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At zero temperature and strong applied magnetic fields the ground state of an anisotropic antiferromagnet is
a saturated paramagnet with fully aligned spins. We study the quantum phase transition as the field is reduced
below an upper critical Hc2 and the system enters a XY-antiferromagnetic phase. Using a bond operator
representation we consider a model spin-1 Heisenberg antiferromagnetic with single-ion anisotropy in hyper-
cubic lattices under strong magnetic fields. We show that the transition at Hc2 can be interpreted as a Bose-
Einstein condensation �BEC� of magnons. The theoretical results are used to analyze our magnetization versus
field data in the organic compound NiCl2-4SC�NH2�2 �DTN� at very low temperatures. This is the ideal BEC
system to study this transition since Hc2 is sufficiently low to be reached with static magnetic fields �as opposed
to pulsed fields�. The scaling of the magnetization as a function of field and temperature close to Hc2 shows
excellent agreement with the theoretical predictions. It allows us to obtain the quantum critical exponents and
confirm the BEC nature of the transition at Hc2.
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The organic compound NiCl2-4SC�NH2�2 �DTN� under-
goes a field induced nonmagnetic to XY-antiferromagnetic
transition.1,2 This transition can be viewed as a Bose-Einstein
condensation of magnons associated with the Ni spin 1 de-
grees of freedom. Other magnetic systems with a singlet
ground state either with spin-1 Ni atoms or spin-1 /2 dimers
have also been shown to exhibit this transition.3–5 At zero
temperature it is driven by the magnetic field H that reduces
the Zeeman energy of the Sz=1 state until it becomes degen-
erate with that of the product state of Si

z=0. At this point,
H=Hc1, the antiferromagnetic �AF� interactions give rise to a
long range ordered phase. Experimentally, the magnetization
M at very low temperatures starts to increase above the criti-
cal magnetic field Hc1 and eventually saturates above a criti-
cal magnetic field Hc2.1,2,6–9 The transition at Hc1 has been
intensively investigated, both theoretically12,13 and
experimentally,1,2,6–9 while the one at Hc2 is much less stud-
ied. The DTN is the ideal BEC system to investigate the
latter transition since detailed magnetization curves can be
obtained close to the critical field Hc2=12.3 T. In other well
known BEC systems, as BaCuSi2O6 �Ref. 10� and TlCuCl3,11

the critical fields Hc2 are 49 T and 83 T, respectively, and
presently can only be reached using pulsed fields. The excel-
lent quality of the magnetization versus field curves obtained
in DTN using standard superconducting coils is essential for
the scaling analysis presented here.

In this paper we study the transition at Hc2. A theoretical
approach is more directly developed, starting from the satu-
rated paramagnetic �PARA� phase. We consider decreasing
the external magnetic field at T=0 to the critical value Hc2
where the transverse components of the magnetization con-
dense. A scaling approach for this transition has recently
been proposed.14 In this Brief Report we provide the micro-
scopic theory for this transition. We identify its universality

class as a Bose-Einstein condensation associated with a dy-
namic exponent z=2. We compare the predictions for the
scaling behavior of the magnetization close to the quantum
critical point �QCP� �T=0, H=Hc2� with experimental mag-
netization data on DTN and obtain an excellent agreement.

For a long time the magnetically ordered state and low
energy excitations of quantum Heisenberg magnets have
been studied using the spin-wave expansion �see Ref. 15 and
references therein�. This is usually implemented by express-
ing the components of the spin operators at lattice sites i in
terms of canonical boson operators bk

† and bk using the
Holstein-Primakoff �HP� transformation,16 the Dyson-
Maleev �DM� transformation,17,18 or the Schwinger
transformation19 �ST�. Here we use the bond-operator mean-
field theory20 �BOMFT� to study spin-1 Heisenberg AF in
hypercubic lattices with single-ion anisotropy close to the
quantum phase transition at the saturation field Hc2. It yields
the phase diagram and the thermodynamic behavior of the
model close to Hc2. The BOMFT gives an exact description
of this transition for three-dimensional �3D� systems. The
reason is that the effective dimension deff=d+z=5 associated
with the QCP is larger than the upper critical dimension dc
=4 above which mean-field theory is exact.

The Hamiltonian describing the magnetic system is

H =
J

2 �
�i,j�

�Si
xSj

x + Si
ySj

y + Si
zSj

z� + D�
i

�Si
z�2 − H�

i

Si
z, �1�

where the sum is over all nearest neighbor pairs of a
d-dimensional hyper-cubic lattice with N sites occupied by
spins with S=1. J�0 is the AF exchange coupling, D is the
single-ion anisotropy, and H the magnetic field applied in the
z direction �g�B=1�. Starting from the bond-operator repre-
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sentation for two spins S=1 /2,20 Wang and
collaborators12,13,21 obtained a representation for a spin-1
Heisenberg system with a single-ion anisotropy in terms of
these operators. At zero temperature and for external mag-
netic fields larger than the saturation magnetic field Hc2 the
spins are fully aligned with the field. In this case the bond
operator representation can be expressed as

S+ = �2ūtz, S− = �2ūtz
†, Sz = 1 − tz

†tz, �2�

with the constraint ui
†ui+ ti,z

† ti,z=1. We have used that in this
large field case the components of the spins perpendicular to
the field can be projected out and those parallel condense,
such that ui=ui

†= ū. This mapping is exact for H�Hc2, where
the probability of the down spin state d†d�0� is strictly zero at
T=0. The magnetic ordering for H=Hc2 can be identified as
a Bose-Einstein condensation of the transverse components
of the spins which give rise to the collective magnon excita-
tions. The operators ti,z

† ti,z describe the departure of the spins
from the field direction and are associated with these excita-
tions. Replacing Eq. �2� in Eq. �1� with S�=Sx� iSy and
changing from atomic to normal coordinates, i.e., taking ti,z

†

= �1 /�N��ke
−ik·ribk

†, we have

Hmf = �
k

�kbk
†bk + Eg, �3�

where

Eg = N� JZ

2
+ Dū2 − H − �ū2 + �	 �4�

is the ground state energy of the system. The dispersion re-
lation of the excitations for H�Hc2 is given by

�k = H − �D + �� − JZ�1 − ū2�k� , �5�

with �k=d−1��=1
d cos�k ·a�� and Z the number of nearest

neighbors. The chemical potential � was introduced to im-
pose the constraint condition of single occupancy. This and
the parameter ū are determined by solving coupled, self-
consistent, saddle point equations.13

For fixed field H or temperature T, the thermodynamic
quantities can be obtained from the internal energy U. This is
given by22,23 U=�k�k�bk

†bk�+Eg, with the Bose factor nk

= �bk
†bk�= 1

2 
coth���k /2�−1� and Eg given by Eq. �4�. For
simplicity, we impose boundary conditions on a
d-dimensional hypercubic lattice with primitive lattice vec-
tors a� and lattice spacing a= �a��=1. The minus sign in front
of J takes into account explicitly the antiferromagnetic na-
ture of the exchange interactions. For hyper-cubic lattices,
the minimum of the spin-wave spectrum occurs for q=Q
= �	 /a ,	 /a ,	 /a� in three dimensions. Since �Q=H− �D
+��−JZ�ū2+1�, the condition �Q�0 defines the critical
field Hc2=D+�+JZ�ū2+1�, below which the spin-wave en-
ergy becomes negative signaling the entrance of the system
in the AF phase. Finally, writing k=Q+q and expanding for
small q, the spin-wave dispersion relation can be obtained as
follows:

�q = �H − Hc2� + Dq2, �6�

where the spin-wave stiffness at T=0 is given by, D=Jū2.
The quantum phase transition at Hc2 has a dynamic exponent
z=2 due to the ferromagneticlike dispersion of the magnons,
in spite of the antiferromagnetic character of the
interactions.14

Magnetization. Close to the critical field Hc2 the
temperature-dependent magnetization should follow a power
law.24 We define the variation of uniform magnetization per
volume V as 
M = �Msat−M� /V=�k�bk

†bk� where Msat is the
saturation magnetization. Considering the spectrum of exci-
tations, Eq. �6�, we have in the thermodynamic limit


M =
Sd

4	dDd/2 �kBT�d/2
y

�

dx�x − y�d/2−1�coth
x

2
− 1	 ,

�7�

where x=��q=y+�2Dq2, y=��, Sd the solid angle and we
have defined �= �H−Hc2� as the distance to the QCP. At this
point, we have to consider in which region of the phase
diagram �see Fig. 1 of Ref. 14� we are interested. Because we
want to calculate the magnetization above Hc2 and particu-
larly at the quantum critical trajectory, H=Hc2, T→0, we
consider region II in Fig. 1 of Ref. 14 where kBT� and
consequently y�1. Calculating the integral above in three
dimensions, we obtain 
M3D=polylog� 3

2 ,e−y�
��kBT�3/2 / �	3/2D3/2�, where polylog�a ,z�=�n=1

� zn /na is the
general polylogarithm function of index a at the point z.
Along the quantum critical trajectory, H=Hc2, T→0, we find

M3D��=0�=g�B��3 /2��kBT�3/2 / �	3/2D3/2�, where � is the
Riemann zeta function.

Specific heat. From the internal energy U obtained before
and using the thermodynamic relation, CV=�U /�T we get

CV =
kBSd�kBT�d/2

2	dDd/2 
y

�

dx x2�x − y�d/2−1sinh−2� x

2
	 . �8�

Again, we consider y�1 and, along the quantum critical
trajectory in 3D, we find CV��=0�=15kB��1+4	−1�
��kBT�3/2 / �8	3/2D3/2�.

Susceptibility. Here we use the relation, �=�M /�H,
where M is the magnetization. Taking the derivative of Eq.
�7� with respect to H and changing variables, we have at �
=0

� =
Sd

8	dDd/2 �kBT�d/2−1
0

�

dx xd/2−1sinh−2� x

2
	 . �9�

For 3D the longitudinal susceptibility at the critical field is
given by ���=0�= �kBT�1/2 / 
�	−1��	D3/2�.

The temperature dependence of the physical properties
calculated above in 3D can be easily obtained from the fact
that the QCP at Hc2 is governed by Gaussian exponents and
the free energy has a scaling form,24

f � ���2−�F�T/����z� , �10�

where �= �H−Hc2� as defined before. The Gaussian nature of
the exponents in 3D is a consequence that the effective di-
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mension deff=d+z=5, which is larger than the upper critical
dimension28 dc=4.

Critical line. The critical line that separates the polarized
PARA state from the AF phase with nonzero staggered mag-
netization can be written on the neighborhood of the QCP as,
TN�H�� �Hc2−H��. Theories for a 3D Bose gas5,25 and mean-
field treatment6 give a universal value, �=2 /3. Scaling
theory shows that although deff�d in three dimensions, the
magnon-magnon interaction is dangerously irrelevant and
must be considered.24,26 Then we expect that the quartic cor-
rections to the mean-field result Eq. �3� will now be impor-
tant. Within the HP representation for the spin operators, the
mean-field Hamiltonian including the dynamical spin wave
interactions is given by

Hmf� = �
k

�kbk
†bk + �

k,k�

� JZ

2
+ D	bk

†bkbk�
† bk� + Eg, �11�

where �JZ /2+D� works as an effective repulsion between
the magnons. The dispersion �k is given by Eq. �5� and Eg by
Eq. �4�. We decouple the spin-wave interaction as
bk

†bkbk�
† bk��bk

†bk�bk
†bk�. Thus trivially we obtain the internal

energy as

U� = �
q

�q��bq
†bq� + Eg, �12�

where we have already considered the proximity to the QCP
�H=Hc2, T=0�. The spectrum of excitations taking into ac-
count magnon-magnon interactions is

�q� = �H − Hc2� + � JZ

2
+ D	�bk

†bk� + Dq2. �13�

We set up an equation for the critical line within the mean-
field approximation where the effect of magnon-magnon
fluctuations are included in a self-consistent manner. The
critical temperature TN�H� is determined by the condition
��H ,TN�=0, where

��H,TN� = �H − Hc2� + � JZ

2

+ D	 Sd

4	2� kBTN

D
	d/2

0

�

dxxd/2−1�coth
x

2
− 1	 .

�14�

For 2D the integral above diverges as expected from general
arguments.27 For 3D we get kBTN= 
��3 /2��JZ /2
+D��−2/3	D�Hc2−H�2/3. Notice that the effective magnon-
magnon coupling strength �JZ /2+D� determines the transi-
tion temperature, despite the Gaussian exponents, as ex-
pected from the dangerously irrelevant nature of the
magnon-magnon interactions. If we write the equation for
the critical line, ��H ,T�=0, in the form Hc2�T�=Hc2�0�
−v0T1/�, with v0 related to the spin-wave interaction, we
identify the shift exponent, �=z / �d+z−2�=2 /3, in agree-
ment with the renormalization group �RG� result.26 The tem-
perature dependence of � arising from the spin-wave inter-
actions can modify the temperature dependence of 
M, CV
and � at H=Hc2. In the limit T→0 we can easily see that the

purely Gaussian results for 
M and CV calculated above are
dominant. However, for the longitudinal susceptibility the
spin-wave interactions modify the purely Gaussian result. In
this case, it is straightforward to show that for, H=Hc2, T
→0, the dominant is ��T1/4, instead of ��T1/2 calculated
before.

Scaling analysis of the magnetization. We start from the
free energy density, which close to the zero temperature
quantum phase transition has the scaling form given by Eq.
�10�. The zero temperature critical exponents �, � and the
dynamic exponent z are related to the dimensionality of the
system d by the quantum hyperscaling relation, 2−�=��d
+z�.28 In general for deff=d+z�4, i.e., above the upper criti-
cal dimension dc=4, the exponents associated with the QCP
at �=0 take Gaussian values, and in particular the correlation
length exponent, �=1 /2. That this is the case in the present
theory can be immediately verified writing the thermody-
namic functions in a scaling form and identifying the rel-
evant exponents. Furthermore, Eq. �6� yields the dynamic
exponent z=2. Using the relation 
M ��f /�H we get


M � ���1−�R�T/����z� , �15�

where 
M =Msat�T ,Hsat�−M�T ,H� and Msat is measured at
the highest fields, Hsat�15 T. Using the hyperscaling rela-
tion for 3D we obtain 1−�=��3+z�−1= �1 /2��3+2�−1
=3 /2.

Figure 1 shows the scaling plot of the magnetization for
the compound DTN in fields up to 17 T and for several
temperatures. The magnetization data was obtained using a
vibrating sample magnetometer adapted to be used in a 3He
cryostat. The external magnetic field, produced by a super-
conducting coil, was aligned with the tetragonal axis of the
sample, necessary condition to induce BEC. As shown in the
figure the experimental data collapses in a good scaling plot
when using the critical exponents appropriate for three di-
mensions. It can also be seen in Fig. 1 that for H→Hc2, the
scaling function R�t→��� t3/2, such that, in this limit

M3D�T3/2 in agreement with the theory. The lower �upper�

FIG. 1. �Color online� Scaling plot in logarithmic scales of the
magnetization data for the compound DTN obtained for fields up to
17 T and temperatures T=0.60, 0.64, 0.72, and 0.94 K. The line
shows the asymptotic behavior of the scaling function R�t�� t3/2 in
Eq. �15�, for H→Hc2. The arrows indicate the region of validity of
the scaling.
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branch in Fig. 1 corresponds to data for higher �lower� fields
than the critical magnetic field Hc2�0�=12.3 T. This critical
field obtained from a criterion of best data collapse is in very
good agreement with that found by Paduan-Filho et al.2 us-
ing numerical differentiation of the magnetization data. We
point out that a good scaling of the data is observed for
magnetic fields sufficiently close to the critical field, i.e., for
11.92 T�Hc2�12.6 T.

Summary. In spite of the large literature on the subject of
BEC of magnons, the phase diagram and the thermodynamic
properties around the upper critical magnetic field Hc2, have
not yet been completely examined. Since, in general, high
magnetic fields are necessary to reach Hc2, experimental re-
sults and consequently theoretical work are much more
scarce in this region of the phase diagram. As we pointed
out, the organic compound NiCl2-4SC�NH2�2 �DTN� is ideal
for this kind of studies since detailed magnetization curves
can be obtained for very low temperatures close to Hc2. With
this motivation we introduced a BOMFT approximation to
study theoretically the upper field transition. We have ob-
tained the dominant low temperature behavior of the magne-
tization �
M �T3/2�, specific heat �CV�T3/2�, and suscepti-

bility ���T1/4� at the quantum critical trajectory and
determined the shift exponent of the Neel line. We pointed
out that, although the magnon-magnon interactions are irrel-
evant in the RG sense close to the QCP, they should be taken
into account and determine the temperature dependence of
the critical line and that of the susceptibility along the quan-
tum critical trajectory. Our mean-field approach is justified
since the effective dimension for the transition at the QCP
�H=Hc2, T=0� is above the upper critical dimension. Finally
using the theoretical prediction we obtained for the scaling
form of the field and temperature dependent magnetization
close to H=Hc2, T=0, we performed a scaling analysis of
our magnetization data for DTN. The very good agreement
between the theoretical and experimental results provides un-
equivocal evidence that the transition at Hc2 is a BEC of
magnons.
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