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In this paper it is shown how to obtain the simplest equations for the Mukhanov-Sasaki variables

describing quantum linear scalar perturbations in the case of scalar fields without potential term. This was

done through the implementation of canonical transformations at the classical level, and unitary trans-

formations at the quantum level, without ever using any classical background equation, and it completes

the simplification initiated in investigations by Langlois [D. Langlois, Classical Quantum Gravity 11, 389

(1994).], and Pinho and Pinto-Neto [E. J. C. Pinho and N. Pinto-Neto, Phys. Rev. D 76, 023506 (2007).]

for this case. These equations were then used to calculate the spectrum index ns of quantum scalar

perturbations of a nonsingular inflationary quantum background model, which starts at infinity past from

flat space-time with Planckian size spacelike hypersurfaces, and inflates due to a quantum cosmological

effect, until it makes an analytical graceful exit from this inflationary epoch to a decelerated classical stiff

matter expansion phase. The result is ns ¼ 3, incompatible with observations.
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I. INTRODUCTION

The usual theory of cosmological perturbations, with
their simple equations [1], relies essentially on the assump-
tions that the background is described by pure classical
general relativity (GR), while the perturbations thereof
stem from quantum fluctuations. It is a semiclassical ap-
proach, where the background is classical and the pertur-
bations are quantized, and the fact that the background
satisfies Einstein’s equations is heavily used in the simpli-
fication of the equations. In Refs. [2–4], which assume the
validity of the Einstein-Hilbert action, it was shown that
such simple equations for quantum linear cosmological
perturbations can also be obtained without ever using any
equations for the background. This can be accomplished
through a series of canonical transformations and redefini-
tions of the lapse function. These results open the way to
also quantize the background, and use these simple equa-
tions to evaluate the evolution of the quantum linear per-
turbations on it. Indeed, such results were applied to
quantum bouncing backgrounds, and spectral indices for
tensor and scalar perturbations were calculated in
Refs. [5,6].

The matter content used in these papers were assumed to
be either a single perfect fluid or a single scalar field. In the
case of perfect fluids, the equations were simplified up to
their simplest possible form, both for tensor and scalar
perturbations. For the case of scalar fields, this simplest
form was achieved for tensor perturbations but not for
scalar perturbations. One ended in an intermediate stage
that needed further simplifications in order to be applied to
quantum backgrounds [3,7].

Meanwhile, a nonsingular inflationary model was found
[8] containing a single scalar field without potential term,
which starts at infinity past from flat space-time with
Planckian size spacelike hypersurfaces, and inflates, due
to a quantum cosmological effect, until it makes an ana-
lytical graceful exit from this inflationary epoch to a decel-
erated classical stiff matter expansion phase. It should be
interesting to investigate if this model could generate an
almost scale invariant spectrum of scalar perturbations, as
observed [9]. However, without simple equations govern-
ing the evolution of the perturbations, the investigation
becomes rather cumbersome.
The aim of this paper is twofold: complete the simplifi-

cation initiated in Refs. [3,7], and apply it to the back-
ground described in Ref. [8]. In fact, after performing some
canonical transformations at the classical level, and unitary
transformations at the quantum level, we were able to
obtain the simple equations for linear scalar perturbations
of Ref. [1] for the case of scalar fields without potential,
without ever using any classical background equation.
These perturbation equations were then used to calculate
the spectrum index ns of the background model of Ref. [8]
yielding ns ¼ 3, incompatible with observations [9] (ns �
1). Hence, even though the quantum background model has
some attractive features, the model should be discarded.
The paper is organized as follows: in the next section, we

briefly summarize the results of Ref. [8]. In Sec. III, the
simplification of the second order Hamiltonian for the
scalar perturbations is implemented, and the full quantiza-
tion of the system, background and perturbations, is per-
formed. The quantum background trajectories are then
used to induce a time evolution for the Heisenberg opera-
tors describing the perturbations, yielding simple dynami-
cal equations for the quantum perturbations. In Sec. IV, we
calculate the spectral index of scalar perturbations in the
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background presented in Sec. II, using the equations ob-
tained in Sec. III. Section V presents our conclusions.

II. BOHM-DE BROGLIE INTERPRETATION OF A
QUANTUM NON-SINGULAR INFLATIONARY

BACKGROUND MODEL

In this section, we first briefly highlight the main char-
acteristics of the Bohm-de Broglie quantization scheme,
restricting our discussion to the homogeneous minisuper-
space models which have a finite number of degrees of
freedom. We then apply it to the quantisation of the back-
ground geometry with a massless scalar field without
potential term.

The Wheeler-DeWitt equation of a minisuperspace
model is obtained through the Dirac quantization proce-
dure, where the wave function must be annihilated by the
operator version of the Hamiltonian constraint

H ðp̂�; q̂�Þ�ðqÞ ¼ 0: (1)

The quantities p̂�, q̂� are the phase space operators related

to the homogeneous degrees of freedom of the model.
Usually this equation can be written as

� 1

2
f��ðq�Þ @�ðqÞ

@q�@q�
þUðq�Þ�ðqÞ ¼ 0; (2)

where f��ðq�Þ is the minisuperspace DeWitt metric of the

model, whose inverse is denoted by f��ðq�Þ.
Writing � in polar form, � ¼ R expðiSÞ, and substitut-

ing it into (2), we obtain the following equations:

1

2
f��ðq�Þ @S@q�

@S

@q�
þUðq�Þ þQðq�Þ ¼ 0; (3)

f��ðq�Þ @

@q�

�
R2 @S

@q�

�
¼ 0; (4)

where

Qðq�Þ � � 1

2R
f��

@2R

@q�@q�
(5)

is called the quantum potential.
The Bohm-de Broglie interpretation applied to quantum

cosmology states that the trajectories q�ðtÞ are real, inde-
pendently of any observations. Equation (3) represents
their Hamilton-Jacobi equation, which is the classical
one added with a quantum potential term Eq. (5) respon-
sible for the quantum effects. This suggests to define

p� ¼ @S

@q�
; (6)

where the momenta are related to the velocities in the usual

way:

p� ¼ f��
1

N

@q�
@t

: (7)

To obtain the quantum trajectories we have to solve the
following system of first order differential equations,
called the guidance relations:

@Sðq�Þ
@q�

¼ f��
1

N
_q�: (8)

Equations (8) are invariant under time reparametriza-
tion. Hence, even at the quantum level, different choices of
NðtÞ yield the same space-time geometry for a given non-
classical solution q�ðtÞ. There is no problem of time in the
Bohm-de Broglie interpretation of minisuperspace quan-
tum cosmology [10]. Wewill return to this point in the next
section.
We now apply this interpretation to the situation where

H in Eq. (1) is given by

Hð0Þ
0 ¼

ffiffiffiffiffiffiffi
2V

p
2‘Ple

3�
ð�P2

� þ P2
’Þ; (9)

which was worked out in Ref. [8]. The variables are
dimensionless with ’ describing the scalar field degree
of freedom and � associated to the scale factor through
� � logðaÞ. The main feature of this model is the possi-
bility to obtain a nonsingular inflationary model similar to
the pre-big bang model [11–14], with a minimum volume
spatial section in the infinity past, or the emergent model
[15] for flat spatial sections, without any graceful exit
problem.
We take as solution of the background Wheeler-DeWitt

equation, Ĥð0Þ
0 �ða;’Þ ¼ 0, a Gaussian superposition of

WKB solutions. The resulting wave function is (see
Ref. [8] for details)

�ð�;’Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffi
�jhj

p �
expi

�
� h

2
ð�þ ’Þ2 þ dð�þ ’Þ þ �

4

�

þ expi

�
�h

2
ð�� ’Þ2 þ dð�� ’Þ þ �

4

��
;

(10)

where h and d are two positive free parameters associated
to the variance and the displacement of the Gaussian
superposition, respectively.

The norm of the wave function is given by R ¼
4

ffiffiffiffiffiffiffiffiffiffi
�jhjp

cos½’ðh�� dÞ�, yielding the quantum potential,
Eq. (5),

Q ¼ ðh�� dÞ2 � h2’2: (11)

The guidance relations, given by Eq. (8) with the choice

N ¼ ‘Plffiffiffiffiffi
2V

p e3�, reduce to
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_� ¼ � @S

@�
; _’ ¼ @S

@’
; (12)

yielding

_� ¼ h�� d; _’ ¼ �h’; (13)

which can be directly integrated to give

a ¼ e� ¼ ed=h expð�0e
htÞ and ’ ¼ �0e

�ht; (14)

where �0 is an integration constant. Recall that the time

parameter t is related to cosmic time � through � ¼R
dte3�ðtÞ ) �� �0 ¼ Eið3�0e

htÞ=h, where EiðxÞ is the

exponential-integral function.
These solutions represent ever expanding nonsingular

models (see Fig. 1). For t � 0 the Universe expands

accelerately from its minimum size a0 ¼ ed=h (remember

that for the physical scale factor one has aphys0 ¼ ‘Plffiffiffiffiffi
2V

p ed=h),

which occurs in the infinity past t ! �1. The scalar field
is very large in that phase. If jhtj � �0 is not very large,
one has

a � e�0þd=h½1þ �0htþ ð1þ 1=�0Þð�0htÞ2=2!
þ ð1þ 3=�0 þ 1=�2

0Þð�0htÞ3=3! . . .�: (15)

Taking �0 � 1, one can write a � e�0þd=h expð�0htÞ. In
that case, from � ¼ R

dta3ðtÞ, one obtains that a / ð��
�0Þ1=3 and ’ / lnð�� �0Þ, as in the classical regime.
Figure 1 exhibits the Bohmian trajectories and quantum
potential for the parameters h ¼ 3=5, d ¼ 2, and �0 ¼ 2.

III. SIMPLIFICATION OF THE SECOND ORDER
HAMILTONIAN AND CANONICAL

QUANTIZATION

The conventional approach to deal with quantum cos-
mological perturbations is to consider a semiclassical treat-
ment that quantizes only the first order perturbations while
the background is treated classically. Once the background
dynamics has a classical evolution, one can use these
equations to significantly simplify the second order
Lagrangian before quantizing the system [1]. In this case,
the background evolution induces a potential term that
modifies the quantum dynamics of the perturbations.
One step further is to consider quantum corrections to

the background evolution itself, as in minisuperspace mod-
els, Refs. [16–19]. In this case, the simplifications in the
equations for the linear perturbations using the classical
background cannot be implemented. It is worth to remind
that the original lagrangian is quite involved, and the use of
the background equation is a key step to rewrite the system
in a treatable form.
Recent works using technics for Hamiltonian’s systems

[2–4] showed that it is also possible to simplify the full
Hamiltonian system by a series of canonical transforma-
tions. Their main results focus in the scalar and tensor
perturbations considering the matter content of the
Universe described by a perfect fluid. Even though in
Ref. [7] and in the Appendix A of Ref. [3] it is shown a
long development that significantly simplifies the
Hamiltonian for a scalar field with a generic potential
Uð’Þ, there were still some delicate issues to be addressed
to consistently quantize the scalar field case.
We will not reproduce the development made in these

references but we will continue the development of the
above mentioned Appendix. The main point to acquaint
from this reference is that their simplification procedure
use only canonical transformations, that guarantees the
equivalence between the original and the simplified
Hamiltonians, independently of the background equations
of motion.
In the present work we will focus in the case of a

vanishing potential Uð’Þ and show how it is possible to
consistently quantize simultaneously both the background
and the perturbations. The background system is composed
of a free massless scalar field in a spatially flat Friedmann-
Lemaı̂tre-Robertson-Walker metric (FLRW). Since we are
only interested in scalar perturbations, the perturbed metric
can be written as

ds2 ¼ N2ð1þ 2�Þdt2 � NaBjidtdxi

� a2½ð1þ 2c Þ�ij � 2Ejijj�dxidxj: (16)

The matter content is defined by a free massless scalar
field ’ðt; xÞ ¼ ’0ðtÞ þ �’ðt; xÞ, where ’0 is the back-
ground homogeneous scalar field. Using these definitions
in the Lagrangian density for the scalar field, namely

FIG. 1 (color online). Time evolution of the background var-
iables. The solid line describe the accelerated expansion of the
scale factor from a finite minimum size a0 ¼ ed=h. The long-
dashed line pictures the exponential decrease of the scalar field
and the short-dashed line gives the decrease of the quantum
potential until arriving in the classical region. The parameters
were chosen to be h ¼ 3=5, d ¼ 2, and �0 ¼ 2.
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Lm ¼ 1
2’;�’

;�, we find

Lm ¼ ð1� 2�Þ
N2

�
_’2
0

2
þ _’� _’

�
þ _’2

0

N2

�
2�2 � BjiBji

2

�

� _’0

Na
Bji�’ji þ � _’2

2N2
� 1

2a2
�’ji�’ji: (17)

As our starting point, let us consider the Hamil-
tonian (A39) of Ref. [3] with the scalar field potential
Uð’Þ taken to be null,

H ¼ NH0 þ
Z

d3x

�
� ‘2PlP

2
a

2a2V
�þ 3P2

’

a4PaV
c

þ 3‘2PlP’

2a4V
v

�
~�6 þ�NPN þ

Z
d3x����; (18)

where ~�6 ¼ �c , PN and �� are first class constrains, and

v is the Mukhanov-Sasaki variable. The quantity H0 is
defined as

H0 ¼ � ‘2PlP
2
a

4aV
þ P2

’

2a3V
þ 1

2a

Z
d3x

�
�2ffiffiffiffi
	

p þ ffiffiffiffi
	

p
v;iv;i

�

þ
�
15‘2PlP

2
’

4a5V2
� ‘4PlP

2
a

16a3V2
� 27P4

’

4a7V2P2
a

�Z
d3x

ffiffiffiffi
	

p
v2;

(19)

where Pa, P’ and � are the momenta canonically con-

jugate to a, ’0 and v, respectively, ‘
2
Pl ¼ 8�G

3 , and V is the

comoving volume of the compact spatial sections, i.e. V <
1. The zero order Hamiltonian,

Hð0Þ
0 � � ‘2PlP

2
a

4aV
þ P2

’

2a3V
; (20)

can be used to simplify further the masslike term for the
perturbations, i.e. the function inside brackets multiplying
the v2 term. To do so, we rewrite P’ as

P2
’ ¼ 2a3V

�
Hð0Þ

0 þ ‘2PlP
2
a

4aV

�
:

Redefining the lapse function as

~N ¼ N

�
1þ

�
15‘2Pl
2a2V

� 27

aP2
a

�
Hð0Þ

0 þ ‘2PlP
2
a

2aV

��

�
Z

d3x
ffiffiffiffi
	

p
v2

�
;

and keeping only second order terms in NH0, we can
rewrite it as

NH0 ¼ ~N

�
Hð0Þ

0 þ 1

2a

Z
d3x

�
�2ffiffiffiffi
	

p þ ffiffiffiffi
	

p
v;iv;i

�

þ ‘4PlP
2
a

8a3V2

Z
d3x

ffiffiffiffi
	

p
v2

�
þOðv4; v2�2Þ (21)

Thus, by a simple redefinition of the lapse function, the
masslike term simplifies significantly. Nonetheless, it is

still tricky to quantize this term due to the momentum
Pa. Furthermore, the scale factor is defined on the
half-line which requires additional care in specifying
the Hilbert space. To deal with these two points, it is

convenient to define dimensionless variables � �
logð ffiffiffiffiffiffiffi

2V
p

‘�1
Pl aÞ and ’ ! ‘Plffiffi

2
p ’ which give us the following

relations:

P� ¼ � ‘Plffiffiffiffiffiffiffi
2V

p e3�

N
_�;

‘2Pl
4V

P2
a

a
¼

ffiffiffiffiffiffiffi
2V

p
‘Pl

P2
�

2e3�
;

P2
’

2a3V
!

ffiffiffiffiffiffiffi
2V

p
‘Pl

P2
’

2e3�
; Hð0Þ

0 ¼
ffiffiffiffiffiffiffi
2V

p
2‘Ple

3�
ð�P2

� þ P2
’Þ:

With these new variables we find,

H0 ¼ Hð0Þ
0 þ N

ffiffiffiffiffiffiffi
2V

p
2‘Ple

�

Z
d3x

ffiffiffiffi
	

p �
�2

	
þ v;iv;i þ P2

�

e4�
v2

�
:

To eliminate the momentum in the masslike term we
perform a canonical transformation generated by

F ¼ I þ P�

2

Z
d3x

ffiffiffiffi
	

p
~v2 þ e~�

Z
d3x�~v; (22)

which implies

� ¼ ~�þ 1

2

Z
d3x

ffiffiffiffi
	

p
~v2; v ¼ e~�~v;

~P� ¼ P� þ e~�
Z

d3x�~v; ~� ¼ ffiffiffiffi
	

p ~P�~vþ e~��;

e3� ¼ e3~�
�
1þ 3

2

Z
d3x

ffiffiffiffi
	

p
~v2

�
þOð~v3Þ:

Once more, redefining the lapse function as

~N ¼ N

�
1� 3

2

Z
d3x

ffiffiffiffi
	

p
~v2

�
;

and omitting the tilde in the new variables, the Hamiltonian
transforms into

H ¼ H0 þ
Z

d3x

�
� 2V

‘2Pl

P2
�

e4�
�þ 3

ffiffiffiffiffiffiffi
2V

p
‘Pl

P2
’

e3�P�

c

þ 3
ffiffiffiffiffiffiffi
2V

p
‘Pl

ffiffiffiffi
V

p
P’

e4�
v

�
�c þ�NPN þ

Z
d3x����

(23)

with,

H0 ¼
ffiffiffiffiffiffiffi
2V

p
2‘Ple

3�

�
�P2

� þP2
’ þ

Z
d3x

�
�2ffiffiffiffi
	

p þ ffiffiffiffi
	

p
e4�v;iv;i

��
:

(24)

The system described by this Hamiltonian can be im-
mediately quantized. The Dirac’s quantization procedure
for constrained Hamiltonian systems requires that the first
class constraints must annihilate the wave function
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@

@N
�ð�;’; v; N;�; c Þ ¼ 0;

�

�c
�ð�;’; v; N;�; c Þ ¼ 0;

�

��
�ð�;’; v; N;�; c Þ ¼ 0:

Thus, the wave function must be independent of N, �
and c , i.e. � ¼ �ð�;’; vÞ where v encode the perturbed
degrees of freedom. Note that, due to the transformation
(22), v is now the Mukhanov-Sasaki variable divided by a.
The remaining equation is

Ĥ 0�ð�;’; vÞ ¼ 0; (25)

which has only quadratic terms in the momenta.
A well-known feature of the quantization of time repar-

ametrization invariant theories is that the state is not ex-
plicitly time dependent, hence one should find among
intrinsic degrees of freedom a variable that can play the
role of time. In the perfect fluid case, the Wheeler-
DeWitt’s equation assumes a Schrödinger-like form, due
to a linear term in the momenta connected with the fluid
degree of freedom. However, the Hamiltonian (24) does
not possess such linear term, rendering ambiguous the
choice of an intrinsic time variable. Notwithstanding, we
still can define an evolutionary time for the perturbations if
we use the Bohm-de Broglie interpretation. The procedure
is similar to what is done in a semiclassical approach,
where a time evolution for the quantum perturbations is
induced from the classical background trajectory (see, e.g.,
Ref. [20] for details). Let us summarize it in the following
paragraphs.

First of all, take the Hamiltonian NH0, with H0 given in
Eq. (24) satisfying the Hamiltonian constraintH0 � 0, and
let us solve it classically using the Hamilton-Jacobi theory.
The respective Hamilton-Jacobi equation reads

� 1

2

�
@ST
@�

�
2 þ 1

2

�
@ST
@’

�
2

þ 1

2

Z
d3x

�
1ffiffiffiffi
	

p
�
�ST
�v

�
2 þ ffiffiffiffi

	
p

e4�v;iv;i

�
; (26)

where the classical trajectories can be obtained from a
solution ST of Eq. (26) through

_� ¼ �P� ¼ �@ST
@�

; _’ ¼ P’ ¼ @ST
@’

;

_v ¼ 1ffiffiffiffi
	

p � ¼ 1ffiffiffiffi
	

p �ST
�v

;

(27)

where we have chosen N ¼ lPle
3�=

ffiffiffiffiffiffiffi
2V

p
, and hence a time

parameter t (a dot means derivative with respect to this
parameter), related to conformal time through dt / a2d
.

We will now use the fact that the v variable is a small
perturbation over the background variables � and ’, and
that its backreaction in the dynamics of the background is

negligible. In this case, one can write STð�;’; vÞ as
STð�;’; vÞ ¼ S0ð�;’Þ þ S2ð�;’; vÞ; (28)

where it is assumed that S2ð�;’; vÞ cannot be splitted
again into a sum involving a function of the background
variables alone (which would just impose a redefinition of
S0). Noting that, in order to be a solution of the Hamilton-
Jacobi Eq. (26), S2 must be at least a second order func-
tional of v (see Ref. [21]), then S2 � S0 as well as their
partial derivatives with respect to the background varia-
bles. Hence one obtains for the background that

_� � �@S0
@�

; _’ � @S0
@’

: (29)

Inserting the splitting given in Eq. (28) into Eq. (26), one
obtains, order by order:

� 1

2

�
@S0
@�

�
2 þ 1

2

�
@S0
@’

�
2 ¼ 0; (30)

�
�
@S0
@�

��
@S2
@�

�
þ

�
@S0
@’

��
@S2
@’

�

þ 1

2

Z
d3x

�
1ffiffiffiffi
	

p
�
�S2
�v

�
2 þ ffiffiffiffi

	
p

e4�v;iv;i

�
¼ 0; (31)

� 1

2

�
@S2
@�

�
2 þ 1

2

�
@S2
@’

�
2 þOð4Þ ¼ 0: (32)

In Eq. (32), the symbolOð4Þ represents terms coming from
high order corrections to the Hamiltonian (24). As we are
interested only on linear perturbations, this equation will
not be relevant. The first Eq. (30) is the Hamilton-Jacobi
equation of the background which solution yields, together
with Eqs. (29), the background classical trajectories. Once
one obtains the classical trajectories �ðtÞ, ’ðtÞ, the func-
tional S2ð�;’; vÞ becomes a functional of v and a function
of t, S2ð�;’; vÞ ! S2ð�ðtÞ; ’ðtÞ; vÞ ¼ �S2ðt; vÞ. Hence
Eq. (31), using Eqs. (29), can be written as

@S2
@t

þ 1

2

Z
d3x

�
1ffiffiffiffi
	

p
�
�S2
�v

�
2 þ ffiffiffiffi

	
p

e4�ðtÞv;iv;i

�
¼ 0:

(33)

Equation (33) can now be understood as the Hamilton-
Jacobi equation coming from the Hamiltonian

H2 ¼ 1

2

Z
d3x

�
�2ffiffiffiffi
	

p þ ffiffiffiffi
	

p
e4�ðtÞv;iv;i

�
; (34)

which is the generator of time t translations (and not any-
more constrained to be null).
If one wants to quantize the perturbations, the corre-

sponding Schrödinger equation should be

i
@�

@t
¼ Ĥ2�; (35)

where � is a wave functional depending on v and t, and the
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dependences of Ĥ2 on the background variables are under-
stood as a dependence on t.

Let us now go one step further and quantize both the
background and perturbations. When the background is
also quantized, this procedure can also be implemented
in the framework of the Bohm-de Broglie interpretation of
quantum theory, where there is a definite notion of trajec-
tories as well, the Bohmian trajectories. In order to do that,
we first note that Eqs. (24) and (25) imply that

ðĤð0Þ
0 þ Ĥ2Þ� ¼ 0; (36)

where

Ĥ ð0Þ
0 ¼ � P̂2

�

2
þ P̂2

’

2
; (37)

Ĥ 2 ¼ 1

2

Z
d3x

�
�̂2ffiffiffiffi
	

p þ ffiffiffiffi
	

p
e4�̂v̂;iv̂;i

�
: (38)

We write the wave functional � as � ¼ expðAT þ
iSTÞ � RT expðiSTÞ, where both AT and ST are real func-
tionals. Inserting it in the Wheeler-DeWitt Eq. (36), the
two real equations we obtain are

� @

@�

�
R2
T

@ST
@�

�
þ @

@’

�
R2
T

@ST
@’

�

þ
Z d3xffiffiffiffi

	
p �

�v

�
R2
T

�ST
�v

�
¼ 0; (39)

� 1

2

�
@ST
@�

�
2 þ 1

2

�
@ST
@’

�
2

þ 1

2

Z
d3x

�
1ffiffiffiffi
	

p
�
�ST
�v

�
2 þ ffiffiffiffi

	
p

e4�v;iv;i

�

þ 1

2RT

�
@2RT

@�2
� @2RT

@’2

�
� 1

2

Z d3xffiffiffiffi
	

p 1

RT

�2RT

�v2
¼ 0: (40)

These two equations correspond to Eqs. (4) and (5),
respectively.

The Bohmian guidance relations are the same as in the
classical case,

_� ¼ �P� ¼ �@ST
@�

; _’ ¼ P’ ¼ @ST
@’

;

_v ¼ 1ffiffiffiffi
	

p � ¼ 1ffiffiffiffi
	

p �ST
�v

;

(41)

with the difference that the new ST satisfies a Hamilton-
Jacobi equation different from the classical one due to the
presence of the quantum potential terms (the two last terms
in Eq. (40)), which are responsible for the quantum effects.

We have again made the choice N / e3�. Whether this
procedure is unambiguously independent on the choice of
the lapse function is a delicate point. Indeed, in a general
framework (the full superspace), the Bohmian evolution of
three-geometries may not even form a four-geometry (a

space-time) in the sense described in Refs. [22–25],
although the theory remains consistent ([23,24]), and its
geometrical properties depends on the choice of the lapse
function. However, in the case of homogeneous spacelike
hypersurfaces, a preferred foliation of space-time is se-
lected, the one where the time direction is perpendicular to
the Killing vectors of these hypersurfaces. In this case,
once one has chosen this preferred foliation, one can prove
that the residual ambiguity in the lapse function (which is
now independent of space coordinates) is geometrically
irrelevant for the Bohmian trajectories (see Ref. [10]). This
is also true when linear perturbations are present, where the
Hamiltonian constraints reduce to a single one, and the
supermomentum constraint can be solved, as it was shown
in Ref. [6]. Again, the lapse function is just a time function.
In this case, the Bohmian quantum background trajectories
can be obtained without geometrical ambiguities [10], and
they can be used to induce a time dependence on the
perturbation quantum state, as we will see.
Let us assume, as in the classical case, that we can split

ATð�;’; vÞ ¼ A0ð�;’Þ þ A2ð�;’; vÞ implying that
RTð�;’; vÞ ¼ R0ð�;’ÞR2ð�;’; vÞ and STð�;’; vÞ ¼
S0ð�;’Þ þ S2ð�;’; vÞ, and that A2 � A0, S2 � S0, to-
gether with their derivatives with respect to the background
variables. The approximate guidance relations are

_� � �@S0
@�

; _’ � @S0
@’

; (42)

and the zeroth order terms of Eqs. (39) and (40) read

� @

@�

�
R2
0

@S0
@�

�
þ @

@’

�
R2
0

@S0
@’

�
� 0; (43)

� 1
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�
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�
2 þ 1

2

�
@S0
@’

�
2 þ 1

2R0

�
@2R0

@�2
� @2R0

@’2

�
� 0: (44)

which, again, correspond to Eqs. (4) and (5) for the back-
ground, respectively.
A solution ðS0; R0Þ of Eqs. (43) and (44) yield a

Bohmian quantum trajectory for the background through
Eq. (42). If S0 and R0 are obtained from Eq. (10), then the
Bohmian trajectories will be given by Eq. (14).
As in the classical case, once one obtains the Bohmian

quantum trajectories �ðtÞ; ’ðtÞ, the functionals S2ð�;’; vÞ,
A2ð�;’; vÞ become functionals of v and functions of t,
S2ð�;’; vÞ ! S2ð�ðtÞ; ’ðtÞ; vÞ ¼ �S2ðt; vÞ, A2ð�;’; vÞ !
A2ð�ðtÞ; ’ðtÞ; vÞ ¼ �A2ðt; vÞ.
Defining �ð�;’; vÞ � R2ð�;’; vÞ expðiS2ð�;’; vÞÞ,

writing it as

�ð�;’; vÞ ¼
Z

d�Gð�; vÞFð�;�;�Þ; (45)

where F satisfies

1
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@2F

@�2
� @2F
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�
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@�
� @R0
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�
¼ 0; (46)
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and G is an arbitrary functional of v, which also depends
on an integration constant �, then the next-to-leading-order
terms of Eqs. (39) and (40) read
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Z d3xffiffiffiffi
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2
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�
¼ 0; (47)
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�

� 1

2

Z d3x
�R2

ffiffiffiffi
	

p �2 �R2

�v2
¼ 0; (48)

where �R2ðt; vÞ � expð �A2ðt; vÞÞ. In order to obtain these
equations we used that

�
�
@S0
@�

��
@S2
@�

�
þ

�
@S0
@’

��
@S2
@’

�
¼ @ �S2

@t
; (49)

and the same for R2 and �R2.
These two equations can be grouped into a single

Schrödinger equation

i
@ ��

@t
¼ Ĥ2 ��; (50)

where ��ðt; vÞ ¼ �ð�ðtÞ; ’ðtÞ; vÞ is a wave functional de-

pending on v and t, and, as before, the dependences of Ĥ2

on the background variables are understood as a depen-
dence on t.

For the specific example of Sec. II, Eq. (10), one pos-
sible solution of Eq. (46) yields for � through Eq. (45)

�ð�;’; vÞ ¼ 1

Rð�;’Þ
Z

d�Gð�; vÞ

� exp

�ð�þ ’� d=hÞ2
2�

þ �h2ð�� ’� d=hÞ2
8

�
: (51)

From solution (51), we can construct ��ðt; vÞ �
�ð�ðtÞ; ’ðtÞ; vÞ solution of Eq. (50). Note that, as G is an
arbitrary functional of v and the real parameter �, the
functional ��ðt; vÞ constructed from (51) via ��ðt; vÞ �
�ð�ðtÞ; ’ðtÞ; vÞ is also an arbitrary functional of t and v
(even though �ð�;’; vÞ in (51) is not arbitrary in� and’).

During our procedure, we have supposed that the evo-
lution of the background is independent of the perturba-
tions. This no backreaction assumption is based on the fact
that terms induced by the linear perturbations in the zeroth
order Hamiltonian are negligible, which should be the case
when one assumes that quantum perturbations are initially
in a vacuum quantum state, as it is argued in Ref. [26]. We
will come back to this point in the conclusion.

Once one obtains the quantum trajectories for the back-
ground variables, they can be used to define a time depen-
dent unitary transformation for the perturbative sector. This
unitary transformation takes the vector j�i into j
i ¼

Uj�i, i.e. j�i ¼ U�1j
i. With respect to this transforma-

tion the Hamiltonian is taken into Ĥ2 ���! Ĥ2U with

i
d

dt
j
i ¼ Ĥ2Uj
i ¼

�
UĤ2U

�1 � iU
d

dt
U�1

�
j
i: (52)

Let us define this unitary transformation by

U ¼ eiAe�iB (53)

with,

A ¼ 1

2

Z
d3x

ffiffiffiffi
	

p _a

a3
v̂2; (54)

B ¼ 1

2

Z
d3xð�̂ v̂þv̂ �̂Þ logðaÞ: (55)

Remember that the time derivative, _a ¼ da
dt , is taken

with respect to the parametric time t related to the cosmic
time � by d� ¼ Ndt / a3dt. In these expressions, the scale
factor a ¼ aðtÞ should be understood as a function of time,
instead of an operator, since we suppose that the back-
ground quantum equations have already been solved. Thus,
a ¼ aðtÞ should be taken as the Bohmian trajectory asso-

ciated with equations Ĥð0Þ
0 j�i ¼ 0.

Naturally, the �̂ and v̂ operators do not commute with
the unitary transformation. Using the following relations

eiAv̂e�iA ¼ v̂; eiA�̂e�iA ¼ �̂� _a

a3
ffiffiffiffi
	

p
v̂

e�iBv̂eiB ¼ a�1v̂; e�iB�̂eiB ¼ a�̂:

We can calculate the transformed Hamiltonian as

Ĥ 2U ¼ a2

2

Z
d3x

�
�̂2ffiffiffiffi
	

p þ ffiffiffiffi
	

p
v̂;iv̂;i �

�
€a

a5
� 2

_a2

a6

� ffiffiffiffi
	

p
v̂2

�
:

(56)

Note that the unitary transformation U takes us back to
the Mukhanov-Sasaki variable.
Recalling that dt ¼ a�2d
, where 
 is the conformal

time, we have _a ¼ a2a0 and €a ¼ a4a00 þ 2a3a02, and the
Hamiltonian can be recast as

Ĥ 2U ¼ a2

2

Z
d3x

�
�̂2ffiffiffiffi
	

p þ ffiffiffiffi
	

p
v̂;iv̂;i � a00

a

ffiffiffiffi
	

p
v̂2

�
: (57)

So far our analysis has been made in the Schrödinger
picture but now it is convenient to describe the dynamics
using the Heisenberg representation. The equations of
motion for the Heisenberg operators are written as

_̂v ¼ �i½v̂; Ĥ2U� ¼ a2
�̂ffiffiffiffi
	

p ;

_̂� ¼ �i½�̂; Ĥ2U� ¼ a2
ffiffiffiffi
	

p �
v̂;i
;i þ

a00

a
v̂

�
:

Combining these two equations and changing to confor-
mal time, we find the following equations for the operator
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modes of wave number k, vk:

v00
k þ

�
k2 � a00

a

�
vk ¼ 0: (58)

This is the same equation of motion for the perturbations
known in the literature in the absence of a scalar field
potential [1]. The crucial point is that we have not used
the background equations of motion. Thus we have shown
that Eq. (58) is well defined, independently of the back-
ground dynamics, and it is correct even if we consider
quantum background trajectories.

Note, however, that this result was obtained using a
specific subclass of wave functionals which satisfies the
extra condition Eq. (46). What are the physical assump-
tions behind this choice?

When one approaches the classical limit, where R0 is a
slowly varying function of � and ’, condition (46) reduces
to

@2F

@�2
� @2F

@’2
� 0: (59)

If Eq. (59) were not satisfied, one would not obtain any-
more the usual Schrödinger equation for quantum pertur-
bations in a classical background (which arises when R0 is
a slowly varying function of� and’), due to extra terms in
Eqs. (47) and (48): there would be corrections originated
from some quantum entanglement between the back-
ground and the perturbations, even when the background
is already classical, which would spoil the usual semiclas-
sical approximation. This could be a viable possibility
driven by a different type of wave functional than the
one considered here, but it seems that our Universe is not
so complicated. In fact, the observation that the simple
semiclassical model without this sort of entanglement
works well in the real Universe indicates something about
the wave functional of the Universe [27].1 In other words,
the validity of the usual semiclassical approximation im-
poses Eq. (59).

When R0 is not slowly varying and quantum effects on
the background become important causing the bounce, the
two last terms of condition (46) cannot be neglected. They
would also induce extra terms in Eqs. (47) and (48), again
originated from some quantum entanglement between the
background and the perturbations, but now in the back-
ground quantum domain, and the final quantum Eq. (58)
for the perturbations we obtained would not be valid
around the bounce. In this case, there is no observation
indicating which class of wave functionals one should take
and our choice in this no man’s land resides only on

assumptions of simplicity: there is no quantum entangle-
ment between the background and the perturbations in the
entire history of the Universe. This is the physical hypothe-
sis behind the choice of the specific class os wave func-
tionals satisfying condition (46).
In the next section we will apply the above formalism

implying Eq. (58) to the specific example described in
Sec. II.

IV. APPLICATION OF THE FORMALISM

We will now use Eq. (58) to evaluate the spectral index
of scalar perturbations in the quantum background de-
scribed by Eq. (14). The potential V � a00=a reads

V � a00

a
¼ 1

a4

�
€a

a
�

�
_a

a

�
2
�

¼ �0h
2 expðhtÞ½1� �0 expðhtÞ�

a4
: (60)

Defining uk � vk=a, Eq. (58) in terms of the t variable
can be written as (from now on we will omit the index k),

€uþ k2a4u ¼ 0: (61)

When ht � 0, we can approximate a � expðd=hÞ�
½1þ �0 expðhtÞ�, and the general solution reads

u ¼ AþðkÞJ�ðzÞ � A�ðkÞJ��ðzÞ; (62)

where J is the Bessel function of the first type, � ¼
i2k expð2d=hÞ=h and z ¼ 4�1=2

0 k expð2d=hþ ht=2Þ=h.
At t ! �1, when the scale factor becomes constant and
space-time is flat, one can impose vacuum initial condi-
tions

vini ¼ eik
ffiffiffi
k

p ; (63)

which implies that AþðkÞ ¼ 0, and A�ðkÞ /
k�1=2 exp½i2k lnðkÞ expð2d=hÞ=h�. Hence, v in this region
reads

vI ¼ aA�ðkÞJ��ðzÞ: (64)

The solution can also be expanded in powers of k2

according to the formal solution (see Ref. [1])

v

a
’ A1ðkÞ

�
1� k2

Z t d �


a2ð �
Þ
Z �


a2ð ��
Þd ��

�
þ A2ðkÞ

�
�Z 
 d �


a2
� k2

Z 
 d �


a2

Z �

a2d ��


Z ��
 d ���


a2

�
þ . . . ;

(65)

When the mode is deep inside the potential, k2 � V, we
can neglect the k2 terms yielding

1In these references, it is pointed out how the features of our
Universe we take for granted (classicality, separability) impose
severe restrictions on the initial wave-function of the Universe.
In fact, our Universe could have been highly nonclassical,
completely entangled, even when it is large, depending on the
features of this initial wave solution.
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vII � a

�
A1ðkÞ þ A2ðkÞ

Z 
 d �


a2

�
¼ a½A1ðkÞ þ A2ðkÞt�:

(66)

We can now perform the matching of vI with vII in order
to calculate A1ðkÞ and A2ðkÞ. As we are interested on large
scales, k � 1, this matching can still be made when ht �
0. In this region one has V � �0h

2 expðht� 4d=hÞ, yield-
ing the matching time

htM ¼ ln

�
k2 expð4d=hÞ

�0h
2

�
: (67)

Note that the potential crossing condition relating the wave
number k and the time tM of the crossing is logarithmic. In
fact, since in this region the scale factor is almost constant,
the wave number is also logarithmically related to the
conformal time. This dependence is drastically different
from the slow roll scenario, where the conformal time of
potential crossing is inversely proportional to the wave
number, k / 1=
M.

Performing the matching at this time and taking the
leading order term in k, one obtains that

A1ðkÞ ¼ k�1A2ðkÞ / k�1=2 exp½i6k lnðkÞ expð2d=hÞ=h�:
(68)

Note that solution (65) is valid everywhere, hence we
can use it in the period when the scale factor evolution
becomes classical. During this period, unless for some fine
tuning, the mode is also deep inside the potential and one
can use Eq. (66) to calculate the Bardeen potential �
through the classical equation [1]

� ¼ �ð�þ pÞ1=2z
k2

�
v

z

�0
; (69)

where z � a2ð�þ pÞ1=2=H . For the case of a scalar field
without potential (stiff matter), z / a, yielding

� / A1ðkÞ þ A2ðkÞ
k2a4

; (70)

one constant and one decaying mode, as usual. The tran-
sition to radiation dominated and matter dominated phases
may alter the amplitudes but not the spectrum. The power
spectrum

P � � 2k3

�2
j�j2 / knS�1; (71)

yields for the spectral index, from the value of A1ðkÞ in the
constant mode given in Eq. (68), the value ns ¼ 3, contrary
to observational results [9]. This power law dependence
was checked numerically as can be seen by Fig. 2. Hence,
the model cannot describe the primordial era of our
Universe.

V. CONCLUSION

In this paper we were able to obtain the simple equation
for linear scalar perturbations of Ref. [1] for the case of a
scalar field without potential. The simplification procedure
was carried out without ever using any classical back-
ground equation. Instead, by a series of canonical trans-
formations and redefinitions of the lapse function we are
able to put the Hamiltonian in a form susceptible to
quantization.
However, contrary to the perfect fluid case, the scalar

field minisuperspace model has no natural way to define a
time variable since its Hamiltonian constraint does not
contain a linear term in the momenta. Nevertheless, if
one assumes there is no backreaction, we have shown
how to bypass this problem using the quantum background
Bohmian trajectories. The quantum background dynamics
in the Bohm-de Broglie interpretation naturally provides
an evolutionary time to the perturbative sector, similarly to
what is done at the semiclassical level through the classical
background trajectories [20].
These perturbation equations were then used to calculate

the spectrum index ns of the background model of Ref. [8]
yielding ns ¼ 3, incompatible with observations [9] (ns �
1). This result is intimately related to the logarithmically
dependence of the wave number to the potential crossing
time, see Eq. (67). As a consequence, the model should be
discarded. This is an example of an inflationary model
without (almost) scale invariant scalar perturbations.
The no backreaction hypothesis we have used was jus-

tified through the assumption that the perturbations are in a
quantum vacuum state initially [26]. One could verify the
consistency of such hypothesis by checking whether the
perturbations calculated under this assumption never de-
parts the linear regime in the region where the background
is influenced by quantum effects. This check was done in
other frameworks (see Ref. [6]), where self-consistency
was verified. This self-consistency check, however, was
not implemented here because the model studied in Sec. IV

FIG. 2 (color online). The power spectrum P� calculated
numerically. The numerical integration was carried out with h ¼
d ¼ 3� 102 and �0 ¼ 1. Since this is a log-log plot, one can
immediately check that P� / k2 for small k.
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does not present a scale invariant spectrum for long-
wavelength perturbations, and the model should be dis-
carded without the need of calculating the amplitude of
perturbations.

We have also assumed that there is no quantum entan-
glement in such a way that the background disturbs the
quantum evolution of the perturbations. This is a restriction
on the possible wave functionals of the Universe, which
should then satisfy condition (46). It should be interesting
to investigate situations where entanglement is allowed
when the background is in the quantum regime, which
would imply modifications of Eq. (58) at the bounce. In
this case, condition (46) reduces to condition (59) (no
entanglement when the background becomes classical).

Some future investigations should be to apply the for-
malism to bouncing models obtained in the framework of
quantum cosmology with scalar fields without potential
described in Ref. [28] in order to evaluate their spectral
index. We will also study the possibility to generalize the
simplification of the perturbation equations obtained here
to the case of scalar fields with an arbitrary potential term.
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