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a b s t r a c t

In many engineering applications, the time coordination of geographically separated

events is of fundamental importance, as in digital telecommunications and integrated

digital circuits. Mutually connected (MC) networks are very good candidates for some

new types of application, such as wireless sensor networks. This paper presents a study

on the behavior of MC networks of digital phase-locked loops (DPLLs). Analytical results

are derived showing that, even for static networks without delays, different

synchronous states may exist for the network. An upper bound for the number of

such states is also presented. Numerical simulations are used to show the following

results: (i) the synchronization precision in MC DPLLs networks; (ii) the existence of

synchronous states for the network does not guarantee its achievement and (iii)

different synchronous states may be achieved for different initial conditions. These

results are important in the neural computation context, as in this case, each

synchronous state may be associated to a different analog memory information.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Since the 1970s, an important issue in the implemen-
tation of many engineering systems is the distribution of
synchronous clock signals in a network of geographically
separated nodes. Systems designed for this specific
purpose are called phase tracking or synchronization
networks [1]. Synchronization networks are part of the
core of digital telecommunication networks [2]; power
generation systems [3]; integrated digital circuits [4] and
sensor networks [5].

The Master Slave (MS) technique has become domi-
nant in clock distribution engineering in the last decades
due to its easy implementation and management and
because MS networks are able to present good results for
the synchronization problem, specially for the case of
ll rights reserved.

.

digital telecommunications [6–8]. However, recently, new
applications, for which Mutually Connected (MC) imple-
mentations seem a more natural solution, are developing
fast. The main examples are the time signal distribution in
digital electronic circuits [9–11] and sensor networks
[12–16].

MC networks of oscillators may also be used to
implement neural computational systems. In this context,
a network is said to be synchronized if all nodes oscillate
with the same frequency, leading to constant phase-
differences between them. If different vectors of phase-
differences can be achieved, each one can be associated to
a memory information [17]. Neuro-computers can be
implemented by using MC networks with dynamic
connectivity between nodes [18], so that different
synchronous states may be achieved depending on the
connection pattern [17,19,20] and on the local parameters
of the nodes [21].

In this work, a network of MC digital phase-locked
loops (DPLLs) is considered [22–24] and it is shown that in
a DPLL network with saw-tooth phase-detectors, there

www.elsevier.com/locate/sigpro
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may be multiple synchronous states even for static delay-
free networks.

In [11], the existence of these states is discussed and a
technique to change the stability of the non-desired ones
is presented. In fact, in classical applications of synchro-
nization networks, the existence of multiple stable
synchronous states for a network must be avoided.
However, when neural computation is considered [18],
multiple stable synchronous states are desired and the
higher the number of such states, the higher the memory
capacity.

The major contribution here is to show that, for a
network of non-identical nodes, the number of synchro-
nous states in this type of network may grow very fast
with network size. We present lower and upper bounds
for the number of such states and confirm with numerical
experiments, that a single network can reach different
synchronous states, depending only on the initial phase
differences between nodes. We believe this is a promising
architecture for the implementation of neuro-computers
because information could be stored in an analog form,
following the concept proposed in [25].

Section 2 presents a brief description of the network
model developed in [18,26]. Section 3 brings analytical
results derived for synchronous states of the network,
showing the existence of multiple synchronous state for a
network. Section 4 presents three numerical results: ((i)
time intervals between transitions tend to be equal when
synchronous state is achieved in a noise-free network;
when noise is considered, the synchronization precision is
the same as the oscillators precision; (ii) the existence of a
synchronous state in the network does not guarantee its
achievement; and (iii) when considering fixed values
for all network parameters, depending on the initial
conditions of the network, multiple synchronous states
may be achieved. Section 5 summarizes possible future
applications.
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2. The DPLL network model

In this section, a brief description of DPLL network
model is presented, in order to provide a basis and to
establish the notation.
2.1. The single DPLL model

All phase-locked loops (PLL) implementations can be
modeled as a closed-loop composed of a phase detector
(PD), a low-pass filter (LPF), and a voltage controlled
oscillator (VCO) [22–24].

In DPLLs, the input signal, vi(t), and the VCO output,
vo(t), are digital with levels 0 and Vdd. Calling this type of
PLLs digital PLLs may be controversial [23] and here, the
nomenclature used in [22] is followed, although the term
DPLL can also be reserved for circuits in which all signals
are digital, as in [24].

Fig. 1 shows a block diagram of the model to be used
here. The VCO generates square waves with frequency
depending on the input voltage vc according to:

_Y ¼ f þdf
vc

Vdd
�

1

2

� �
; ð1Þ

where f is the VCO central frequency and df its loop gain.
More accurate models for real devices may be
implemented by using look-up tables to consider the
nonlinear behavior of VCOs [27]; however, for the
purposes of this work, the linear model suffices.

PDs are implemented with JK flip-flops, with one of its
inputs inverted [22]. The output signal of the VCO is
inverted before comparison. In this way, the PD operation
can be described by a simple rule: positive transitions in
the reference signal, vi, produce positive transitions in the
output, vd; and negative transitions in the internal signal
of the PLL, vo, produce negative transitions in vd.
PD

vd

se detector

LPF

vc

Filter
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f a single DPLL.
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The filter is considered to be stable linear first order
low-pass [28], with transfer function F(s), avoiding
bifurcations and chaotic attractors [29] as used in the
main commercial integrated PLL [22].

The LPF transfer function given by:

FðsÞ ¼
fc

sþ fc
; ð2Þ

with fc being the cut-off frequency Hz.
2.2. Network model

Considering a n node network, node i, with a
block diagram shown in Fig. 2, receives signals from
the other n�1 nodes of the network. As all phase
comparisons must be independent, each network node
is composed of n�1 PDs, n�1 filters, and one VCO. This
model is a generalization of the one proposed in [30],
which can be obtained by identically setting all the node
filters.

PDji is the node i phase detector, which compares its
internal signal, vo

i , with the input signal coming from node
j, vi

ji. The output of PDji is denoted vd
ji. In the same way,

LPFji is the low pass filter from node i, the input signal of
which is vd

ji, and vp
ji is its output signal. The cut-off

frequency of filter LPFji is denoted by fc
ji.

The coupling matrix C = (cji)nxn of the network is
defined so that the VCO input of node i is given by:

vi
c ¼

Xn

j ¼ 1

cjiv
ji
p: ð3Þ

As 0rvji
p rVdd, matrix C must have the property thatPn

j ¼ 1 cji ¼ 1; 8i, which assures that 0rvi
c rVdd; 8i.
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Fig. 2. Block diagram of a DPLL assembled in MC network.
The VCO model of the i-th node of the network is
obtained from equations (1) and (3):

_Yi
¼ fiþdfi

Pn
j ¼ 1 cjiv

ji
p

Vdd
�

1

2

 !
; ð4Þ

where fi and dfi are the central frequency and the loop
gain of node i, respectively.

Considering a reference frequency f0, corresponding
to a period T0 = 1/f0, a non-dimensional variable t̂ ¼ t=To

¼ fot is used as an independent variable to measure time
and to take derivatives. Defining Wi= fi/f0 as the normal-
ized central frequency of node i, dWi ¼ dfi=f0 as the
normalized loop gain of node i, and Fc

ji = fc
ji/f0 as the

normalized filter cut-off frequency, the normalized model
for the VCO of node i can be written as

_Y
i
¼WiþdWi

Pn
j ¼ 1 cjiv

ji
p

Vdd
�

1

2

 !
: ð5Þ

3. Existence of synchronous states for the network

In this section, some analytical results about the
synchronous state of the network are derived.

First, phase detector PDji is considered. According to
the description of the PD behavior given in Section 2.1, the
phase detector output, vd

ji, will have a positive transition
whenever the input from node j, vi

ji has a positive
transition; and a negative transition whenever the
internal signal of node i, vo

i , has a negative transition.
Consequently, the PD output will have a duty cycle equal
to 0.5 if signals vi

ji and vo
i are in phase, i.e.,

DYji ¼Yj
�Yi
¼ 0. If DYji is positive, the duty cycle value

increases to 1.0, when DYji ¼ 0:5. If DYji is negative, the
duty cycle decreases to 0.0, when DYji ¼�0:5. Therefore,
the PDji output has a duty cycle given by DCji ¼DYjiþ0:5,
for �0:5rDYjir0:5.

An usual assumption in the study of these systems is
that, in synchronized states, the phase differences are
small, making the previous equation a model for the
phase detector operation [11,31–33]. Here, however, this
is not assumed and, since the nonlinear behavior of the PD
is taken into account, a corrected phase difference, X,
needs to be defined as

Xji ¼DYji�floorðDYjiþ0;5Þ; ð6Þ

with floor(x) being the greatest integer which does not
exceed the real number x. Therefore, the duty-cycle, DC, of
the PD output is given by:

DCji ¼Xjiþ0;5: ð7Þ

Considering Eq. (7), it is possible to predict the filter mean
output value as a function of the phase differences of the
signals, in the long term. In this way, considering a
network with n nodes, the filter output LPFji can be
written as a function of phase difference Xji as

vji
p ¼DC � Vdd ¼ ðXjiþ0:5ÞVdd: ð8Þ

It is important to notice that, under these conditions, filter
dynamics can be neglected, as the model is developed to
obtain results about the network synchronous state, only.
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Replacing Eq. (8) in (5) and considering thatPn
j ¼ 1 cji ¼ 1:

_Y
i
¼WiþdWi

Xn

j ¼ 1

cjiXji

0
@

1
A: ð9Þ

3.1. Synchronous state of the network

In the synchronous state, all nodes of the network
oscillate with the same frequency, that is: _Y

1
¼ _Y

2
¼

� � � ¼ _Y
n
¼Ws.

With the model given by Eq. (9), the synchronous state
of the network is given by the following system of
equations:

Ws ¼
_Y

i
¼WiþdWi

Xn

j ¼ 1

cjiXji

0
@

1
A; i¼ 1 . . .n: ð10Þ

Considering that �0:5rXjir0:5, the value of Xji can
be obtained from the values of Xj1 and Xi1 by:

Xji ¼Xj1�Xi1þaji; i; j¼ 1 . . .n; ð11Þ

with:

aji ¼

0 if jXj1�Xi1jr0;5;

þ1 if Xj1�Xi1o�0;5;

�1 if Xj1�Xi140;5:

8><
>: ð12Þ

This definition makes possible to conclude that aii ¼ 0,
ai1 ¼ 0 and aji ¼�aij.

Consequently, Eq. (10) may be written as functions of
the phase differences between all nodes and node 1.
Performing algebraic manipulations, this system of equa-
tions is given by:

AxT
¼ B; ð13Þ

with

A¼

1=dW1 �c21 . . . �cj1 . . . �cn1

1=dW2 1 . . . �cj2 . . . �cn2

^ ^ & ^ & ^

1=dWi �c2i . . . 1 . . . �cni

^ ^ & ^ & ^

1=dWn �c2n . . . �cin . . . 1

2
666666666664

3
777777777775
; ð14Þ

x¼ ½Ws X21 . . .Xi1 . . .Xn1�; ð15Þ

and

B¼

W1

dW1

W2

dW2
þ
Xn

j ¼ 1
aj2cj2

^
Wi

dWi
þ
Xn

j ¼ 1
ajicji

^
Wn

dWn
þ
Xn

j ¼ 1
ajncjn

2
66666666666666664

3
77777777777777775

: ð16Þ

The solution of system (13) completely determines the
synchronous state of the network.
However, it is important to consider that: (i) system
(13) must be solved for all the combinations of a; (ii) for
every solution, it is necessary to verify the agreement
between as and the phase differences obtained as
solution.

Additionally, it can be noticed that, although the total
number of as is n2, the number of independent values is
reduced to Na ¼ ðn2�3nþ2Þ=2 because aji ¼�aij, aii ¼ 0
and ai1 ¼ 0. Therefore, the only coefficients aji that should
be verified are with indexes given by i = 2yn and j = i + 1
yn.

Another restriction about these Na coefficients can be
exemplified with a 4-node network, where Na ¼ 3; more
specifically, a32, a42 and a43. If, for instance, a32 ¼ 1, it
implies X31o0. Therefore, a43a1, thus a32a43a1. With
similar arguments, it is possible to show that a43a42a�1
and a42a32a�1.

The total number of different sets of coefficients a for
the 4-node network would be given by NS ¼ 3Na ¼ 33

¼ 27;
however, when considering these restrictions, this num-
ber is reduced to NS = 13, an upper bound for the number
of possible synchronous states for a 4-node network.

In the general case, all these restrictions can be written
in the form:

ajkajia�1;

apiajia�1;

apjajia1: ð17Þ

A last important consideration for system (13) is:
regardless of the coefficients set chosen, the system
synchronous state frequency, if the symmetry condition
cij = cji holds, is always given by:

Ws ¼

Pn
i ¼ 1

Wi

dWiPn
i ¼ 1

1

dWi

; ð18Þ

which is obtained by the sum of all the equations of
system (13).

This result is exactly the same as the one obtained in
[15], where a general odd nonlinear phase detector
characteristic is considered. This was expected because
our PD characteristic is also odd. However, it is also
demonstrated in [15], with the additional assumption that
the PD characteristic is an increasing and continuously
differentiable function, that if a synchronous state for the
network exists, the synchronous state is globally asymp-
totically stable.

As in the case analyzed here, the PD characteristic does
not satisfy these conditions, global stability of the
synchronous state cannot be guaranteed. It will be shown
later that, in fact, the existence of a synchronous state for
the network does not guarantee that it will be achieved
for all initial conditions. In the same way as for analog
(LPLLs) [34], the reachability of existing synchronous
states depends on the filters cut-off frequencies, nodes
loop gains and initial phase differences between nodes.
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3.2. A synchronization criterion

In this section, it will be considered that dWi ¼ dW for i

= 1yn, so that Eq. (18) becomes:

Ws ¼

Pn
i ¼ 1 Wi

n
; ð19Þ

that is, if the loop gain of all nodes is the same, the
synchronous state frequency of the network is given by
the mean value of the central frequencies of the network
nodes.

Another assumption is that, for all iaj, cji = 1/(n�1),
and cii = 0. With both assumptions, Eq. (9) for two nodes u

and v may be written as

X1uþX2uþ � � � þXnu ¼
ðn�1ÞðWs�WuÞ

dW

X1vþX2vþ � � � þXnv ¼
ðn�1ÞðWs�WvÞ

dW
: ð20Þ

Subtracting the above equations:

ðX1u�X1vÞþðX2u�X2vÞþ � � � þðXnu�XnvÞ ¼
ðn�1ÞðWv�WuÞ

dW
:

ð21Þ

We choose aji ¼ 0, 8i; j; thus Xvu ¼Xv1�Xu1, since the
purpose in this section is to determine a choice of dW that
guarantees the existence of at least one possible synchro-
nous state for the network. Consequently, Eq. (21) can be
written as

Xvu ¼
ðn�1ÞðWu�WvÞ

ndW
: ð22Þ

To guarantee the coherence of the phase differences of
the synchronous state with the choice of coefficients, a it
is only necessary to guarantee that jXvujo0:5 8u;v. This
condition can be stated as

dWL4
2ðn�1Þ

n
ðWmax�WminÞ; ð23Þ

where Wmax and Wmin the maximum and minimum
central frequencies of the network nodes, respectively.

Consequently, one may conclude that, for dWZdWL,
there is at least one synchronous state for the network.

These results are related only with the existence of
synchronous states for the network. The achievement of
these states is not guaranteed from any initial condition,
differently from the case of continuous PD characteristic
[15,35].
4. Numerical results

Considering the DPLL network model from Section 2
and the analytical results derived, this section shows
some numerical experiments for the dynamical behavior
of the network. For all simulations, the filters were
integrated considering a bilinear transformation and the
VCO dynamics was evaluated with a simple Euler method.
In addition, a linear interpolation algorithm was used to
determine the VCO output transition times, as in [36]. The
integration step of 0.001 was used for all cases.
4.1. Synchronization precision

To verify the transient behavior of the network, a 4-
node network with central frequencies W1 = 0.85, W2 =
0.95, W3 = 1.05 and W4 = 1.15 was mounted. The coupling
weights were set to cji = 1/3, if iaj, and cii = 0. The cut-off
frequencies of the filters were set to 1.

Considering the criteria given by Eq. (23), if dW40:45,
there is at least one possible synchronous state for the
network. Choosing dW ¼ 0:6 for all nodes and solving
system (13) for all combinations of coefficients a32, a42

and a43, there is only one possible synchronous state
given by Ws = 1, X21 ¼ 0:125, X31 ¼ 0:25 and X41 ¼ 0:375.

Fig. 3 shows the values of X21, X31 and X41 obtained by
numerical simulation. If the initial phases of all nodes are
set to 0, the results present no qualitative difference
related to that obtained when other values are used.

From Fig. 3, it is possible to see that the simulation
results are in accordance with the analytical ones.
However, even in synchronous state, phase differences
present oscillations. To verify the importance of these
oscillations to the synchronization quality, in Fig. 4(a) the
time intervals between VCO positive transitions for all
nodes are plotted.

As one can see from Fig. 4(a), the oscillations of the
phase differences do not cause oscillations in the time
interval between transitions. To verify the synchroniza-
tion quality, simulations were conducted for a total time
of t̂ ¼ 100, varying the integration step. For each simula-
tion, the standard deviation of the time interval between
transitions for all nodes was calculated for the interval
50o t̂ o100, so that the long term behavior of the system
was already achieved. Fig. 5 shows the values of these
standard deviations as a function of the integration step.

Fig. 5 shows a relation between the integration step
used in simulations and the standard deviation observed
for the periods of the nodes. This result indicates that,
although phase differences between nodes oscillate, the
time interval between transitions for all nodes tends to be
equal. Simulations were conducted for different network
parameters with results confirming this hypothesis.

Another verification about the quality of synchroniza-
tion considers noisy VCOs for the nodes. Only phase noise
characterized by the standard deviation d of the time
interval between positive transitions in the VCO output
was considered. We set the value of d to 10�4 for all
nodes. The resulting standard deviation of time intervals
between transitions for different integration steps are also
shown in Fig. 5. It is possible to verify that for noisy VCOs,
for integration steps smaller than 10�4, the standard
deviation for the time intervals between transitions stays
at 10�4. As expected, using VCOs with 10�4 precision
leads to a synchronization of the network with errors of
the order of 10�4.
4.2. Non-achievable synchronous states

Section 3.2 proposed a synchronization criterion that
guarantees the existence of at least one synchronous state
for a given distribution of central frequencies for the
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and X41 ¼ 0:375 obtained by analytical methods for the synchronous state are indicated in dotted lines.
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network. For the network considered in the previous
section, where W1 = 0.85, W2 = 0.95, W3 = 1.05 and W4 =
1.15, Eq. (23) gives dW40:45. On the other hand, the
synchronization criterion is based on the simplified
behavior of the system, given by Eq. (9), which is not
valid for the transient behavior. Therefore, it can be
argued that the existence of a synchronous state does not
guarantee that it will be achieved.

To verify this situation, the network considered in the
previous section was simulated with different filter cut-
off frequencies. It was changed from the previous 1.0
value to 0.25 and the time intervals between transitions
are shown in Fig. 4(b). It can be concluded that, although
the synchronous state for the network exists, for this
choice of filter cut-off frequency, the synchronous state is
not achieved.

In order to verify when the existing synchronous state
is achieved as a function of the filter cut-off frequencies,
simulations for the same distribution of central frequen-
cies were conducted, changing dW and Fc, Fji

c ¼ Fc 8i; j. The
values of dW were set between 0 and 1.7, because the
smallest central frequency is equal to 0.85. Fc varied
between 0.01 and 2.

In both cases, the variation step was 0.01. For all
simulations, the integration step was set to 0.001 and
the total number of simulated periods was tuned accord-
ing to the cut-off frequencies, in order to guarantee
that the long term behavior of the system was achieved.
The network is considered to be in a synchronous
state if the time interval between the last simulated
transition of all nodes is not more than one integ-
ration step different from the mean value of the time
interval between the last transitions of all nodes. Fig. 6
shows the results.

In Fig. 6, three separated regions are identified. The
first, on the left of the figure, corresponds to points where
there is no synchronous state. For these points, no
synchronous state is achieved in the simulations. On the
right side of the line corresponding to the synchronization
criteria, there are two other regions so that there is at
least one synchronous state. The network in which the
time intervals between transitions are plotted in Fig. 4(a)
is indicated in Fig. 6, as simulation 1, and it is an example
of the case in which the synchronous state is achieved.

On the other hand, as in the case of the network in
which the time interval between transitions are plotted in
Fig. 4(b), it is possible to see that, for small values of dW

and Fc, the synchronous state is not achieved, as shown in
Fig. 6 as simulation 2.

To study why the existing synchronous state may not
be achieved, Fig. 4(b) shows that for simulation 2 the
frequency of nodes 1, 2 and 3 gets closer to one another,
which is not true for node 4. Furthermore, it can be
noticed that for the network to synchronize, the phase
difference between nodes 4 and 1 should be equal to
X41 ¼ 0:375. In Fig. 7, the value X41 is plotted for the cases
of simulation 1, (a) and simulation 2, (b).

In Fig. 7(a), it is possible to see that the value of X41

stops increasing after passing the threshold ðX41 ¼ 0:375Þ
before being greater than 0.5, when a slip occurs. In the
case of Fig. 7(b), as the cut-off frequency of the filters is
small (Fc = 0.25), the system is not fast enough and,
consequently, the value of X41 does not stop increasing
before exceeding the limit of 0.5.
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In other words, the existing synchronous state may not
be achieved because the system is too slow. Simulations
were conducted considering the PD output to be given by
Eq. (8), and the only difference observed is that the phase
differences in synchronized states do not present oscilla-
tions; however, synchronization is achieved for exactly
the same values of dW and Fc. From these results and the
ones presented in [15], it is possible to conclude that
synchronization may not be achieved, even if a synchro-
nous state exists, due to the fact that the PD characteristic
is not continuous, associated with the lag behavior
associated with the presence of the filter.
4.3. Multiple synchronous states

As mentioned in Section 3.1, all possible synchronous
states of a network of DPLLs can be determined by the
solution of system (13). However, it was also noticed that,
to find these states, one should solve the system for every
possible parameter combination and verify the coherence
between the choice of parameters and the results
obtained. For a better understanding of the synchronous
states that a DPLL network may achieve, a simple 3-node
network is chosen as an example.

For a 3-node network, all connection weights cji are
equal to 0.5, because of the symmetry assumption for the
coupling matrix C and the condition

Pn
j ¼ 1 cji ¼ 1, for all i.

The node central frequencies are set to W1 = 0.97, W2 = 1
and W3 = 1.03, the filter cut-off frequencies are set to 0.5
and the node loop gains are set to 0.5.

In this case, there is only one independent value of
parameter a, a32. Therefore, system (13) must be solved 3
times considering a32 ¼�1, a32 ¼ 0 and a32 ¼ 1. For the
-0.5
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Fig. 8. Synchronous state achieved as a function of the initial phase differen
chosen parameters of the network, all the three systems
lead to coherent synchronous states. For a32 ¼�1, the
phase differences obtained are X21 ¼�0:2933 and
X31 ¼ 0:4133 so that jX31�X21j40:5 corresponding to
the value of a32. For a32 ¼ 0 the solution is X21 ¼ 0:04 and
X31 ¼ 0:08 and for a32 ¼ 1 the solution is X21 ¼ 0:3733 and
X31 ¼�0:2533.

So as to verify which the network synchronous state
achieved was, numerical simulations were conducted for
a total time t̂ ¼ 40 and the value of the initial phase
differences X21ð0Þ and X31ð0Þ were between �0.5 and 0.5,
with step 0.005. Fig. 8 shows the achieved synchronous
state, corresponding to a32 ¼�1, a32 ¼ 0 or a32 ¼ 1,
depending on the initial phase differences.

So as to identify which the achieved synchronous state
is, first the same method used in the preparation of Fig. 6
is applied to determine if frequency synchronization is
achieved. Then, the phase-differences in the synchronous
state are compared with the ones obtained by analytical
methods allowing the determination of which the
achieved synchronous state was. In the figure, the three
synchronous states are represented by circles.

It is possible to observe that there is no preferential
synchronous state. The fact that the one achieving more
times corresponds to a¼ 0 is explained because the size of
the region in which X32 ¼X31�X21 is larger than the ones
in which X32 ¼X31�X2171.

For a more detailed analysis of the system behavior,
Fig. 9(a) and (b) plot the phase differences X21 and X31, as
functions of time for two different initial conditions. For
Fig. 9(a), the initial phase differences are given by
X21ð0Þ ¼�0:2 and X31ð0Þ ¼ 0:2, and the achieved
synchronous state is the one corresponding to a32 ¼ 0.
For the case of Fig. 9(b), X21ð0Þ ¼ �0:4 and X31ð0Þ ¼ 0:2
21

α32= −1
α32= 0
α32= +1
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ces for a 3-node network with W1 = 0.97, W2 = = 1 and W3 = 1.03.
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and the synchronous state achieved corresponds to
a32 ¼�1.

Another point of merit, considering the existence of
multiple synchronous states for the system, is that the
value of the cut-off frequencies of the filters can affect the
synchronous state to be achieved. Considering the same
initial phase differences as the ones used for Fig. 9(a) and
(b), Fig. 9(c) and (d) show the phase differences for the
same network with the cut-off frequencies of the filters
being changed to 5. As can be observed, for cases (a) and
(c) the change in the filter cut-off frequencies changes the
transient behavior of the system, but the achieved
synchronous state does not change. The same conclusion
cannot be derived from the comparison of cases (b) and
(d), when changes in the filters modify the achieved
synchronous state.
5. Conclusions

The results presented in this work reinforce the
hypothesis that considering linear coupling between
nodes in MC networks of oscillators, although mathema-
tically simple, avoids the identification of some important
features of these systems, such as the multiple synchro-
nous state existence.

These multiple synchronous states that appear even
for static networks may be considered as an advantage
or a disadvantage, depending on the type of application.
For the case of implementing of synchronization net-
works, it is a complicating factor, as the synchronous state
of the network may change depending on the presence of
errors during operation. On the other hand, when
considering synchronous states as memory information
in neural-computing devices, the multiplicity of these
states may represent a marked increase in the computa-
tional capacity.

Future work may concern other types of network
implementations: different types of couplings and
other topologies such as nearest neighbor, random
graphs and small-world networks may be good
candidates to be studied when implemented with
DPLL nodes. Another extension of this work is to study
the topological properties of synchronization optimized
networks following methods already implemented
for other types of node dynamics [37,38]. Finally, if
actual implementation of neuro-computers is to be
considered, it is necessary to consider other complicating
aspects of the node model, as, for example, VCO
nonlinearity.
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