(see Fig. 13g), the system enters in the quasi-regular phase.
+ DC
D D D

D
D D DD D D
DCD DCD

Fig. 14. Formation and evolution of smooth and complex fingers. Parameters of

this simulation are: L¼500, t¼300, T¼2.00, r0 ¼ 0:3 and z¼3 (with self-

interaction). (a) Magnification of the marked area. (b) Formation of a pattern

composed by elementary patterns.

Fig. 15. Formation and evolution of smooth and complex fingers. The parameters

of this simulation are: L¼500, t¼300, T¼1.30, r0 ¼ 0:3, and z¼22 (without self-

interaction). (a) Magnification of the marked area.
5. Conclusion

In this work we have adopted the Pavlovian Evolutionary
Strategy to explore the one-dimensional cellular automaton,
where each cell is a player who plays the Prisoner Dilemma with
z neighbors.

Our results for PES were as follows: (i) phase transitions occur
in well defined values of temptation Tc, which have been
analytically calculated; (ii) there exist a cooperative and a new
phase: the quasi-regular, which depend on the temptation
value to defect; (iii) defective and chaotic phases are absent;
(iv) the Tragedy of the Commons does not take place; (v) the
cooperation is more remarkable, compared with systems with
DES. The stationary state of the system was also analyzed,
and the patterns of the clusters due to the local interactions of
players were explained. The symmetry of r1 in the phase
diagram is explained by arguments of equivalence of events
occurrence.

Results of T¼1 demonstrate that the system is not static and
trivial when players play the IPD with more than one neighbor
ðz41Þ, as previously supposed. On the one hand, if players adopt
DES, cooperative, defective, and chaotic phases may occur. The
chaotic phase appears for even z values only, without self-
interaction. The more remarkable result is the presence of a
cooperative phase ðr1 � 1Þ for r040:5, without self-interaction
and for r040 with it. On the other hand, adopting PES, as z

increases, r1ð1;r; zb1Þ decreases with the exception z¼{2; 4},
with a more pronounced decrease when the self-interaction is
present. For z¼{2; 4}, the system presents the quasi-regular
phase. The increase in connectivity favors cooperation for DES, but
it decreases cooperation for PES. Cooperation emerges even when
cooperators and defectors have the same payoff in the IPD.

For systems adopting PES, the dynamics depends strongly on
the composition of the cluster neighborhood. However, the
location of players in the neighborhood (configuration) is
irrelevant for determination of the total payoff. We have also
noticed that the transient and steady regimes depend on system
parameters. When T varies, the duration of the transient regime
changes. In the steady regime, there are changes in the r1 value
when T passes through the Tc values. A system can present the
cooperative or quasi-regular phases. In the quasi-regular phase,
the system can yield a transient and latter, it achieves a periodic
r1 oscillation.

The mean payoff of players is greater when the players are
concerned with their own payoff only. If the players copy the
action of the neighbor who received the largest payoff, as in DES,
they may worsen the outcome of the whole system. Thus, the
comparison with the greed for the greatest payoff can cause the
ruin of all players. In the situation where there is no way to
coordinate the moves of players, the best action would be that
everyone seeks to have a positive payoff, even if this positive
payoff is not the maximum possible. Thus, they could maximize
the payoff of the population as a whole.
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Fig. 16. Formation and evolution of smooth and complex fingers. The parameters

of this simulation are: L¼500, t¼300, T¼1.10, r0 ¼ 0:7, and z¼12 (without self-

interaction). (a) and (b) Magnification of the marked areas.
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Appendix A. Patterns formation

In the following we analyze particular cases to explain the
evolution dynamics. The magnification in the images of Fig. 14
shows the complex finger with three players with the pattern6:
fD D D-D C Dg and the pattern with 13 players is fD D D C
D D D C D D D C D-D C D D D C D D D C D D Dg. The pattern of
13 players is a composition formed by the alternation of the
patterns of three players, with overlap (see Fig. 14b). Namely, the
patterns {D D D} and {D C D} combine themselves so that the third
player of one pattern is the first of the following one. Other
combinations formed by the addition of patterns with or without
overlapping of edges can be observed, as well.

In the magnification of Fig. 15 there are simple fingers with
12 defectors, at most, and also a complex one with the
pattern: f6D 3C 4D 3C 6D-6D 3D 4C 3D 6Dg. In the magnifica-
tions of Fig. 16, emerging fingers have the pattern: Fig. 16a:
f4D C 3D 3C D 4D -4D D 3C 3D C 4Dg and Fig. 16b: fC D 2C D
2C D C-C D C 3D C D C-3D 3C 3D-2D C 3D C 2D-D C D 3C
D C D-D C 5D C D -C D 5C D Cg. Note the periodicity present
in these patterns.
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