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We study the Wheeler-DeWitt quantum cosmology of a spatially flat Friedmann cosmological model

with a free massless scalar field. We compare the consistent histories approach with the de Broglie–Bohm

theory when applied to this simple model under two different quantization schemes: the Schrödinger-like

quantization, which essentially takes the square root of the resulting Klein-Gordon equation through the

restriction to positive frequencies and their associated Newton-Wigner states, or the induced Klein-

Gordon quantization, that allows both positive and negative frequencies together. We show that the

consistent histories approach can give a precise answer to the question concerning the existence of a

quantum bounce if and only if one takes the single frequency approach within a single family of histories;

namely, a family containing histories concerning properties of the quantum system at only two specific

moments of time: the infinity past and the infinity future. In that case, as shown by Craig and Singh

[Phys. Rev. D 82, 123526 (2010)], there is no quantum bounce. In any other situation, the question

concerning the existence of a quantum bounce has no meaning in the consistent histories approach. On the

contrary, we show that if one considers the de Broglie–Bohm theory, there are always states where

quantum bounces occur in both quantization schemes. Hence, the assertion that the Wheeler-DeWitt

quantization does not solve the singularity problem in cosmology is not precise. To address this question,

one must specify not only the quantum interpretation adopted but also the quantization scheme chosen.
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I. INTRODUCTION

It has been claimed in many papers (for example,
Refs. [1–5]) that the Wheeler-DeWitt approach to quantum
cosmology [6,7] does not solve the singularity problem of
classical cosmology. This quite strong and general asser-
tion can be criticized in many ways. First of all, this claim
is usually based on calculations on a very simple model,
namely, a free massless scalar field in Friedmann models,
which is of course a very narrow subset of cosmological
models. Second, the quantization program which is carried
out in those papers is very particular: the Wheeler-DeWitt
equations of these models are Klein-Gordon–like equa-
tions, and the procedure is to extract a square root and
work in a single frequency sector. Note that this is not
mandatory, and there are other ways to deal with the Klein-
Gordon equation by working in the two frequency sectors
with a well-defined inner product, as can be seen in
Refs. [8,9]. Furthermore, inside this single frequency sec-
tor, the analysis is a priori restricted to quantum states
which are either right-moving (expanding classical solu-
tions) or left-moving (contracting classical solutions)
[2–5]. Finally, in some cases, the interpretation of the
quantum states is not described clearly [3–5].
Expectation values of the volume operator are calculated,
but what do they mean? Of course they are not averages of
external observers’ measurements of the volume operator
as long as we are dealing with cosmology. Hence, are these
expectation values interpreted along the lines of the many
worlds interpretation [10], the consistent histories

approach [11], or something else? Among the above men-
tioned papers, only Refs. [1,2] identify which interpreta-
tion is being used.
In the framework of a single-frequency quantization of

the simple model presented above, Ref. [1] presents the
most rigorous and precise approach to the question of the
existence of a quantum bounce in the Wheeler-DeWitt
quantization. The interpretation they adopt is precisely
defined (the consistent histories approach), and the con-
clusion is that, if one takes the family of histories with
properties defined at just two moments of time, the infinity
past and the infinity future, then the probability of a quan-
tum bounce is null for any quantum state, including super-
positions of right- and left-moving states. This is a
remarkable result.
The aim of this paper is to discuss the results of Ref. [1]

with care, and to contextualize them in the framework
of other interpretations of quantum mechanics, namely,
the de Broglie–Bohm theory, and other quantization tech-
niques, such as the two-frequency (Klein-Gordon) ap-
proach of Ref. [8].
We will first show that, in the single-frequency approach

using the consistent histories interpretation, families of
histories containing properties defined at one or more mo-
ments of time, besides properties defined at infinity past
and at infinity future, are no longer consistent, unless one
takes semiclassical states, which of course correspond to
histories without a bounce. This means that in the frame-
work of these families of histories one cannot answer
whether quantum bounces take place, because histories
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involving any genuine quantum states are inconsistent.
Hence, the consistent histories approach is silent about
quantum bounces happening in the families of histories
with more than two moments of time. Furthermore, we will
show that in the induced Klein-Gordon approach there is
no consistent family of histories involving genuine quan-
tum states. Again, the question about the existence of
quantum bounces has no meaning in the induced Klein-
Gordon approach.

On the contrary, if one considers the de Broglie–Bohm
theory, where trajectories in configuration space are con-
sidered to be objectively real (the so-called Bohmian tra-
jectories), there is a vast number of examples of
nonsingular models. In this case, one can show that in
the two quantization procedures mentioned above, there
exist plenty of bouncing trajectories which tend to the
classical cosmological trajectories when the volume of
the universe is big. Similar results have already been
obtained in earlier works (see Refs. [12–15]). Hence, the
existence of quantum bounces in the Wheeler-DeWitt
approach depends strongly on the quantum interpretation
one is adopting, and on the quantization procedure one is
taking.

The paper will be divided as follows: In Sec. II we will
present the minisuperspace model we will work on, and
summarize the results of Ref. [1]. In Sec. III, still within the
framework of Ref. [1], we will consider families of histor-
ies with properties defined at three or more moments of
time, and we will show that they are not consistent for
general quantum states. In Sec. IV we will summarize the
de Broglie–Bohm theory applied to quantum cosmology,
and we will present an infinitude of Bohmian trajectories
which are nonsingular and approach the classical limit for
large volumes of space. In Sec. V we will show that there
are no families of consistent histories in the Klein-Gordon
quantization for general quantum states. However, there
are also many Bohmian trajectories which are nonsingular
in this quantization scheme. We end up with the conclu-
sions in Sec. VI.

II. THE CRAIG AND SINGH RESULT

In this section we shall briefly develop the Wheeler-
DeWitt quantization of a Friedmann-Lemâitre-Robertson-
Walker model with flat spatial sections closely following
Ref. [1]. We assume that the matter content of the universe
can be described by a massless scalar field, and we con-
sider the consistent histories approach of Ref. [11] to
explore the existence of a quantum bounce. The
Hamiltonian constraint of this minisuperspace system
reads

H ¼ � 2�G

3

p2
a

a
þ p2

�

2a3
� 0; (1)

where a is the scale factor, � is the scalar field and pa, p�

are their conjugate momenta, given by

pa ¼ � 3

4�G
a _a; p� ¼ a3 _�: (2)

On the derivation of the Hamiltonian above, the lapse
function was set to 1, and the fiducial cell considered to
have a unit volume. Denoting � :¼ loga, we rewrite the
Hamiltonian in a more convenient form:

H ¼ e�3�

2

�
� 4�G

3
p2
� þ p2

�

�
� 0: (3)

Note that our choice of variables is different from that of
Ref. [1]. The conclusions are nevertheless unchanged. The
pair ð�p�Þ is still canonical. After quantization, the mo-
menta are promoted to derivative operators, and the classical
constraint H � 0 becomes the Wheeler-DeWitt equation�

@2� � 4�G

3
@2�

�
�ð�;�Þ ¼ 0; (4)

defined on the kinematical Hilbert space L2ðR2; d�d�Þ. We
see that the Wheeler-DeWitt quantization of this simple
model is equivalent to the quantization of the Klein-
Gordon equation in Minkowski spacetime. The standard
procedure is to separate the positive and negative frequency
modes and quantize them independently. Taking the square
root of the constraint, we get

� i@��ð�:�Þ ¼ ffiffiffiffiffi
�

p
�ð�;�Þ; (5)

with

� :¼ � 4�G

3
@2�: (6)

The action of
ffiffiffiffiffi
�

p
is best seen on Fourier space. Consider

the set of eigenfunctions

ekð�Þ ¼ h�jki ¼ 1ffiffiffiffiffiffiffi
2�

p eik� (7)

such that �ek ¼ !2ek, with

! :¼
ffiffiffiffiffiffiffiffiffiffi
4�G

3

s
jkj: (8)

The physical scalar product is given by

h�j�i :¼
Z
�¼�0

d� ��ð�;�Þ�ð�;�Þ; (9)

and it is independent of the time �0 on which it is defined.
Positive and negative frequency sectors are orthogonal
with respect to this scalar product. Restricting ourselves
to the positive frequency sector, evolution is given by the
propagator

Uð���0Þ ¼ ei
ffiffiffi
�

p ð���0Þ: (10)

There are two Dirac observables. The first one is p�,

which is an invariant of the model. The second one is a

relational observable [16]. For any operator Â, which does
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not need to commute with the Hamiltonian, one constructs
the corresponding relational observable:

Âj�0
j�ð�Þi ¼ Uð���0ÞÂj�ð�0Þi; (11)

which implies

Âj�0
¼ Uð�0 ��ÞyÂUð�0 ��Þ: (12)

Applying this to the operator �̂, the action of the Dirac
observables on the positive frequency sector is given by

�̂j�0
�ð�;�Þ ¼ Uð���0Þ�̂�ð�;�0Þ;

p̂��ð�;�Þ ¼ ℏ
ffiffiffiffiffi
�

p
�ð�;�Þ: (13)

Note that the action of the Dirac observables preserves the
positive and negative subspaces, which is consistent with
the approach taken.

With the physical Hilbert space specified, we now need
to construct the set of histories and the corresponding
decoherence functional.

Following Hartle’s approach [11], we are interested in
defining a decoherence functional for a set of histories. The
decoherence functional is defined as

dðh; h0Þ :¼ h�h0 j�hi; (14)

where the branch wave function is given by

�h :¼ Cy
h j�i: (15)

In the above formula, � is a given initial state, and Ch is
the class operator defining the history h, given by a product
of projectors

Ch :¼ PO1

��k1

ðt1Þ . . .POn

��kn
ðtnÞ: (16)

PO
��k

ðtÞ projects onto the subspace for which the kth ei-

genvalue of the observable O at time t takes values in the
interval ��k. Here we are using Heisenberg operators for
the projectors

PO
��k

ðtÞ :¼ UyðtÞPO
��k

UðtÞ: (17)

For the case at hand we consider the observable given
by the scale factor a, or �, with relational time �, and
we will denote projectors simply by P��i

ð�iÞ. The time-

independent projector is given explicitly by

P�� ¼
Z
��

d�j�ih�j; (18)

where the ket j�i is defined in Eq. (7) and the normalization
is such as to make this basis orthonormal. Let us further
compute the expectation value of the evolution operator in
this basis, as it will be useful in the next section.

h�0jUð�Þj�i ¼
Z dk

2�
ei!�eikð�0��Þ; (19)

where we used the resolution of the identity on Fourier
space,

Z
R
dkjkihkj ¼ 1: (20)

The set of histories considered in Ref. [1] are composed
of two times, corresponding to past infinity (� ! �1) and
future infinity (� ! þ1). These histories are then sepa-
rated into those where � is bigger or smaller than a given
fixed fiducial value ��. There are four possible histories
according to these possibilities, described by the following
class operators:

CS�Sð�1;1Þ ¼ P��1
ð�1ÞP��2

ð1Þ;
CS�Bð�1;1Þ ¼ P��1

ð�1ÞP ���2
ð1Þ;

CB�Sð�1;1Þ ¼ P ���1
ð�1ÞP��2

ð1Þ;
CB�Bð�1;1Þ ¼ P ���1

ð�1ÞP ���2
ð1Þ;

where S and B subscripts denote, respectively, the domains
of the scale factor arbitrarily close to the singularity or
arbitrarily big.
Let us now check that this set of histories is consistent.

Noting that P��P ��� ¼ 0, the only nontrivial terms are
dðhS�B; hB�BÞ and dðhS�S; hB�SÞ. Consider, for example,
the first of these terms,

dðhS�B; hB�BÞ ¼ h�jP ���1
ð�1ÞP ���2

ð�2ÞP��1
ð�1Þj�i:

(21)

Let us as a first step study the behavior of P��ð�Þj�i and
P ���ð�Þ for� ! �1. We borrow the results without proof
from Ref. [1]. We have that

lim
�!þ1

P��ð�Þj�i ¼ j�Li;
lim

�!�1
P��ð�Þj�i ¼ j�Ri;

lim
�!þ1

P ���ð�Þj�i ¼ j�Ri;
lim

�!�1
P ���ð�Þj�i ¼ j�Li:

(22)

In the equation above we have used the left-/right-
moving decomposition of the wave function

�ð�;�Þ ¼ 1ffiffiffiffiffiffiffi
2�

p
Z
R
dk�ðkÞeik�ei!�

/
Z 0

�1
dk�ðkÞeikð���Þ þ

Z 1

0
dk�ðkÞeikð�þ�Þ

¼ �RðvrÞ þ�LðvlÞ; (23)

where vr :¼ ���, vl :¼ �þ�, and we dropped the

factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�G=3

p
in !.

Since right- and left-moving sectors are orthogonal, the
term in Eq. (21) is zero, as is the other term, and the
decoherence functional is diagonal for this set of histories.
Craig and Singh go on and restrict the histories to those

giving rise to a bounce and those that have a singularity and
prove that the probability for a bounce is zero.
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As noted by the authors in Ref. [1], the decoherence
functional in the case with more than two times is not
necessarily diagonal, unless the wave functions are taken
to be semiclassical. In the next section we will show
explicitly that already in the case of three times the deco-
herence functional is not diagonal.

III. HISTORIES WITH THREE TIMES

Let us now see whether we can obtain a family of
consistent histories when we ask about properties concern-
ing the size of the universe at a third moment of time
between �1 ! �1 and �2 ! þ1. Thus, we want to
address the question of whether, at an arbitrary interme-
diary � time, the scale factor of the universe is in the
interval ð�1; ��Þ, or in its complement ð��;1Þ.

The new family now has eight histories associated with
the following class operators:

CS����Sð�1;�;�2Þ¼P��1
ð�1ÞP��ð�ÞP��2

ð�2Þ;
CS� ����Sð�1;�;�2Þ¼P��1

ð�1ÞP ���ð�ÞP��2
ð�2Þ;

CS����Bð�1;�;�2Þ¼P��1
ð�1ÞP��ð�ÞP ���2

ð�2Þ;
CS� ����Bð�1;�;�2Þ¼P��1

ð�1ÞP ���ð�ÞP ���2
ð�2Þ;

CB����Sð�1;�;�2Þ¼P ���1
ð�1ÞP��ð�ÞP��2

ð�2Þ;
CB� ����Sð�1;�;�2Þ¼P ���1

ð�1ÞP ���ð�ÞP��2
ð�2Þ;

CB����Bð�1;�;�2Þ¼P ���1
ð�1ÞP��ð�ÞP ���2

ð�2Þ;
CB� ����Bð�1;�;�2Þ¼P ���1

ð�1ÞP ���ð�ÞP ���2
ð�2Þ;

(24)

with S and B having the same meaning as before—close to
the singularity or arbitrarily big, respectively.
Each of these class operators is associated with a particular

history. For instance, the class operator CS����Bð�1;�;�2Þ
is associated with the history where the universe was singular
at�1 ! �1, has a size in a domain�� at the finite time�,
and will be infinitely large at �2 ! 1.
One must now see whether this new family with eight

histories is consistent or not. As we have seen above,
one must calculate the decoherence functional dðh; h0Þ
for the histories associated with the class operators shown
in Eq. (24).
It is easy to show that, in general, dðh; h0Þ is not approxi-

mately zero. For that, let us calculate the decoherence
functional for the histories associated with the class opera-
tors CS����Bð�1; �;�2Þ and CS� ����Bð�1; �;�2Þ. In this
case the functional reads

dðhS� ����B;hS����BÞ¼TrðP ���2
ð�2ÞP ���ð�ÞP��1

ð�1Þj�i
�h�jP��1

ð�1ÞP��ð�ÞP ���2
ð�2ÞÞ

¼h�RjP��ð�ÞP ���2
P ���ð�Þj�Ri;

(25)

where we have used P��1
ð�1 ! �1Þj�i ¼ j�Ri. Then,

dropping constant factors in front of the integrals and using
Eq. (19), we have

dðhS����B; hS� ����BÞ ¼ lim
�2!1

Z ��

�1
d�00��ðv00

r Þ
Z 1

��
d��ðvrÞ

Z 1

�2�
d�0h�00jUð���2Þj�0ih�0jUð�2 ��Þj�i

¼ lim
�2!1

Z ��

�1
d�00��ðv00

r Þ
Z 1

��
d��ðvrÞ

Z 1

�2�
d�0

�Z 1

0
dk0e�ik0ð�0��00þ�2��Þ

þ
Z 0

�1
dk0e�ik0ð�0��00þ���2Þ

�
�

�Z 1

0
dke�ikð���0þ���2Þ þ

Z 0

�1
dke�ikð���0þ�2��Þ

�
: (26)

We shall analyze each of its four terms separately. The term formed by the product of the first with the third can be
written as

lim
�2!1

Z 1

�2�þ�2

eiv
0
l
ðk�k0Þdv0

l

Z 1

��
�ðvrÞd�

Z ��

�1
d�00��ðv00

r Þ
Z 1

0
dk0eik0v00

l

Z 1

0
dke�ikvl ¼ 0; (27)

while the product of the second with the fourth gives

lim
�2!1

Z 1

�2���2

eiv
0
rðk�k0Þdv0

r

Z 1

��
�ðvrÞd�

Z ��

�1
d�00��ðv00

r Þ
Z 0

�1
dk0eik0v00

r

Z 0

�1
dke�ikvr

¼
Z 1

��
�ðvrÞd�

Z ��

�1
d�00��ðv00

r Þ
Z 1

0
dke�ikðv00

r�vrÞ

¼
Z 1

����
�ðvrÞdvr

Z ����

�1
dv00

r�
�ðv00

r Þ
�
��ðv00

r � vrÞ þ ip:v:

�
1

v00
r � vr

��

¼ ip:v:
Z 1

����
dvr

Z ����

�1
dv00

r

�
�ðvrÞ��ðv00

r Þ
v00
r � vr

�
; (28)
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where in the last equality we have used the fact that the integral in vr and v00
r are in disjoint domains, and hence the part

involving the delta function is null. For the definition of the principal value, noted above as p.v., see the Appendix. The sum
of the cross terms involving the products of the first term with the fourth term, and the second with the third, reads

lim
�2!1

Z 1

��
�ðvrÞd�

Z ��

�1
d�00��ðv00

r Þ
Z 1

�2���2

dv0
r

�Z 1

0
dk0e�ik0½v0

r�v00
rþ2ð�2��Þ� Z 1

0
dke�ikðv0

r�vrÞ

þ
Z 1

0
dke�ik½vr�v0

r�2ð�2��Þ� Z 1

0
dk0e�ik0ðv00

r�v0
rÞ
�
: (29)

Let us concentrate on the first term. The other term follows the same reasoning. Performing the integrals on k and k0, one
gets

lim
�2!1

Z 1

����
�ðvrÞdvr

Z ����

�1
dv00

r�
�ðv00

r Þ
Z 1

�2���2

dv0
r

�
��ðv0

r � v00
r þ 2ð�2 ��ÞÞ � ip:v:

�
1

v0
r � v00

r þ 2ð�2 ��Þ
��

�
�
��ðv0

r � vrÞ � ip:v:

�
1

v0
r � vr

��
: (30)

The typical terms are proportional to

lim
�2!1

Z ����

�1
dv00

r�
�ðv00

r Þ�ðv00
r � 2ð�2 ��ÞÞ; lim

�2!1
p:v:

Z ����

�1
dv00

r�
�ðv00

r Þ
Z 1

����
dvr

�
�ðvrÞ

v00
r � vr � 2ð�2 ��Þ

�
;

lim
�2!1

p:v:
Z ����

�1
dv00

r�
�ðv00

r Þ
Z 1

����
dvr�ðvrÞ

Z 1

�2�
d�0

�
1

ð�0 � v00
r þ�2 � 2�Þð�0 � vr ��2Þ

�
: (31)

The terms with ��ðv00
r � 2ð�2 ��ÞÞ are zero in the limit

�2 ! 1 because � is assumed to be square integrable,
while the terms with�2 in denominators are obviously null
in this limit.

The only non-null term of Eq. (26) is Eq. (28). Hence,
the final result for this off-diagonal term of the decoher-
ence functional is

dðhS� ����B; hS����BÞ / �ip:v:
Z 1

����
dvr

�
Z ����

�1
dv00

r

�
�ðvrÞ��ðv00

r Þ
v00
r � vr

�
;

(32)

which is not null in general. Because of the disjoint do-
mains of integration, this result can be approximately zero
if and only if �ðvrÞ is concentrated around some fixed
value of vr. The classical trajectories are given by vr ¼
const or vl ¼ const. Therefore, a wave function sharply
concentrated around some fixed value of vr must describe
a semiclassical state. It is straightforward to show that
other off-diagonal terms of the decoherence functional,
e.g., dðhB����S; hB� ����SÞ, are approximately zero only
if the wave function�ðvlÞ is concentrated around the other
class of classical trajectories, vl ¼ const.

In conclusion, the family of histories described by the
class operators in Eq. (24) can be made consistent only for
semiclassical states. In that case, of course, the probability
of occurrence of a quantum bounce is null, as before, but
the reason for that comes from the fact that we are not
allowed to calculate probabilities in a family of cosmo-
logical histories where quantum effects are relevant.

Probabilities are calculable only for semiclassical histor-
ies, where bounces cannot occur. More generally, if quan-
tum effects are important in any family of cosmological
histories, under the consistent histories approach one can-
not ask any questions about properties of the universe at an
arbitrary finite �. This is of course a limitation on the
applicability of the consistent histories approach to cos-
mology, at least for the present simple model. We are
simply prohibited from studying the quantum properties
of a cosmological model, unless one considers just two
moments of its history, at ��1, and nothing more than
that. Are there any other approaches to quantum cosmol-
ogy where one can go further?

IV. THE DE BROGLIE–BOHM THEORYAPPLIED
TO QUANTUM COSMOLOGY

A quantum theory that can be consistently implemented
in the quantum cosmology scenario is the de Broglie–
Bohm quantum theory (see Refs. [17–23] for details).
Considering minisuperspace models, which have a finite
number of degrees of freedom, the general form of the
associated Wheeler-DeWitt equation reads

� 1

2
f��ðq�Þ @�ðqÞ

@q�@q�
þUðq�Þ�ðqÞ ¼ 0; (33)

where f��ðq�Þ is the minisuperspace DeWitt metric of the

model, whose inverse is denoted by f��ðq�Þ. By writing

the wave function in its polar form,� ¼ ReiS, the complex
Eq. (33) decouples into two real equations:
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1

2
f��ðq�Þ @S@q�

@S

@q�
þUðq�Þ þQðq�Þ ¼ 0; (34)

f��ðq�Þ @

@q�

�
R2 @S

@q�

�
¼ 0; (35)

where

Qðq�Þ :¼ � 1

2R
f��

@2R

@q�@q�
(36)

is called the quantum potential. The de Broglie–Bohm
interpretation applied to quantum cosmology states that
the trajectories q�ðtÞ are real, independently of any obser-

vations. Equation (34) represents their Hamilton-Jacobi
equation, which is the classical one with an added quantum
potential term [Eq. (36)] responsible for the quantum
effects. This suggests the definition

p� ¼ @S

@q�
; (37)

where the momenta are related to the velocities in the
usual way:

p� ¼ f��
1

N

@q�
@t

: (38)

In order to obtain the quantum trajectories, we have to
solve the following system of first-order differential equa-
tions, called the guidance relations:

@Sðq�Þ
@q�

¼ f��
1

N
_q�: (39)

The above Eq. (39) is invariant under time reparametri-
zation. Therefore, even at the quantum level, different time
gauge choices of NðtÞ yield the same spacetime geometry
for a given nonclassical solution q�ðtÞ. Indeed, there is no
problem of time in the de Broglie–Bohm interpretation
for minisuperspace quantum cosmological models [24].
However, this is no longer true when one considers the
full superspace (see Refs. [25–27]). Notwithstanding, even
with the problem of time in the superspace, the theory can
be consistently formulated (see Refs. [26,28]).

Let us then apply this interpretation to our minisuper-
space model. The Wheeler-DeWitt equation then reads

� @2�

@�2
þ @2�

@�2
¼ 0: (40)

Comparing Eq. (40) with Eq. (33), we obtain, from
Eqs. (34) and (35),

�
�
@S

@�

�
2 þ

�
@S

@�

�
2 þQðq�Þ ¼ 0; (41)

@

@�

�
R2 @S

@�

�
� @

@�

�
R2 @S

@�

�
¼ 0; (42)

where the quantum potential reads

Qð�;�Þ :¼¼ 1

R

�
@2R

@�2
� @2R

@�2

�
: (43)

The guidance relations [Eq. (39)] are

@S

@�
¼ � e3� _�

N
; (44)

@S

@�
¼ e3� _�

N
: (45)

We can write Eq. (41) in null coordinates:

vl :¼ 1ffiffiffi
2

p ð�þ�Þ; � :¼ 1ffiffiffi
2

p ðvl þ vrÞ;

vr :¼ 1ffiffiffi
2

p ð���Þ; � :¼ 1ffiffiffi
2

p ðvl � vrÞ;
(46)

yielding

�
� @2

@vl@vr

�
�ðvl; vrÞ ¼ 0: (47)

The general solution is

�ðu; vÞ ¼ FðvlÞ þGðvrÞ; (48)

where F and G are arbitrary functions. Using a separation
of variables method, one can write these solutions as
Fourier transforms given by

�ðvl; vrÞ ¼
Z 1

�1
dkUðkÞeikvl þ

Z 1

�1
dkVðkÞeikvr ; (49)

with U and V also being two arbitrary functions. If one
restricts the wave function Eq. (49) to left- or right-moving
components only, the quantum potential will necessarily be
a function of either vl or vr, and hence it will be null [see
Eq. (43)]. In this case, only classical trajectories, which are
of course singular, are allowed. Hence, avoidance of
singularities is possible if and only if the wave function
Eq. (49) depends on both left- and right-moving
components.
Under restriction to positive frequency solutions, one

gets a subclass of the general solution Eq. (49):

�ðvl; vrÞ ¼
Z 1

0
dk�ðkÞeikvl þ

Z 0

�1
dk�ðkÞeikvr : (50)

The guidance equations, whose integral curves will give
the Bohmian trajectories, are given by derivatives of the
phase of the wave function with respect to the associated
variable. Given an arbitrary wave function �ðvl; vrÞ, the
phase S can be written in terms of the wave function and its
complex conjugate as

S ¼ i

2
lnð���Þ � i lnð�Þ: (51)
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Therefore, the derivative of the phase with respect to an
arbitrary variable x is

@S

@x
¼ i

2���

�
�

@��

@x
��� @�

@x

�
: (52)

Using this result in the guidance relations [Eqs. (44)
and (45)], one obtains

d�

d�
¼�@S=@�

@S=@�

¼�
�
�
@��

@�
���@�

@�

��
�
@��

@�
���@�

@�

��1
: (53)

For the particular case with the positive frequency re-
striction [Eq. (50)], we have

d�

d�
¼ � @S=@�

@S=@�

¼ �
�Z 1

0
dk

Z 1

0
dk0½�ðkÞ��ðk0Þeivlðk�k0Þ ��ð�kÞ��ð�k0Þe�ivrðk�k0Þ�ðkþ k0Þ � ½�ð�kÞ��ðk0Þe�ivrke�ivlk

0

��ðkÞ��ð�k0Þeivlk�eivrk
0 �ðk� k0Þ

�
=

�Z 1

0
dk

Z 1

0
dk0½�ðkÞ��ðk0Þeivlðk�k0Þ þ�ð�kÞ��ð�k0Þe�ivrðk�k0Þ

þ�ð�kÞ��ðk0Þe�ivrke�ivlk
0 þ�ðkÞ��ð�k0Þeivlk�eivrk

0 �ðkþ k0Þ
�
: (54)

Let us analyze Eq. (54) in the limits vr ! �1 or vl ! �1. When vr ! �1, the integrals involving
R1
0 dk�ðkÞeivrk,R1

0 dkk�ðkÞeivrk and similar correspond to a Fourier transform of square-integrable functions which are null when

evaluated at vr ! �1. Hence, we obtain from Eq. (54), in this limit, that
d�

d�
¼ �1 ) �þ� ¼ vl ¼ const: (55)

For vl ! �1, an analogous reasoning yields
d�

d�
¼ 1 ) ��� ¼ vr ¼ const: (56)

Hence, in the regions vr ! �1 and vl ! �1, the Bohmian trajectories emerging from Eq. (54) are the classical
trajectories irrespective of the wave function.

We will now see, however, that there is a huge class of states where the Bohmian trajectories are not classical in other
regions of the ð�;�Þ plane. For instance, when �ðkÞ is even on k, Eq. (54) reads

d�

d�
¼ �i

R1
0 dk

R1
0 dk0�ðkÞ��ðk0Þei�ðk�k0Þfsin½�ðk� k0Þ�ðkþ k0Þ þ sin½�ðkþ k0Þ�ðk� k0ÞgR1

0 dk
R1
0 dk0�ðkÞ��ðk0Þei�ðk�k0Þfcos½�ðk� k0Þ� þ cos½�ðkþ k0Þ�gðkþ k0Þ : (57)

Note that Eq. (57) is antisymmetric under the change � ! ��, and also d�=d� ¼ 0 at � ¼ 0. Consequently, the
Bohmian trajectories that start at vr ! 1 (infinitely big universe) cannot cross the line � ¼ 0 and go to the singularity at
vr ! �1 in the same way that the classical trajectories do. These Bohmian trajectories are nonsingular. On the other
hand, if they start at the singularity at vl ! �1, they cannot become infinitely big at vl ! 1.

Note that this result is in opposition to the consistent histories conclusion. These Bohmian trajectories describe exactly
what the consistent histories approach has claimed to be impossible, namely, universe histories that start infinitely big in
the far past and go infinitely big also in the far future. In fact, the even states shown above within the de Broglie–Bohm
scenario violate the consistent histories description for all trajectories. As just argued, there is no single trajectory that can
start infinitely big in the far past and go to a singularity in the far future, or the reverse. Hence, it is certain that there exist
nonsingular Bohmian trajectories.

One can also obtain bounces in the situation where �ðkÞ is not only even on k but also real. In that case, Eq. (57)
simplifies to

d�

d�
¼

R1
0 dk

R1
0 dk0�ðkÞ��ðk0Þ sin½�ðk� k0Þ�fsin½�ðk� k0Þ�ðkþ k0Þ þ sin½�ðkþ k0Þ�ðk� k0ÞgR1

0 dk
R1
0 dk0�ðkÞ��ðk0Þ cos½�ðk� k0Þ�fcos½�ðk� k0Þ� þ cos½�ðkþ k0Þ�gðkþ k0Þ ; (58)

where we have used the fact that only even integrands can survive. This can be seen by performing a coordinate
transformation in k space,

u :¼ 1ffiffiffi
2

p ðkþ k0Þ; k :¼ 1ffiffiffi
2

p ðuþ wÞ; w :¼ 1ffiffiffi
2

p ðk� k0Þ; k0 :¼ 1ffiffiffi
2

p ðu� wÞ; (59)
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changing the integral domains accordingly,
R1
0 du

R
u
�u dw,

and noting that �ðuþ wÞ�ðu� wÞ is even under the
change w ! �w. Note that now Eq. (58) is antisymmetric
under the change � ! ��, and again we have that
d�=d� ¼ 0, but at � ¼ 0. Hence, the Bohmian trajecto-
ries must certainly present a bouncewhen it crosses the line
� ¼ 0, and if they start at vr ! 1 in a classical contrac-
tion from infinity, they must necessarily end at vl ! 1 in
classical expansion to infinity, realizing a bounce at � ¼ 0
and never reaching the singularity, in a symmetric trajec-
tory in �. On the other hand, if they start at the singularity
in vl ! �1, they come back to the singularity at vr !
�1, with the turning point taking place at � ¼ 0. Again,
contrary to the consistent history conclusion, any universe
history as described by these Bohmian trajectories coming
from infinity must go back to infinity, and any Bohmian
trajectory coming from the singularity must go back to the
singularity.

Note that the line � ¼ 0, where these nonclassical be-
haviors are strong, corresponds, in our units, to aphys ¼ lpl,

where lpl is the Planck length. All these features can be

seen numerically with a particular example. Let us take, for
instance,

�ðkÞ ¼ e�ðjkj�dÞ2=�2
; (60)

with � � 1 and d � 1. This is a real and even �ðkÞ,
consisting of two sharply peaked Gaussians centered at
�d. The wave function reads

�ðvl; vrÞ ¼
Z 1

0
dk�ðkÞeikvl þ

Z 0

�1
dk�ðkÞeikvr

�
Z 1

�1
dke�ðk�dÞ2=�2

eikvl

þ
Z 1

�1
dke�ðkþdÞ2=�2

eikvr : (61)

The Bohmian trajectories associated with this wave
functions can be seen in Fig. 1. We can distinguish two
kinds of trajectories. The upper half of the figure contains
trajectories describing bouncing universes, while the lower
half corresponds to universes that begin and end in singular
states (‘‘big bang/big crunch’’ universes).

In general, there is also the possibility of trajectories
describing cyclic universes. Reference [12] considered
Bohmian trajectories associated with wave functions simi-
lar to the above one, but without the restriction to positive
frequencies only. Considering both positive and negative
frequencies, there are oscillatory trajectories in �. In this
case, if one wishes to interpret � as time, this corresponds
to the creation and annihilation of expanding and contract-
ing universes that exist for a very short duration. This fact
suggests that one cannot understand Eq. (42) as a continu-
ity equation for an ensemble of trajectories with a distri-
bution of initial conditions given by R2 in this Bohmian
approach with guidance relations defined as in Eqs. (44)
and (45). In fact, this interpretation of a continuity equation

would be possible only if Eq. (42) could be reduced to the
form

@R2

@�
þ @

@�

�
R2 d�

d�

�
¼ 0; (62)

with d�=d� given by Eq. (54),

d�

d�
¼ � @S=@�

@S=@�
: (63)

It can be shown, using Eqs. (41), (42), (44), and (45), that
this is possible if and only if

@S

@�

@2S

@�@�
¼ @S

@�

@2S

@�@�
; (64)

which implies that €� ¼ 0, stating that � is a monotonic
function of coordinate time. This is a strong restrictive
condition, which cannot be satisfied by general quantum

states such as the ones discussed above. In general, €� � 0.
Hence, Eq. (42) cannot be interpreted as a continuity
equation in � time for the ensemble of trajectories given
by Eq. (63) with distribution R2, even in the single-
frequency approach where one has a Schrödinger-like
equation.
If, however, one insists on interpreting � as the time

variable, then one would have to face the situation of the
creation and annihilation of universes, which is a typical

FIG. 1. The field plot shows the family of trajectories for the
planar system given by Eqs. (44) and (45) for the wave func-
tional, Eq. (61). Two of them that describe their general behavior
are depicted as solid lines: the first represents a bouncing
universe, while the second one corresponds to a universe which
begins and ends in singular states (a ‘‘big bang/big crunch’’
universe).
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feature of relativistic quantum theory. Accordingly, the
loss of a continuity equation for R2 can be associated
with the nonconservation of the number of trajectories of
this ensemble in � time.

Normally the de Broglie–Bohm theory of a Schrödinger-
like equation furnishes, besides the quantum trajectories, a
probabilistic measure for these trajectories. This is not the
case here, since the kinetic term in the present
Schrödinger-like equation is not canonical; hence, it is
not of the form gijðxÞpipj, where gijðxÞ has a Euclidean

signature.
Concluding this section, in the consistent histories ap-

proach, we may have the notion of probabilities, but we are
not allowed to investigate nonclassical properties of the
universe in any finite � time, or to have more than two
snapshots of any nonclassical universe.

On the contrary, in the de Broglie–Bohm theory, we can
investigate the entire evolution of the universe, but we lose
the notion of probability.

It is worth remarking that, in addition to the usual debate
related to different approaches to describe a quantum
system, every quantum model of the universe has to face
a nontrivial problem. Quantum cosmology deals with a
single system, which forbids us to repeat experiments,
hence posing peculiar issues associated with the physical
meaning of any kind of probability in this context. Thus,
the lack of probabilistic predictions in quantum cosmology
should not be taken a priori as a deficiency of the formal-
ism. On the contrary, we should carefully analyze if one
can consistently extract information and predictions from
the model without a notion of probability.

We should stress that one can recover the probabilistic
predictions in quantum cosmology using the de Broglie–
Bohm theory when one implements a more complex mod-
eling of the universe, adding new degrees of freedom (here,
we have only one degree of freedom). In that case, a
probability measure naturally appears in the quantum de-
scription of the subsystems of the universe (see Ref. [29]
for details), and the usual Born rule can be recovered. In
that case, for the subsystems, the consistent histories and
the de Broglie–Bohm approaches should coincide.

V. THE KLEIN-GORDON APPROACH

In the Wheeler-DeWitt equation for a free massless
scalar field, one can define its square root and construct a
Schrödinger-like equation, as we have discussed in Secs. II
and III. However, there are other quantization schemes
where the restriction to a single frequency sector is not
necessary. A promising alternative approach to quantum
cosmology using the consistent histories quantization is to
consider the full Klein-Gordon equation. In this approach,
both energy sectors, positive and negative, are simulta-
neously taken into account, but the Hilbert space is defined
with a different inner product (see Ref. [9] and references
therein).

Following closely Ref. [8], one can define the eigen-
states associated to the position operator as

jxi ¼ 1ffiffiffiffiffiffiffi
2�

p
Z 1

�1
dk

2jkj e
ijkj��ik�jkþi þ 1ffiffiffiffiffiffiffi

2�
p

�
Z 1

�1
dk

2jkj e
�ijkj��ik�jk�i

¼ jxþi þ jx�i; (65)

where jk�i are eigenstates of the k̂ operator such that

k̂jk�i ¼ kjk�i and k̂0jk�i ¼ �jkjjk�i. Note that the posi-
tion eigenstates are not orthogonal, i.e.

hxjx0i ¼ GðþÞðx; x0Þ þGð�Þðx; x0Þ;
where

Gð�Þðx; x0Þ :¼ 1

2�

Z 1

�1
dk

2jkj e
	ijkjð���0Þ�ikð���0Þ (66)

are the positive and negative Wightman functions. The
positive and negative position eigenstates satisfy a com-
pleteness relation that reads

1 ¼ i
Z

d�ðjxþi@�$ hxþj � jx�i@�$ hx�jÞ:

Given these position eigenstates, we can define the
induced Klein-Gordon inner product as

ð�;�Þ :¼ i
Z

d�ð��þ@�
$
�þ ����@�

$
��Þ; (67)

where��ð�;�Þ denotes the positive (negative) frequency
solutions of the Klein-Gordon equation which are given
by the projection of the wave function in the position
eigenstates. Recalling that vl ¼ �þ� and vr ¼ ���,
we have

�þð�;�Þ ¼ hxþj�i

¼ 1ffiffiffiffiffiffiffi
2�

p
�Z 1

0
dkeikvr�þðkÞ

þ
Z 0

�1
dkeikvl�þðkÞ

�

¼ �rþðvrÞ þ�lþðvlÞ (68)

and

��ð�;�Þ ¼ hx�j�i

¼ 1ffiffiffiffiffiffiffi
2�

p
�Z 1

0
dkeikvl��ðkÞ

þ
Z 0

�1
dkeikvr��ðkÞ

�

¼ �rþðvrÞ þ�lþðvlÞ (69)

with
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��ðkÞ ¼ hk�j�i
2jkj : (70)

One of the key features of this inner product is that, for
an arbitrary wave function, the quantity

ð�;�Þ ¼ i
Z

d�ð��þ@�
$
�þ ����@�

$
��Þ

¼ 2
Z 1

�1
dkjkjðj�þðkÞj2 þ j��ðkÞj2Þ (71)

is positive definite.

Once again we shall be interested in calculating the
probability of the universe at a given time (�) to have a

size within the range� or in its complement ��. For a given
initial state �ð�;�Þ, we can construct the decoherence
functional for a set of histories as proposed in Ref. [8]
and then take the limits of infinite past �1 ! �1 and
infinite future �2 ! þ1.
The off-diagonal terms of decoherence between histor-

ies that cross the surface � ¼ const. within region � or in
�� are given by

Dð�; ��Þ ¼
Z
�
d�

Z
��
d�0½��þð�0; �0Þ@�0

$
GðþÞð�0; �0;�;�Þ@�$ �þð�;�Þ

þ���ð�0; �0Þ@�0
$
Gð�Þð�0; �0;�;�Þ@�$ ��ð�;�Þ�: (72)

Omitting the negative frequency terms and defining the region � ¼ ð�1; ��Þ, we have
Dð�; ��Þ ¼

Z ��

�1
d�

Z 1

��
d�0½��þð�0; �0Þ@�0GðþÞð�0; �0;�;�Þ@��þð�;�Þ

þ�þð�;�Þ@�GðþÞð�0; �0;�;�Þ@�0��þð�0; �0Þ ���þð�0; �0Þ�þð�;�Þ@�@�0GðþÞð�0; �0;�;�Þ
þGðþÞð�0; �0;�;�Þ@�0��þð�0; �0Þ@��þð�;�Þ�; (73)

where in our specific case, the Green functions Gð�Þ [Eq. (66)] read

Gð�Þ ¼ 1

2�

�Z 1

0

dk

2jkj e
�ikðvr�v0

rÞ þ
Z 0

�1
dk

2jkj e
�ikðvl�v0

l
Þ
�
: (74)

Let us evaluate Eq. (73) term by term. The first two terms involving first derivatives of the Green function are zero as

long as, when �0 ¼ �, @�G
ðþÞð�0; �0;�;�Þ yields a �ð�0 � �Þ, and the integrations are in disjoint domains of �. The

third and fourth terms are more involved and require more attention. Each of them involves eight terms, where four of them
are null. These are the terms involving either vr or vl only. For instance, the term proportional toZ ��

�1
d�

Z 1

��
d�0 Z 1

0
dk0e�ik0v0

r��þðk0Þ
Z 1

0
dkeikvr�þðkÞ

Z 1

0
dk00jk00jeik00ðv0

r�vrÞ

¼
Z 1

0
dk00jk00j

Z ����

�1
dvre

iðk�k00Þvr

Z 1

����
dv0

re
iðk00�k0Þv0

r

Z 1

0
dk0��þðk0Þ

Z 1

0
dk�þðkÞ (75)

is zero in the limit � ! �1. After the change of variables d� ! dvr, it remains a � dependence only in the limits of
integration, hence we can safely take the limit � ! �1 before integrating the expression which makes it to go to zero.
Notwithstanding, the mixed terms that include both vl and vr have a completely different structure. These terms are
proportional to

Z ��

�1
d�

Z 1

��
d�0

�
�

Z 1

0
dk0e�ik0v0

r��þðk0Þ
Z 0

�1
dkeikvl�þðkÞ

�Z 1

0
dk00k00eik00ð�0��Þ �

Z 0

�1
dk00k00eik00ð�0��Þ

�

�
Z 0

�1
dk0e�ik0v0

l��þðk0Þ
Z 1

0
dkeikvr�þðkÞ

�Z 1

0
dk00k00eik00ð�0��Þ �

Z 0

�1
dk00k00eik00ð�0��Þ

�

þ
Z 1

0
dk0k0e�ik0v0

r��þðk0Þ
Z 0

�1
dkkeikvl�þðkÞ

�Z 1

0

dk00

k00
eik

00ð�0��Þ �
Z 0

�1
dk00

k00
eik

00ð�0��Þ
�

þ
Z 0

�1
dk0k0e�ik0v0

l��þðk0Þ
Z 1

0
dkkeikvr�þðkÞ

�Z 1

0

dk00

k00
eik

00ð�0��Þ �
Z 0

�1
dk00

k00
eik

00ð�0��Þ
��

: (76)

Let us take, for instance, the first term of the first line of the above equation. After some change of variables, we obtainZ 1

0
dk00k00

Z 1

0
dvle

�ivlðk�k00Þ Z 1

0
dv0

re
iv0

rðk00�k0Þ Z 1

0
dk0��þðk0Þ

Z 0

�1
dk�þðkÞei��ðk�k0Þei�ðkþk0Þ: (77)

Using again that
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Z 1

0
d�e�i�x ¼ ��ðxÞ � ip:v:

�
1

x

�
; (78)

one gets four integrals. One of these integrals ends up as

Z 1

0
dk00

k00

ðk00 � k0Þðk00 � kÞ ; (79)

which has an ultraviolet logarithmic divergence at infinity.
Using the same reasoning in the first term of the third line,
one gets the integral

Z 1

0

dk00

k00ðk00 � k0Þðk00 � kÞ ; (80)

which now presents an infrared logarithmic divergence at
the origin. The crucial point is that these are different
divergencies which cannot cancel each other out.

In this way, the decoherence functional cannot be made
diagonal, and hence we cannot construct consistent
histories.

In fact, one could have anticipated this result. Note that
the Wheeler-DeWitt equation we are considering is com-
pletely analogous to the Klein-Gordon equation for a
massless relativistic particle. However, as pointed out in
Ref. [8], where the decoherence functional was constructed
for a massive relativistic particle, it was observed that the

off-diagonal terms Dð�; ��Þ may become negligible only if
the region � and its complement are much larger than the
Compton wavelength m�1 of the particle. If we naively
take the limitm ! 0, there is no region � in which the off-
diagonal terms can become negligible. Note, however, that
the m ! 0 limit of a Klein-Gordon particle is tricky and
subtle. That is why we have constructed the decoherence
functional for the equivalent of a massless scalar field from
the beginning.

Note, however, that if one applies the de Broglie–Bohm
quantum theory to the same problem, one can obtain
information about the behavior of the early universe, and
Bohmian bouncing trajectories appear in many circum-
stances. This was done in detail in Ref. [12].

VI. CONCLUSION

We have shown that claims asserting that the Wheeler-
DeWitt quantization does not eliminate the classical cos-
mological singularity are not correct without specifying the
quantum interpretation one is adopting and the quantiza-
tion procedure one is taking.

In fact, there are several papers showing quantum boun-
ces in the Wheeler-DeWitt quantization scenario that were
published much before these sorts of claims had been
presented (a few examples of the long list of papers are
Refs. [12,15]).

This, however, does not diminish in any way the impor-
tance of the series of results obtained in the context of loop
quantum cosmology. Indeed, loop quantum cosmology has
an important advantage over Wheeler-DeWitt quantum

cosmology inasmuch it has a strong connection with loop
quantum gravity. Loop quantum gravity has much fewer
conceptual problems as a quantum theory of gravity than
the canonical quantization procedure that leads to the
Wheeler-DeWitt equation. Therefore, the existence of
bouncing solutions in loop quantum cosmology is a sig-
nificantly relevant result. Note, however, that people work-
ing in loop or nonloop quantum cosmology must be very
precise on what quantum theory they are taking to interpret
their results.
In connection with the conclusion of Ref. [1], we have

shown here that the answers given by the consistent histor-
ies approach are quite fragile. In fact, the existence of a
quantum bounce strongly depends on the family of histor-
ies one is taking. One can argue that the family with only
two moments of time, where quantum bounces do not
exist, encompasses the families of histories with three
moments of time. Take, however, a genuine quantum state.
In the two-time family we are sure that there is no quantum
bounce, but in the three-time family this question cannot
even be posed. This is characteristic of the consistent
histories approach: the notion of truth depends on the
family of histories one is taking. This ambiguity on the
notion of a true statement in the consistency histories
approach can be made quite dramatic in other circum-
stances [30,31].
Finally, we would like to stress that the results of this

paper go much beyond the question about the existence of a
quantum bounce. It shows that different quantum theories
may present quite discrepant results when this system is the
Universe. This finding points to a hope in cosmology that
maybe we can find a way to discriminate between the many
proposed quantum theories which, aside from subjective
and philosophical preferences, all have the same scientific
status in the laboratory.
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APPENDIX: DISTRIBUTIONS

We use the following distribution throughout the text
(see for instance [32,33]):

dðxÞ :¼
Z 1

0
d�e�i�x ¼ ��ðxÞ � ip:v:

�
1

x

�
: (A1)

It is the Fourier transform of a Heaviside function.
Here,p:v:ð1xÞ stands for the principal value of 1

x . It solves

the following equation in the sense of distributions:
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p :v:

�
1

x

�
x ¼ 1: (82)

The action of the principal value on any function f 2
C1
0 ðRÞ is given explicitly by

p :v:

�
1

x

�
ðfÞ ¼ lim

	!0

�Z �	

�1
1

x
fðxÞdxþ

Z 1

	

1

x
fðxÞdx

�

¼
Z 1

	

fðxÞ � fð�xÞ
x

dx: (A2)
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