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We perform a detailed investigation of the simplest possible cosmological model in which a bounce can
occur, namely, that where the dynamics is led by a simple massive scalar field in a general self-interacting
potential and a background spacetime with positively curved spatial sections. By means of a phase space
analysis, we give the conditions under which an initially contracting phase can be followed by a bounce
and an inflationary phase lasting long enough (i.e., at least 60–70 e-folds) to suppress spatial curvature in
today’s observable universe. We find that, quite generically, this realization requires some amount of fine-
tuning of the initial conditions. We study the effect of this background evolution on scalar perturbations by
propagating an initial power-law power spectrum through the contracting phase, the bounce, and the
inflationary phase. We find that it is drastically modified, both spectrally (k-mode mixing) and in
amplitude. It also acquires, at leading order, an oscillatory component, which, once evolved through
the radiation and matter dominated eras, happens to be compatible with observational data.
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I. INTRODUCTION

The inflationary paradigm is now part of the standard
cosmological model (see Ref. [1] for a recent review with
updated references). So much so that the very idea of
challenging its main hypothesis might appear hopeless in
view of its impressive success in explaining the otherwise
mysterious observations that the Universe is flat and seem-
ingly free of remnants such as monopoles and in providing
a mechanism that exponentially damps any initial anisot-
ropy [2], as well as considerably alleviates the homoge-
neity problem, i.e., instead of demanding homogeneity
over an almost infinite spacelike hypersurface, it reduces
to finding a Planck size region over which the inflaton field
is homogeneous. In the usual (chaotic) scenario [3,4], this
is almost certain to occur, taking into account the infinite
amount of possible initial conditions. It then suffices to
argue that we happen to live in what has become of this
initial region (i.e., applying some sort of anthropic princi-
ple). Moreover, specific examples have shown that an
initially inhomogeneous universe, of the Tolman-Bondi
type for instance [5], also shows a trend to homogenize
under the action of inflation. Therefore, and even though
these arguments may not be entirely convincing in the most
general case, it is plausible to argue, somehow, that infla-
tion provides a dynamical means to drive any ‘‘weird’’
universe into one satisfying the cosmological principle.

Finally, inflation also predicts the spectrum of primordial
density fluctuations thanks to which large-scale structures
formed; this predicted spectrum can easily be made to fit
all the known data.

Why, then, would one insist in finding an alternative?
First of all, having a serious competitor usually boosts

the understanding and the predictability of the defender.
Although it is certainly of interest to provide new tests for
the inflationary paradigm to confront, it is of crucial im-
portance to provide a priori alternatives were the infla-
tionary predictions unable to match future observations. In
order to do so, one naturally turns to high energy exten-
sions of the standard theory. Nowadays, this mostly means
looking at the cosmological consequences of models that
can be implemented in string theory (see, e.g., [6]) in a
satisfactory way.

Moreover, inflation itself is not free from difficulties (see
for instance the discussion by Brandenberger in Ref. [1]).
Aside from assuming an otherwise never observed scalar
field to lead the dynamics of the Universe, a scalar field
whose potential is subject to some amount of fine-tuning
(arguably at the 10�12 level), it usually implies the exis-
tence of a singularity in the far past, may face a trans-
Planckian problem, and demands that quasiclassical gen-
eral relativity (GR) be valid up to energies of the order
10�3mPl, with m�2

Pl � GN the Planck mass (GN being
Newton constant). Of these problems, none is by itself
sufficient to reject the paradigm, but the combination might
provide a good motivation either to use a different ap-
proach or to complement inflation somehow.
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The pre-big-bang scenario (see the review [7]) was the
first to set the issue along these lines, followed, after quite
some time, by an application of the brane idea in e.g.,
Ref. [8] and in the so-called ‘‘ekpyrotic’’ model (see for
instance [9,10]). All these models,1 written in the Einstein
frame, contain a contracting phase preceding the ongoing
expanding one. The reversal between these phases yields a
bounce in the scale factor [15–18], with an impact on
cosmological observations for which general properties
have not yet been obtained. Note that roughly at the
same time as these models were developed, discussions
based purely on GR had concluded that no bounce could be
achieved with a perfect fluid source [19].

Among previous works on bouncing cosmologies, those
that stay within the framework of 4-dimensional GR
[20,21] have focused solely on the bounce-producing
mechanism. With a single dynamical degree of freedom,
a scalar field say, this requires closed spatial sections in
order to satisfy the null energy condition all along. Other
choices are possible. Achieving a bounce in four dimen-
sions with flat or even open spatial sections requires one to
violate the null energy condition and the presence of at
least two kinds of fluids, one of which must have negative
energy density [22–26]. As another alternative, a scalar
field with a nonconventional kinetic term can be used, the
so-called ‘‘K-bounce’’ [27]. There also exists phenomeno-
logical descriptions which aim to classify the possible
perturbation evolution through the bounce [28,29].

Having managed a background bounce, one needs to
describe the evolution of scalar and tensor perturbations in
this background for comparison with observations (note
also the existence of other possible tests of bouncing
scenarios, e.g., Ref. [30]). Propagating perturbations
through the bounce itself is very intricate [31,32] as one
wants perturbations to remain small at all times.
Unfortunately, Einstein gravity is often spoiled by the
necessarily weird conditions to be imposed in order for a
bounce to actually take place. In particular, having a nega-
tive energy fluid clearly leads to instabilities in the long
run; this is especially true for models having an infinitely
long contracting phase. This can however be handled by
assuming the bounce-making negative energy component
to be merely phenomenological, acting only for a short
time, the bounce duration, in general assumed comparable
with the Planck scale. In any case, there are no generic
properties that can be derived in a model-independent way
as in slow-roll inflation [33]. Very often, though, it is found
that a reasonable model connects two almost de Sitter
phases.

The presence of an expanding de Sitter phase after the
bounce naturally leads to the question of whether one can

implement an inflationary epoch connected to a bounce
phase, in a mixed situation somehow reminiscent of the
topological defects [34] versus inflation challenge: as to-
pological defects could not be identified as the sole source
of primordial perturbations, in particular, because of their
incoherent spectrum, it was suggested to switch the ques-
tion from ‘‘inflation or defects’’ to ‘‘inflation and defects or
inflation only’’ [35], especially in view of the fact that most
reasonable grand unified theories [36] are expected to
produce such defects at the end of inflation [37]. The
idea of the present work relies on the same point of
view: if a purely bouncing alternative is found to be
unrealistic, why not consider a situation in which inflation
follows a bounce?

The purpose of this work is thus to study a class of
models implementing this idea. We assume a bouncing
phase, obtained by a simple scalar field evolving in a
universe with closed spatial section, followed by an infla-
tionary epoch. This second era then provides the standard
solution for some usual cosmological issues (flatness and
homogeneity as well as reheating), while the bounce per-
mits the model to avoid a primordial singularity and pro-
vides an infinite horizon. The hope is then to find out
whether any effect could somehow be present in the pri-
mordial spectrum, leaving some imprint to be tested
against observations.

In the following section, Sec. II, we discuss the back-
ground model and recall the necessary conditions for the
occurrence of a bounce; this section is heavily based on
Ref. [20]. We also implement constraints that were not
considered in this reference and characterize the potential
through which perturbations propagate (this is detailed in
Sec. IV). Section III is then devoted to describing how a
bounce followed by inflation can take place in our frame-
work by means of a phase space analysis. This analysis
indicates that, as expected, some amount of fine-tuning is
demanded. In Sec. IV we obtain the potential through
which perturbations propagate and describe the propaga-
tion of scalar perturbations in this background. We derive
the resulting spectrum, which turns out to be the product of
an oscillatory component and an almost flat power-law
component at leading order, and find that the curvature
perturbation �BST (as first defined by Bardeen, Steinhardt
and Turner [38]) is not conserved through the bounce. On
the one hand, we can conclude that, based on the current
belief that the spectrum of primordial perturbations at
horizon exit should be scale invariant and almost flat
with possibly superimposed features at higher order, this
class of models can most likely be generically ruled out
unless a justification is found under which the wavelength
of the oscillations is sufficiently long so as to make them
unnoticeable. On the other hand, because the cosmic mi-
crowave background (CMB) multipoles C‘ are roughly
given by the convolution of a spherical Bessel function
with the initial power spectrum we find that evolving this

1We do not here consider the other category of models based
on string gas cosmology [11–14], as they do not contain a
bounce phase.
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spectrum through the radiation and matter dominated eras
damps the oscillations and results in a spectrum of CMB
multipoles not incompatible with the Wilkinson
Microwave Anisotropy Probe (WMAP) data [39,40].

II. BACKGROUND BOUNCING MODEL

Our starting point consists of GR with a scalar field, i.e.,
we assume the dynamics to derive from the action

 S �
Z

d4x
�������
�g
p

�
R

6‘2
Pl

�
1

2
@�’@�’� V�’�

�
; (1)

with ‘2
Pl �

8
3�GN the Planck length (GN being Newton

constant) and V�’� the self-interaction potential for the
scalar field ’, which is left unspecified for the time being.
In what follows, for notational convenience, we shall as-
sume the natural system of units in which 8�GN � 1.
Assuming homogeneity and isotropy, the background
which solves the equations of motion derived from
Eq. (1) takes the Friedmann-Lemaı̂tre-Robertson-Walker
form and reads

 ds2� dt2�a�t�2
�

dr2

1�Kr2� r
2d�2� r2sin2�d�2

�
; (2)

where a�t� is the scale factor, and where the spatial curva-
ture K> 0 can be normalized to unity. The scalar field ’
can be understood as either fundamental or phenomeno-
logical, but in both cases, its energy density �’ and pres-
sure p’ are given by

 �’ �
_’2

2
� V�’�; p’ �

_’2

2
� V�’�: (3)

In Eq. (3) and in the following, a dot denotes a derivative
with respect to (w.r.t.) cosmic time t. In the forthcoming
calculations, we also use the conformal time � defined
through

 dt � a���d�; (4)

and unless specified otherwise, derivatives w.r.t. � will be
denoted by a prime, so that for an arbitrary function of time
f, one has f0 � a _f.

Einstein’s field equations relate the time evolution of the
scale factor a�t� to the stress tensor for ’ (i.e., to the
pressure p’ and the energy density �’) through

 H2 �
1

3

�
1

2
_’2 � V

�
�

K

a2 ; (5)

 

_H �
1

3
�V � _’2� �H2; (6)

where H � _a=a is the Hubble expansion rate, while the
(redundant) dynamical Klein-Gordon equation for ’ is
given by

 �’� 3H _’� V;’ � 0: (7)

Combining Eqs. (5) and (6) yields the following relations:

 �’ � p’ � 2
�
K

a2 �
_H
�
; (8)

 �’ � 3p’ � �6� _H�H2�; (9)

with which the energy conditions can be rephrased in terms
of the time behavior of the Hubble rate H and scale factor
a. Since, by definition, one has H � 0 and _H � �a=a0 > 0
at the bounce, the null energy condition (i.e., �’ � p’ �
0) is only preserved provided K> 0, hence the choice of
positively curved spatial sections. On the other hand, as in
inflationary scenarios, the strong energy condition (namely
�’ � 3p’ � 0) is necessarily violated. Note that this vio-
lation of the strong energy condition is nothing but the
usual requirement that �a > 0 in an inflationary stage.

Following Ref. [20], we now switch to a description in
terms of conformal time as defined above and expand the
scale factor a, the scalar field ’, and its potential V�’�
around the bounce, set, for definiteness, to take place at
� � 0. To fourth order in �, we have
 

a��� � a0
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�
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�
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�
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�
3
�

5

4!
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4
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�O��5�; (10)
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2
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4
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V�’� � V�’0� � V;’’00��
1

2

�
d2V

d’2 ’
02
0 �

dV
d’

’000

�
�2

�O��3�; (12)

where �0 (a0�0 in physical units) defines the duration of
the bounce and provides a natural time scale. In Eq. (10),
the fourth order term with 	 � 0 is written in this way in
order to emphasize the deviation from the quasi-de Sitter

solution, namely a��� � a0

���������������������������������
1� tan2��=�0�

p
; this is dis-

cussed in Ref. [20]. The asymmetry parameter in the O��3�
term with � � 0 thus corresponds to a deviation from a
purely symmetric bounce.

Inserting Eqs. (10)–(12), into Eqs. (5)–(7), and assum-
ing2 ’00 � 0, one can relate the scale factor parameters to
the field values at the bounce as follows:

 a2
0 �

3��

V0
; (13)

which gives the value of the scale factor at the bounce, and

2In the case of a symmetric bounce, ’0? � 0 corresponds to a
de Sitter bounce since

 lim
’00!0
��’ � p’� � 0;

and in the case of an asymmetric bounce there is singular
behavior in the evolution of the perturbations.
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where V0 � V�’0� and � � 1
2’
02
0 , as in Ref. [20],

 �2
0 �

1

1��
; (14)

which gives the characteristic duration of the bounce,

 � �
�3���

����
�
p

3
���
2
p
�1���3=2

V 00
V0
; (15)

and

 	 �
4���� 1�

5��� 1�2
�

�
V 00
V0

�
2 ��� 3�2

5��� 1�2
�
V000
V0

2��3���

5��� 1�2
;

(16)

the two parameters describing the deviation from a purely
de Sitter bounce. Note that in Eqs. (15) and (16), we have
defined a prime, when applied to the potential V, to denote
a derivative w.r.t. ’, the function being evaluated at the
bounce, i.e., V 00 � V;’�’0�. Note that since �2

0 � 1, we
also have 0 � � � 1.

As made clear in [20], if one restricts the analysis to a
symmetric bounce, one has � � 0 such that either ’00 � 0,
in which case � � 0, or ’000 � V;’ � 0. The first case,
’00 � 0, corresponds to the exact de Sitter case (�0 � 1):
the null energy condition is then only marginally violated
and only the gauge modes of scalar perturbations interact
with the potential term (see Ref. [41] for a detailed exami-
nation). The second situation, having � � 0, demands that
both ’000 and V;’ vanish at the bounce.

In both cases, one has ’00 � ’00	V�’�; ’0;H 
 so that
requiring a symmetric bounce shrinks the continuous set of
all possible trajectories to a discrete set, i.e., in a symmetric
bounce, the solutions of Friedmann’s equations at the
bounce are a denumerable set.

Another interesting qualitative result can be obtained by
expanding the kinetic term 1

2 _’2 around the bounce. One
gets
 

’02

2
� ��

V00
V0

���
2
p ���������������������

���� 3�
p

��
�

2��1���

� 2
�
V 00
V0

�
2
�
�

2
� 3

�
2
�
V 000
V0

���� 3�
�
�2; (17)

the right-hand side of which must evidently remain posi-
tive for ’ real. In the (quasi)symmetric case for which one
can ignore all V 00 terms, this simplifies to

 

1

2

V 000
V0

�� 1

�� 3
� 0: (18)

Given the bounds on �, this means that V 000 � 0: the
potential must have a convex part, which the field explores
right at the very moment of the bounce. This restricts the
possible shapes for the self-interacting potential V�’�; our
specific choice of Eq. (19) in Sec. III does indeed fulfill
such a requirement. Note that in the more generic asym-

metric case, although we believe that in small deviations
from the symmetric case, the convex shape of V�’� at the
time of the bounce remains necessary, no such firm re-
striction can in fact be obtained, and more freedom in the
choice of V�’� is expected to be allowed.

In the case of a general asymmetric bounce, it is worth
noting that there are two very distinct ways in which’may
evolve if the condition’0 � 0 imposed in Eqs. (13)–(16) is
relaxed. One may obtain such a bounce if ’ either moves
up the potential until ’0 � 0, at which point it returns
towards the value it started from or if it evolves from one
minimum of the potential to another one. As we shall see,
the former implies singular behavior of the perturbation
equations at the bounce, and so is not considered any
further in the subsequent analysis while in the latter case,
one necessarily has ’00 � 0, ’000 � 0, and V;’ � 0, and the
set of solutions is a finite volume of phase space dependent
on the form of V�’� only. We discuss these points further in
the following section.

III. PHASE SPACE ANALYSIS

In the previous section, we were able to determine some
of the properties V�’� should satisfy for a bounce to occur.
In this section, further insight into the full dynamics is
gained by means of a phase space analysis of the evolution
of both the Hubble parameter and the scalar field in the
�’; _’;H� phase volume. Such an analysis is possible only
once a specific form of the potential V�’� is given. In the
remainder of the paper, we consider a spontaneously bro-
ken symmetry (Mexican-hat) potential of the form

 V�’� � V0 �
�2

2
’2 �



4!
’4; (19)

where � and 
 are the mass and self-interaction parame-
ters, respectively, and V0 is the height of V�’� for ’ � 0.
Such a potential, quite apart from being often used for
different inflationary models, is theoretically well moti-
vated for instance as stemming from a grand unified theo-
ries framework, in which case ’ is identified with a
component of a larger scalar multiplet, the other degrees
of freedom of which are somehow frozen at the energy
scales under consideration.

The potential (19) might lead to the formation of domain
walls [42,43], which, forming in the very early universe,
would spoil its overall evolution and result in a singular
crunch [44]. However, if ’ belonged to a larger multiplet,
the symmetry-breaking scheme would hopefully be suffi-
ciently different so as not to produce such defects, although
even if the decoupling of the various degrees of freedom is
effective enough that domain walls should have formed, it
is not absolutely clear whether it would have such a dra-
matic impact. Consider first the inflationary case. The
maximum temperature, once thermalization is taken into
account, is found to be quite below the Hagedorn tempera-
ture, so that the symmetry is, in fact, not restored and no
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defects can be formed at all as one proceeds backwards in
time [45,46]. In the bouncing case for which one starts out
with a large and cold universe, the argument does not stand
anymore, as the field must be assigned arbitrary values in
regions of spacetime separated by a distance larger than its
correlation length, in practice its Compton wavelength
(note that the ‘‘causality’’ argument [42] cannot apply in
this case, as the horizon can be assumed infinite in the past
infinity at which one sets the initial conditions). Taking
into account the effects caused by the evolution of the
background, it seems probable, though by no means guar-
anteed, that the subsequent contraction would result in high
decay rates of wall and antiwall configurations, possibly
leading to a simple and automatic solution of the wall
puzzle (with tremendous production of particles). The
remaining wall distribution can, once transferred into the
expanding epoch, be made consistent with observations,
e.g., the CMB [39,40], provided the network is strongly
frustrated [47], or if an initial bias, however tiny [48–50],
is introduced in the potential.

As it turns out, the phase space analysis is most easily
performed using the cosmic time variable t. It provides
some valuable insight, particularly on the space of initial
conditions that ensure the stability of the background
spacetime and the occurrence of a bounce somewhere in
its history. As we shall see, a potential of the form (19)

leads naturally from a contracting phase to a bounce and on
to a slow-roll type inflationary phase. In what follows, we
first discuss the set of possible trajectories restricting our-
selves to the planes �H; _’� and �’; _’� and then go on to
describe trajectories in the full volume �H;’; _’�.

To build the phase portrait in the ( _’, H) plane, we start
with a set of evenly distributed initial values for _’ and H,
for a fixed value of ’, and construct flow vectors with
components _H and �’ defined using (6) and (7) as illus-
trated on Fig. 1. The K � �1 region is bounded above and

below by the K � 0 solutionH � �
����������������������
1
3 � _’2 � V�

q
, denoted

by the two parabolic thick curves in Fig. 1, beyond which
the trajectories describe the K � �1 case. A simplified
view of the full dynamics, as provided by the three slices of
the figure, readily indicates that a closed universe under-
going a period of slow-roll type inflation has a nonzero
probability of having crossed the H � 0 plane in the past
and therefore undergone a period of slow-roll type con-
traction prior to the bounce, as indicated by the two central
trajectories (denoted by the dashed curves) in the right
panel. Projections of typical bouncing trajectories in the
�H; _’� plane are shown in Fig. 2 for various initial con-
ditions. As we shall see in the subsequent analysis, there
exists, in the full 3D phase space, two saddle points located
atH ’ �3 and ’ � _’ ’ 0. In the 2D slices of Fig. 1, these

−2 −1 0 1 2
−4

−2

0

2

4

ϕ
.

H

−2 −1 0 1 2
−4

−2

0

2

4

ϕ
.

H

−2 −1 0 1 2
−4

−2

0

2

4

ϕ
.

H

FIG. 1 (color online). Phase portrait in the � _’;H� plane for � � 3=2, 
 � 3�4=2V0, and fixed values of ’, equal to�2,�1:25, 0 in
the left, center, and right panels, respectively. The flow vectors are located at equally spaced values of _’ and H, are normalized to
magnitude unity and their direction is determined using (6) and (7). In each panel the isoclines are indicated by thin lines and the thick

parabolic curves are the K � 0 solutions, i.e., H � �
����������������������
1
3 � _’2 � V�

q
. The region in between the curves corresponds to K � 1, while the

two remaining regions, one of which is above the top thick curve and the other below the bottom thick curve, are K � �1 regions.
The trajectories displayed as thick dashed lines correspond to solutions of the coupled system (6) and (7), some of which connect a
slow-roll ( _’� 1), H < 0 region across H � 0 onto a slow-roll ( _’� 1), H > 0 region, while others are either singular or purely
inflationary solutions in the region K � �1. In the center panel increasingly more trajectories have singular behavior as compared to
the panel on the right because the region containing nonsingular bouncing solutions shrinks as one moves away from ’ � 0, i.e., away
from the top of the potential V�’�. In the left panel, which corresponds to the bottom of the potential V�’�, this region has shrunk down
to a single point.
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saddle points reduce to a repulsor and an attractor, respec-
tively, not only in the ’ � 0 slice but also in the two other
ones, for which the locations of the critical points of course
shift away from H ’ �3 to ’ �1:75 (center panel) and
then collapse into a single point (left panel). Given the
existence of these two saddle points, some trajectories
describe a situation in which a universe undergoing slow-
roll contraction naturally bounces and then experiences
slow-roll inflation in the usual way. Going from right to
left in the figure, in the direction of increasing ’, one finds
that the stable region in which a bounce occurs shrinks and
the left-right symmetry of the right panel is lost. When the
field reaches the bottom of V�’�, Vmin, the region has
shrunk to a point. Some other trajectories, on the other
hand illustrate a singular evolution for which H grows
increasingly negative and ’ is driven to 1.

The phase portrait in the �’; _’� plane can be constructed
in a similar way. To do so, we fix H and set up ’ and _’
initial values with a flow given by the _’ values as the vector
component in the ’ direction, and use Eq. (7) to define
components in the _’ direction (see Figs. 3 and 4). On the
top and bottom left panels of Fig. 3, H < 0, and if ’ is
perturbed away from Vmin, both ’ and _’ will be driven to
large values. The top and bottom right panels show that for
H > 0, ’! ’� ’ 2 (’ are the values of ’ for which
V�’� is at its minimum Vmin) and _’! 0, as expected. Note
also that as H ! 0�, trajectories are increasingly circular
and that in each 2D slice, there exists spiral points at ’ �
�2 and _’ � 0. Anticipating on the forthcoming results of
the 3D phase space analysis, one notes that by arranging
the initial conditions for H and _’ appropriately near Vmin,

’ can be pushed towards zero, the region in which trajec-
tories are nonsingular and undergo a bounce will be
approached.

Turning to the full �’; _’;H� volume (see Fig. 5 for an
illustration of what a trajectory might look like), we may
now determine both the location of the critical points and
their stability. The full differential system reads
 

d’
dt
� _’; (20)

 

d2’

dt2
� �3H _’��2’�



6
’3; (21)

 

dH
dt
�

1

3

�
V0 �

�2

2
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4!
’4 � _’2

�
�H2: (22)

The critical (fixed) points are determined by setting
Eqs. (20)–(22) to 0 and solving for ’, _’, and H. One finds

 ’ � 0; _’ � 0; H � �

������
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s
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s
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�2V0
� 3�4�
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s
:

Linearizing Eqs. (20)–(22) around these six critical points
and determining the corresponding set of eigenvalues pro-
vides a measure of stability. We first find that �0; 0;

�����������
V0=3

p
�

is a saddle point SP1 with two negative eigenvalues ��SP1�
1 ,

��SP1�
2 and one positive eigenvalue ��SP1�

3 , given, respec-
tively, by
 

��SP1�
1 � �2

������
V0

3

s
; (23)

 ��SP1�
2;3 �

1

2

�
�

��������
3V0

p


�����������������������
3V0 � 4�2

q �
: (24)

Similarly, �0; 0;�
�����������
V0=3

p
� is another saddle point SP2, this

time with two positive eigenvalues ��SP2�
1 , ��SP2�

2 and one
negative eigenvalue ��SP2�

3 , namely
 

��SP2�
1 � 2

������
V0

3

s
; (25)

 ��SP2�
2;3 �

1

2

� ��������
3V0

p
�

�����������������������
3V0 � 4�2

q �
: (26)

The four remaining critical points have eigenvalues

0.1 0.0 0.1 0.2 0.3 0.4
3

2

1

0

1

2

3

H

FIG. 2 (color online). Trajectories projected in the � _’;H�
plane for � � 3=2, 
�3�4=2V0, and for four different sets of
initial conditions on �H;’; _’�, namely �0; 0; 1=10� (dotted line),
�7=10; 0; 1=10� (short-dashed line), �3=5

�����������
V0=3

p
; 0; 1=5� (long-

dashed line), and ��3=5
�����������
V0=3

p
; 0; 1=5� (solid line). Note that

trajectories are practically undistinguishable on either side of the
short bouncing phase during which they cross the H � 0 axis.
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�1 � �2H0; (27)

 �2;3 �
1

2

�
�3H0 �

������������������������
9H2

0 � 8�2
q �

; (28)

where we have set H0 �
�����������������������������������
�V0=3��4=2
�

p
. One sees that

9H2
0 � 8�2 > 0 follows if 
 > 9�4=	2�3V0 � 8�2�
, so

that �2;3 < 0 (respectively >0) when H0 > 0 (respectively
<0), i.e., they are either an attractor or a repulsor.

On the other hand, 9H2
0 � 8�2 < 0 implies that �2;3 are

complex valued. In this regime, they are either asymptoti-
cally stable (ASpP) or plainly unstable spiral points. The
special situation 
 � 3�4=2V0 corresponds to V�’�� �

V�’�� � 0, i.e., a vanishing cosmological constant � � 0;
the four distinct critical points then reduce to two simply
stable spiral points with H � 0. In the following, largely
for the sake of simplicity and since most of the physics we
investigate takes place at the top of the potential, we set
� � 0.

As already suggested by Figs. 1 and 3, bouncing trajec-
tories necessarily experience both a slow-roll inflationary
phase, in the neighborhood of the saddle point SP1 and a
slow-roll contracting phase in the neighborhood of the
saddle point SP2. During inflation, the Hubble parameter
reaches its maximum value

�����������
V0=3

p
( ’ 3 in the figures) and

then decreases along a ridge while ’ and _’ will spiral into
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FIG. 3 (color online). Phase portrait in the (’, _’) plane for� � 3=2, 
 � 3�4=2V0, and for fixed values of the Hubble parameter H,
equal to �

�����������
V0=3

p
’ �3,

�����������
V0=3

p
’ 3 in the top left and right panels, respectively, and �0:1, 0.1 in the bottom left and right panels,

respectively. When H < 0 (left-hand side), the system is naturally pushed away from ’ � �2 towards large values of both ’ and _’.
The opposite is true when H > 0 (right-hand side). Combined with Fig. 1, it is clear that initial conditions taken at the bottom of the
potential, i.e., ’ ’ �2, _’ � 0, and H � 0, have to be appropriately (fine) tuned in order for the system to stay nonsingular (i.e., ’ and
_’ remaining small) and to evolve towards the region in which a bounce ensues. When H > 0 (top and bottom right panels), the system

remains stable and naturally tends towards the bottom of the potential where ’ � 2.
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one of the ASpP. Evolving the system backward in time,
one finds that after crossing the H � 0 plane the Universe

undergoes a slow-roll contracting phase with H �
�

�����������
V0=3

p
( ’ �3 in the figures) followed by a spiral to-

wards one of the unstable spiral points. The trajectory of
Fig. 5 is easily understood from combining trajectories in
Figs. 1 and 3. Indeed, beginning with appropriately fine-
tuned initial conditions at Vmin with ’ ’ �2, _’ � 0, and
H < 0, the system can naturally follow a trajectory that
leads it towards ’ � 0 and _’ � 0 (going from left to right
in Fig. 1), H will therefore become increasingly negative.
This corresponds to the spiraling motion and the evolution
along a ridge in Fig. 5. This evolution drives the system to
SP2, where slow-roll contraction occurs. The system then
naturally undergoes a bounce, reaches SP1, evolves out
along a ridge (top right panel of Fig. 3), as H decreases
towards smaller positive values. The spiralling into the
ASpP then ensues.

At this stage of the analysis, the question of initial
background conditions naturally arises. Up to now, we
have identified a finite phase space volume in which all
trajectories bounce, two saddle points and four spiral
points. Working in this very same volume, one may further
define the _H � 0 surface on which lies a closed �H � 0
curve. One can then identify a region on the portion of the
surface bounded by the closed �H � 0 curve through which
the dynamical system can escape the volume within and
lead to a singular universe. One finds that there is a sizable
region on the _H � 0 surface for which �H < 0. Combining
volume and surface information, one concludes that initial
conditions can be taken safely in the bulk only, or near the
surface but in the region for which �H > 0. Note that all
critical points lie on the _H � 0 surface, by definition. The
critical points �0; 0;�

�����������
V0=3

p
� lie on both the _H � 0 sur-

face and the �H � 0 curve; so do ��
�����������������
4V0=�

2
p

; 0; 0�. Given
that the latter are spiral points, it turns out to be extremely
difficult (at least numerically) to choose initial conditions
leading to trajectories inside the favored volume: initial
conditions taken in the neighborhood of these critical
points but only very slightly away have a high chance of
leading to trajectories that escape the volume and eventu-
ally become singular.

Let us now comment further on the required amount of
fine-tuning necessary for the bounce to take place. Among
the set Vtotal of all possible solutions, the subset that

1

0

1

0.0
0.2

0.4

2

0

2

H

FIG. 5 (color online). Four trajectories joining a slow-roll
contracting phase to a slow-roll expanding phase in the full
three-dimensional phase space. The sets of parameters used
are the same as in previous figures. These trajectories are well
understood from combining the 2D trajectories of Figs. 1 and 3.
For a scalar field ’ at the bottom of its potential in a contracting
phase, one has H < 0, ’ ’ �2, and _’ � 0. Since H < 0, if
disturbed away from its minimum by a fluctuation, ’ will be
driven farther away from its vacuum expectation value (see the
bottom left panel of Fig. 3 and also Fig. 4). For appropriately
(fine) tuned initial conditions, the field will be driven towards
’ � 0 and _’� 1 such that (see Figs. 1 and 2, going from left to
right) H will grow more negative until ’ ’ 0, _’� 1, where a
slow-roll contracting phase (with ’ ’ 0, _’� 1, and H ’
�

�����������
V0=3

p
’ 3) will ensue. The trajectory will then almost neces-

sarily follow a bouncing trajectory and reach a slow-roll infla-
tionary phase followed by a spiral down in the other minimum of
V�’� (i.e., it will follow an evolution identical to but reversed
w.r.t. the contracting evolution just described). Note that,
although it is certainly a possibility, here we do not consider
the case in which the field turns around because as we will see,
the perturbation equations are singular for _’ � 0.

1.0 0.5 0.0 0.5 1.0

0.1
0.0
0.1
0.2
0.3
0.4
0.5

FIG. 4 (color online). Trajectories projected in the �’; _’� plane with the same sets of parameters as in FIG. 2.
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bounce, Vb � Vtotal say, is either of dimension Db � 3 or
less (Db < 3) thus leading to a fractal structure (see
Refs. [51–53] for such considerations). In the latter case,
the set of acceptable solutions is of zero measure, so one
could argue, in the absence of a specific mechanism that
would impose precisely those, that a bouncing phase could
not have taken place. More work is needed to clarify this
point. However, in the (more plausible?) case Db � 3, the
initial conditions needed to initiate a bouncing trajectory
can be more easily driven to the allowed region (see how-
ever Ref. [16]). Not knowing what happens before the
phases we describe here, it is essentially impossible to
conclude on the amount of theoretical fine-tuning: the
situation is akin to demanding vanishing spatial curvature
K � 0, i.e., a point (measure zero) on the line of possi-
bilities or, invoking inflation, a small but finite region
leading to an observationally small spatial curvature.

One point can however be discussed explicitly, and it
concerns the required level of numerical precision needed
to reach a bouncing solution starting from a large contract-
ing universe. Let us assume that we begin the calculation at
some time tini say, where we want to impose initial con-
ditions. Writing the Friedmann constraint equation at tini

yields

 aini � eNini �

�
K

	12 _’2
ini � V�’ini�
 �H2

ini

�
1=2
; (29)

with Nini the number of e-folds we start with. It is clear that
the denominator is of order eNini . In other words, the larger
the universe prior to contraction, the more numerical ac-
curacy is necessary at tini to satisfy the constraint equation.
And this is even before one asks the question of the
Lyapunov stability of the dynamical system. Again, all
these considerations do strongly depend on the prior
mechanism of precooling [54], which might in fact have
the ability to naturally lead to the nonsingular region.

IV. SCALAR PERTURBATIONS

We now consider a typical bouncing solution, such as
the one depicted on Fig. 6 where the solid and dashed lines
represent the time evolution of H and a respectively, from
a slow-roll contracting phase across a bounce to a slow-roll
inflationary phase.

Let us now move on to metric perturbations, and con-
sider the gauge invariant gravitational potential � in the
presence of density perturbations �’. Working in confor-
mal time � for convenience, and in longitudinal gauge
[55,56], the scalar part of the perturbed metric reads

 ds2 � a2���	��1� 2��d�2 � �1� 2���ijdxidxj
:

(30)

where �ij is the background metric of the spatial sections.

Einstein’s equations, to first order, imply
 

�00 � 2
�
H �

’00

’0

�
�0

�

�
k2 � 4K� 2

�
H 0 �H

’00

’0

��
� � 0; (31)

where k �
������������������
n�n� 2�

p
is the comoving wave number (the

eigenvalue of the Laplace-Beltrami operator), while H
denotes the conformal time counterpart of H, namely
H � a0=a � aH.

Using the generalized form of the Mukhanov-Sasaki
variable Q [57–59]

 Q � �’�
�
’02 � 2K

H 2’0

�
�; (32)

and further defining ~Q � aQ, Eq. (31) can be written in the
form

 

~Q 00 �
�
20


�
z0

z

�
~Q0 �

�
z

2 �
00


�
z00

z

�
~Q � 0; (33)

where

  �
H

a’0
;

and
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FIG. 6. Number of e-folds, loga, (dashed-dotted line) and
Hubble parameter H (solid line) as functions of time, for a
symmetric bounce, with the Mexican-hat potential V�’� of
Eq. (19), with parameters V0 � 1, � � 1, and 
 � 3�4=2V0.
In order to obtain this solution, initial conditions were taken at
the bounce, with _’0 � 1=10. Note that these values were chosen
such that the Hubble parameter remains almost constant in both
the contracting and expanding phases for � 70 e-folds.
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 z � 
�
k2 �K

�
6�

2’00

H’0

��
:

Note, incidentally, that Eq. (33) reduces to the usual form
 

~Q00 �
�
k2 � a2V;’’ �

2H 00

H
� 2

�
H 0

H

�
2

�H 0 � 5H 2

�
~Q � 0 (34)

when the spatial sections are flat.
It is obvious from Eqs. (31)–(34) that the equation of

motion for � is well behaved through the bounce, even
though H goes through zero, while that for ~Q is well
behaved far from the bounce in the so-called reheating
(precooling) phase, that follows (precedes) the inflationary
(contracting) phase in which ’0 oscillates around zero.
Equation (33), however, appears well behaved in neither
one of these two regimes.

In fact, Eq. (34) can be made more compact by taking
z0 � a’0=H , in which case one obtains the well-known
form of the equation for the perturbations as that of a
parametric oscillator,

 

~Q 00 �
�
k2 �

z000
z0

�
~Q � 0: (35)

This well-known form is indeed simpler than (34), but the
potential term is of course still singular when H � 0 and
Eq. (35) is therefore not useful through the bounce. The
inverse set of remarks can be made of the often used
variable u, which is related to � by

 � �
3H

2a2�
u; (36)

where

 � �
1

a

� �’
�’ � p’

�
1=2
�
1�

3K

�’a
2

�
1=2
; (37)

leading to an equation of motion for u which reads

 u00 �
�
k2 �

�00

�
� 3K�1� c2

S�

�
u � 0; (38)

where the potential term is U��� � �00=�� 3K�1� c2
S�,

and given explicitly by

 U��� �H 2 � 2
�
’00

’0

�
2
�
’000

’0
�H 0 � 4K: (39)

Note that this potential grows as a2 away from the bounce
and is not well-defined in the oscillatory preheating (cool-
ing) phase that follows (precedes) the bounce. The virtue of
using the variable u in fact lies in the fact that Eq. (38) is
well behaved at the bounce, as opposed to Eq. (35). The
form of Eq. (38) is therefore particularly well suited to
understand the effect of the potential term U��� in the
neighborhood of the bounce. Indeed, substituting

Eqs. (14)–(16) into the asymmetric version of Eq. (48) of
Ref. [20], the amplitude of the potential at the time of the
bounce reads

 Ub � �5��� �
V 00b
Vb
�3��� �

�
V 0b
Vb

�
2 ��� 3�2

�
; (40)

so that taking the limit �! 0 leads to _’! 0 and �! 0
and approaches a symmetric de Sitter bounce. Note that we
have switched notation: what was labeled using the sub-
script ‘0’ in Sec. II and denoted quantities evaluated at the
bounce now bares the subscript ‘b’ in order to distinguish
these quantities from V0 which now appears explicitly in
the following expressions as the constant term of the
potential V�’� � V�’ � 0�. Using Eq. (19) one has

 

V0b
Vb

�

�
’
4
�

3��2’2 � 4V0�

12�2’� 2
’3

�
�1
; (41)

and

 

V00b
Vb

�

�
’2

12
�

5�2

6

�

6V0 � 5�2

6
�2 � 3
2’2

�
�1
; (42)

such that if the scalar field goes to either one of the limits

 ’! �

�����������������������������������������������������
6�2



�

2�9�4 � 6V0
�1=2




s
; (43)

the potential exhibits a large central peak. However, for the
theory to make any sense at all, the potential should be
positive definite. This is ensured provided one demands
Vmin � 0, where Vmin � V0 � 3�4=�2
� is the minimum

value of V, attained for ’!
���������������
6�2=


p
. This means that


 � 3�4=�2V0�. In Eq. (43) however, the argument of the
square root requires the opposite condition 
 � 3�4=�2V0�
to hold in order to keep ’ real. The above-mentioned limit
can therefore not be approached without violating one or
the other condition: the quantities V 0b=Vb and V 00b =Vb must
therefore remain small. The potential Ub, having no large
central peak, therefore does not affect the perturbations
much as they pass through the bounce itself. The question
of the wings (located at �� 0:75 in Fig. 7), and, in
particular, whether there is any way of showing they re-
main small, is left unanswered.

It should be noted that the variable ~Q is equivalent to the
variable often denoted by v in the literature (see, e.g.,
Ref. [56]). It arises naturally when expanding the
Einstein action up to second order in the perturbations,
giving the action of a scalar field in flat space having a
varying mass (i.e., a pump term) caused by gravity. It
allows an easy definition of the initial quantum state.
Assuming adiabatic vacuum in the low-curvature regime
for which k2 � z00=z in Eq. (35), one sets

 

~Q init /
1�����
2k
p e�ik�: (44)

We have already seen in Sec. III that the initial condition
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for the background is quite difficult to achieve in a natural
way. We now encounter another weakness of curvature-
based bouncing models such as this one, namely, that there
does not seem to be a generic way of setting up appropriate
initial conditions for the perturbations. This is due to the
fact, revealed by Eq. (34), that, because the potential U
never drops to negligibly small values far from the bounce,
the condition k2 � z00=z is never satisfied because a2V;’’
dominates.

What, then, should we choose as initial conditions for
the perturbations?

In slow-roll inflation, � � const in the regime k� aH,
such that one has _� � 0. Fixing an initial condition in this
regime seems hardly motivated indeed, as it would be
equivalent to assuming an initial spectrum, contrary to
the basic original idea of computing this spectrum out of
a natural prescription. However, the model we are consid-
ering here cannot be made complete, in the sense that a
contracting epoch should be connected to the bounce
through a yet undescribed precooling phase [27]. Let us
then press on and assume the usual form

 � / C�k�
�

1�
H
a

Z t

t?
a�~t�d~t

�
; (45)

in which the lower bound t? on the integration is unknown
and we have parametrized our ignorance through the un-
known overall multiplicative function of the wave number
k, C�k�.

As first recognized in [60], Eq. (31) admits a first inte-
gral given by

 �BST � �2
H2

_’2

� _�

H
�

�
1�

K

a2H2 �
1

3

k2

a2H2

�
�
�
��;

(46)

such that [61]

 

_� BST /
k2

3a2H2 �
_��H�� �

1

2

��S
H

; (47)

where the nonadiabatic pressure perturbation is given in
terms of the entropy perturbation �S through

 

1
2a

2��S � �p’ � c
2
S��’ � �1� c

2
S��3K� k2��; (48)

with c2
S defined by the adiabatic variation of �’ and p’ as

 c2
S �

��p’
��’

�
S
� �

1

3

�
3� 2

�’
H _’

�
(49)

and is the square of the sound velocity, i.e., the velocity at
which perturbations propagate.

For a single scalar field in flat space, �S / k2�, as a
result of which the entropy perturbation is essentially
negligible w.r.t. the adiabatic ones, and _� vanishes as
long as k� a. The curvature perturbation � thus remains
constant on super-Hubble scales. In the inflationary sce-
nario, one uses the variable v and the dynamical equation
for the perturbations can be solved directly in terms of
Bessel functions of the first kind of order � where � is a
constant that can be expressed in terms of the slow-roll
parameters " and �, namely ���3=2� 2"� �. Using
the asymptotic behavior of the Bessel function and per-
forming two consecutive matchings with the vacuum so-
lution of Eq. (44) for k�! �1 on the one hand, and with
a solution of the type (45) for k�! 0 on the other, one
obtains

 P � � k3j�j2 � k3A2�k�k2��1; (50)

where A�k� is the power-law k dependence of the initial
state. One sees that the standard slow-roll spectrum
k�4"�2� stems directly from the Minkowski vacuum, in
which A�k� � k�1=2.

In the bounce scenario, the situation is slightly different,
as, in particular, no specific prescription for the initial state
exists. Given an appropriate potential U, one may however
similarly perform several consecutive matchings. We have
already shown that the potential for u at the bounce is
negligible. This means that the solution in the neighbor-
hood of the bounce can be taken as a linear combination of
oscillatory functions, with unknown k-dependent coeffi-
cients that depend on the initial state. In the slow-roll
regions on either sides of the bounce, where curvature
can be neglected, the solution is a linear combination of
Bessel functions while very far from the bounce, where
k� aH, it is given by Eq. (45). In practice, it turns out to
be sufficient to perform only two matchings. The first joins
the initial conditions (for which a reasonable prescription
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FIG. 7 (color online). The potential U (solid line), and its
approximation (dashed-dotted line) in the slow-roll region, to-
gether with �BST (dotted line) as functions of time, obtained from
the evolution of u using (38) in the background of Fig. 6, with
n � 20. We should emphasize that, even though this is not
immediately obvious from the graph, �BST is not conserved
across the bounce.
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has yet to be given) to a solution in terms of Bessel
functions, while the second joins Bessel functions solu-
tions having arguments kj�� ��j (respectively kj��
��j) and order �� (respectively ��) where �� and ��
are defined using the approximate form of the potential far
from the bounce. In the slow-roll regions, for which the
curvature term is unimportant, being suppressed by a factor
a2, the potential for u can be expressed as

 U � a2H2�2"� �� 2"2 � �2 � 3"�� 	� (51)

where ", �, and 	 have their usual definitions in terms of
the derivatives of the potential w.r.t. the field [62,63]. In
such a case, the potential term before (U�) and after (U�)
the bounce reads

 U� �
��

��� ���2
; (52)

where �� and �� are the asymptotic limits to the left and
right of the bounce, respectively. In de Sitter �� � ��=2.
The indices �� are obtained from the slow-roll parameters
"�, ��, and 	� as

 4�2
� � 1� 4�2"� � �� � 2"2

� � �
2
� � 3"��� � 	��;

(53)

which, for small values of "�, ��, and 	� gives

 �� ’
1

2
� �2"� � �� � 2"2

� � �
2
� � 3"��� � 	��:

(54)

For a symmetric potential V�’�, provided sustained slow-
rolling contracting and expanding phases are achieved, ��
and �� are equal, because Fig. 5 is symmetric w.r.t. the
�’; _’� plane. This is clearly true, in particular, in the case
of a symmetric bounce, but most likely also even in most
asymmetric bounces.

In order to set up sensible initial conditions away from
the bounce, i.e., where k2 � U, one has, using Eqs. (36)
and (45),

 u /
C�k�
’0

�
1�

H

a2���

Z �

�?
a2�~��d ~�

�
: (55)

Here, C�k� / k�, and both � and �? are constants that
depend on a preceding precooling phase. In the de Sitter
limit, one obtains the approximate initial condition

 ui / C�k�
H i

’0iai
: (56)

Note also that far from the bounce,

 �BST � � � �
H

a’0

�
u0 �

’00

’0
u
�
�

1

2

’0

a
u; (57)

so that � / C�k�, a mere function of the wave number k,
i.e., a constant in time, the k dependence of which is the
same as that for u. The matching is performed from a slow-
rolling contracting phase through the bounce into an ex-
panding slow-rolling phase, i.e., from

 u��� �
�����������������������
k��� ���

q
fA1J��	�k��� ���
 � A2J���	k��� ���
g; (58)

where

 A1 �
2�2����	k��? � ���


�1=2���	ui�2�� � 1� � 2u0i��? � ���
 csc�����
��1� ���

; (59)

and

 A2 � 2�2���	k��? � ���

�1=2���	ui�2�� � 1� � 2u0i��? � ���
������; (60)

to

 u��� �
�����������������������
k��� ���

q
	B1�k�J���k��� ���� � B2�k�J����k��� ���
; (61)

where

 B1�k� � � csc�����
�
A1 cos

�
k��� � ��� �

�
2
��� � ���

�
� A2 cos

�
k��� � ��� �

�
2
��� � ���

��
; (62)

and

 

B2�k� � csc�����
�
A1 cos

�
k��� � ��� �

�
2
��� � ���

�
� A2 cos

�
k��� � ��� �

�
2
��� � ���

��
: (63)

The mixing matrix is thus given by

F. T. FALCIANO, MARC LILLEY, AND PATRICK PETER PHYSICAL REVIEW D 77, 083513 (2008)

083513-12



 

B1

B2

 !
� csc�����

cos	k��� � ��� �
�
2 ��� � ���
 cos	k��� � ��� �

�
2 ��� � ���


cos	k��� � ��� �
�
2 ��� � ���
 cos	k��� � ��� �

�
2 ��� � ���


 !
A1

A2

 !
:

This result differs from the one obtained in [20] in
two ways. First, the characteristic time over which the
perturbations may be altered by the bounce: in [20], it
was extremely small, and the effect was mainly concen-
trated at the bounce itself,3 whereas in the present case,
taking into account the quasi-de Sitter contraction and
expansion phases that take place before and after the
bounce, the actual characteristic time scale turns out
to be �� � ��. The second crucial difference is that
the bounce itself leaves the perturbations unchanged,
since the potential is negligible during this stage of cos-
mological evolution. Our result however agrees with
Ref. [20] in the sense of Eq. (70) of the above-mentioned
reference, i.e., in the immediate neighborhood the bounce,
one gets the identity, together with some possible overall
rescaling of the total amplitude. We however expect the
result presented here to hold more generically but we
remind the reader that as already mentioned, the question
of the amplitude of the wings of the potential is left
unanswered.

Let us turn to the power spectrum. For k�j�� ��j� �
1, the first term is negligible, and the result can be approxi-
mated by the term in B2. In addition, A2 also turns out to be
negligible. One thus has
 

P � / k1�2��2����2���cos2

�
k��� � ���

�
�
2
��� � ���

�
; (64)

where k� is the initial k dependence of ui and u0i, i.e., that
of C�k�. The power-law coefficients ��� are given by

 ��� � 2"� � �� � 2"2
� � �

2
� � 3��"� � 	�: (65)

From the above, we find that as _’ gets vanishingly small,
then �� ��� � ��� ! ��, and both ��� ! 0 as � is
decreased. In the special case of � � �1=2 (in which case
one starts out with an almost scale-invariant spectrum for
P � far in the past prior to the bounce), the resulting power
spectrum takes the form

 P � / k�2����2���cos2

�
k��� � ��� �

�
2
��� � ���

�

/ k�2����2���sin2

�
k��� ��� �

�
2
���� � ����

�
;

(66)

where we have set, for notational simplicity,

 �� � �� ��� � ���: (67)

Taking k �
������������������
n�n� 2�

p
� n� 1� 1=2n, one obtains the

approximate form

 P � / k�2���������sin2�n���; (68)

which we compare, on Fig. 8, with Eq. (66) and with the
actual full numerical solution. It is clearly a satisfying
approximation as the points and curves are almost undis-
tinguishable. Not only does the bounce modify the power-
law behavior of P � but it also adds to it a multiplicative
oscillatory term at leading order. In first approximation,
one further has

 �� ’ �

0@ 1�������������������������
a2

0V0 � 2K
q � 1

1A: (69)

This highlights the fact that this bouncing scenario is fully
characterized by the usual slow-roll parameters encoded in
��� and by the scale factor at the bounce, a0, that appears
in the expression for ��. The above oscillating spectrum
can be rephrased, once the inflation epoch has taken place
and ended, into a more generic form

 P � �AknS�1cos2

�
!
kph

k?
� ’

�
; (70)

where now the wave number kph is written in units of
inverse length, the nominal scale k? can be fixed at the
given scale of 100 Mpc, and ’ is some phase. One is thus
left with one arbitrary parameter, namely, the oscillation
frequency !. For very small frequencies, i.e., !� 1, the
cosine term remains constant and this is nothing but a
simple power-law spectrum, and no new information can
be derived. On the other hand, in the large frequency limit,
!� 1, the resulting spectrum, once evolved in the radia-
tion and matter dominated eras and expressed in terms of
CMB multipoles, is not immediately ruled out, contrary to
what might have been expected first hand. Figure 9 shows
that for the present best set of data from first year [64] or
third year WMAP [65], a very reasonable fit can be ob-
tained [66,67]. Clearly, with a primordial spectrum as the
one exhibited on Fig. 8, one might have naively thought it
impossible to recover a temperature perturbation spectrum
such as shown on Fig. 9. It turns out, however, that pro-
vided the frequency ! is sufficiently large the spherical
Bessel smoothing functions used to derive the latter from
the former [68] allow for a fit which is neither compellingly
wrong, nor any better that the usual power-law spectrum.
Similarly, in the observable range of scales where only
linear interactions play a role in the eras following infla-
tion, and for which the transfer function from the primor-

3A � function approximation for the potential was even
suggested.
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dial power spectrum is a simple function, oscillations in the
density power spectrum can nonetheless be expected to be
smoothed out by a convolution with a windowing function
linked to survey size in observations. Constraining the
parameters of this model using large-scale galaxy surveys
and CMB data will be discussed in future work. In particu-
lar, relating the parameters !, nS, and A in Eq. (70) to
those of our spectrum (68), and to those appearing in the
potential (19), namely V0, �, and 
 will be needed to go
any further and place meaningful constraints on this par-
ticular type of model.

V. CONCLUSIONS

Using the simplest possible theoretical framework in
which a bouncing Friedmann-Lemaı̂tre-Robertson-
Walker scale factor is possible, namely GR, positively
curved spatial sections and a scalar field ’ in a self-
interaction potential, we investigated the set of initial con-
ditions under which a bounce might occur. For the bounce
to take place, we assumed a potential of the form (19), with
a constant term V0, a symmetry-breaking mass parameter
�, and a self-interaction coupling constant 
, and without
loss of generality in this work, � � 0. This potential
belongs to the more general, low-energy, phenomenologi-
cal class of potentials in which all powers of the field could
be present, including, e.g., cubic terms. Such asymmetric
terms are however not privileged, and we have found that
in any case the main results of this paper are roughly
independent of those extra terms. This, we interpret, is
mostly due to the fact that all the physics of the bounce
as well as that of the slow-roll contraction and expansion
phases occurs near the top of the potential, the shape of
which is hardly dependent on anything but the parameters
we have used. The background we looked at here is there-
fore, as far as we can tell, generic enough that one be in a
position to draw general conclusions on the evolution of
the perturbations through the bounce, which was the main
concern of the second part of this work.

Our first definite conclusion concerns the background
and is provided by the phase space analysis. It is found that,
given positively curved spatial sections, the potential V�’�
as given by Eq. (19), and assuming the occurrence of an
inflationary phase some time in the history of the Universe,
a bounce can indeed have occurred in the past with nonzero
probability, preceded by a slow-roll contracting phase.
Note that the form of the potential we have chosen is the
simplest one in which a bounce can happen and with which
’ stays bounded from below. The flip side of this result is

FIG. 9 (color online). Using the spectrum of Fig. 8 is not obviously incompatible with the data: WMAP data (1 and 3 years,
respectively, squares and circles) are superimposed on the predicted (full line) temperature fluctuations stemming from (70) for fixed
k?,! � 2000, and 1000 for the left and right plots, respectively, and ’was set to zero for simplicity. Both the amplitude and frequency
of oscillations are affected by varying the parameters of the model. Figure courtesy of C. Ringeval [69].
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FIG. 8 (color online). Expected spectrum of the curvature
perturbation �BST. The theoretical prediction of Eq. (66) is the
solid line, while its approximation of Eq. (68) is the dashed line.
The crosses are the corresponding numerical results obtained by
evolving Eq. (38) for wave numbers n in the range n 2
	60–2000
. The power-law term alone is shown in the dashed-
dotted line. Here, the parameters for the potential V�’� of
Eq. (12) are � � 1=5, _’ � 1=30; these parameters imply
��� � ��� � 10�3 and �� � 10�3.
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that given ‘‘natural’’ initial conditions in the far past, i.e., a
large but contracting universe with a scalar field slightly
disturbed away from the minimum of its potential, trajec-
tories for the evolution are highly unstable and fine-tuning
is a necessity if one is to head towards a bounce and avoid
singular behavior. The shape of the potential must also be
adjusted, not unlike what is required in inflation, to ensure
an inflationary phase lasting at least 60–70 e-folds. At this
stage, one should also mention that a slowly contracting
precooling phase, during which, say, a radiation dominated
universe moves towards a scalar field dominated universe,
by some kind of condensation process, is a necessary step
that should occur prior to the bouncing mechanism that we
have described in this work. The question of whether, after
such a precooling phase, the scalar field dominated K � 1
universe will follow a bouncing rather than a singular
trajectory is left open, not only in view of the first remark
made in this paragraph, but also because one can choose to
constrain the likelihood of such nonsingular trajectories by
looking for their signatures in cosmological data (CMB
and large structure formation for instance). This naturally
leads to the study of the perturbations and attempts to draw
generic conclusions on their behavior across the bounce for
a given class of models.

Curvature perturbations, encoded in � (or �BST in the
K � 1 case) are often advocated to be conserved, i.e.,
constant, in several of the known cosmological phases,
such that they can be used as reliable estimators. Such a
proposal frequently meets with strong disagreement. In
Ref. [70] for instance, it was shown that out of the three
reasons why �BST is usually conserved, two at least are not
fulfilled, and the third is presumably meaningless in the
cosmological bounce context. In the case at hand, and
working in the observable wavelength (large) range, we
found that �BST is indeed not conserved, with both its
spectrum and amplitude modified. We used a matching
procedure connecting a Bessel solution for the evolution
of the variable u prior to the bounce to another after the
occurrence of the bounce. Given an initial quasiscale-
invariant spectrum, the transfer function for the perturba-

tions preserves the initial power law to within order of the
slow-roll parameters, but adds a leading order oscillatory
term. This result was confirmed by a full numerical evo-
lution of the dynamical equation for u. A priori, the form
(70) might lead to the hasty conclusion that this class of
models can safely be excluded by CMB observations. We
found however that in a large part of the parameter space in
which a bounce is realized (see Sec. III), the spectrum of
CMB multipoles (Fig. 9) is merely modified in a way
reminiscent of superimposed oscillations, a possibility
that has attracted some attention in recent years [33], and
was found to be not inconsistent with the data. Any oscil-
lations in the matter power spectrum or CMB multipoles
are expected to be mostly smoothed out either by transfer
functions or observational windowing functions. One is
then led to predict, as in the completely different trans-
Planckian case [66], some amount of superimposed oscil-
lations which is not any worse (and might in fact be
statistically better) than the power law only inflationary
prediction. Constraining the parameters of the whole class
of effective 4D bouncing models in which the potential
term for the perturbations at the bounce has a negligible
effect, using large-scale galaxy surveys and CMB data,
remains to be done [71]. Once this is achieved, a complete
model will need to be constructed, starting with an initial
large contracting phase, with appropriate (physically jus-
tified) initial conditions, filled with matter and radiation,
and evolving in such a way as to connect to the present
model via a precooling phase in the recent K-bounce
proposal [27]. Such a mechanism is presently under inves-
tigation [54].
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