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Abstract. In the model with multiple monomers per site (MMS), polymeric
chains are represented by walks on a lattice which may visit each site up to K
times. We have solved the unrestricted version of this model, where immediate
reversals of the walks are allowed (RA) for K = 3 on a Bethe lattice with
arbitrary coordination number in the grand-canonical formalism. We found
transitions between a non-polymerized and two polymerized phases, which may
be continuous or discontinuous. In the canonical situation, the transitions
between the extended and the collapsed polymeric phases are always continuous.
The transition line is partly composed of tricritical points and partially of critical
endpoints, both lines meeting at a multicritical point. In the subspace of the
parameter space where the model is related to SASAW’s (self-attracting self-
avoiding walks), the collapse transition is tricritical. We discuss the relation of
our results with simulations and previous Bethe and Husimi lattice calculations
for the MMS model found in the literature.
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1. Introduction

The thermodynamic behavior of polymers, either in solution or in a melt, may be studied
using continuum or lattice models [1]. In particular, linear polymers in lattice models are
usually described by self-avoiding and mutually avoiding walks on the lattice (SAW’s).
The excluded volume interactions are essential for reproducing the correct scaling behavior
of the system [2]. This constraint also adds considerable difficulties to the study of the
models, when compared to the case of random walks, where many statistical results are
known analytically [3]. As an example of the effect of the self-avoidance constraint on the
asymptotic properties of a single walk on a lattice, we may recall that, while the size of
the region occupied by a random walk with � steps on a lattice, measured by the end-to-
end distance or the radius of gyration, grows as �1/2 in the limit � → ∞, for lattices of
dimension below 4, the asymptotic behavior for SAW’s is described by an exponent which
is larger than 1/2, and thus the size of the region occupied by the walk on these lattices
grows faster with the number of steps of the walk when excluded volume interactions
are present. For two-dimensional lattices this exponent is known to be equal to 3/4 [4].
We notice that since this exponent is larger than 1/d = 1/2 in this case, the density of
monomers vanishes in the region occupied by the polymer.

The basic property which describes the behavior of a single self-avoiding walk on a
lattice is the number of walks with � steps, starting from the origin of the lattice. We may
consider the walks to be chains, so the steps are bonds which link successive monomers
of the polymeric chain. The number of monomers of a chain, which may be called its
molecular weight M , is the number of lattice sites visited by the SAW, so M = � + 1.
If we wish to study a single chain in the grand-canonical ensemble, where the number
of monomers fluctuates, we associate a fugacity z = exp(βμ) with each monomer in the
chain, where β = (kBT )−1 and μ is the chemical potential of a monomer. The grand-
canonical partition function will then be given by

Y (z) =
∑

M

CMzM , (1)
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where CM is the number of configurations of a chain with M monomers (M − 1 steps).
Alternatively, this partition function may be viewed as the generating function for the
numbers of chain configurations CM . So far, all allowed configurations are associated with
the same energy, and thus the model is athermal. The model defined in this way displays a
phase transition; a non-polymerized phase is stable at low values of the fugacity z, and for
fugacities above a critical value zc a polymerized phase is stable, with a positive density
of monomers placed on the lattice. At the critical fugacity, the density of the polymerized
phase vanishes, so the polymerization transition is continuous. The critical value of the
fugacity is related to the asymptotic behavior of the numbers of SAW’s CM in the large
M limit. There is good numerical evidence that CM ∼ Mγ−1qM

e , where the effective coor-
dination number qe is smaller than the coordination number of the lattice, and the critical
exponent γ is equal to 4/3 in two dimensions, 7/6 in three dimensions and 1 in four dimen-
sions or above [5]. The effective coordination number is the inverse of the critical fugacity
qe = 1/zc, and it is easy to show that the grand-canonical partition function equation (1) is
singular at this value of the fugacity, its asymptotic behavior being given by Y (z) ∼ A(1−
qez)γ . In the canonical ensemble, the system is critical in the thermodynamic limit M →
∞ [6]. The recognition that the contributions to the high temperature series expansion
of the n-vector model of magnetism in the limit n → 0 reduce to SAW’s on the lattice [7]
has allowed the application of renormalization group methods to the polymer transition,
linking this problem to the much studied ferromagnetic transition in the n-vector model.

The athermal polymerization model may be generalized by including attractive
interactions between monomers located on first-neighbor sites and which are not connected
by a polymer bond. This model of self-avoiding self-attracting walks (SASAW’s) is
usually used as an effective model for studying the behavior of a polymer in a poor
solvent; the attractive interaction mimics the energetically unfavorable contact between
solvent molecules and polymeric monomers [2]. Now, besides the monomer fugacity, an
additional parameter is present in the model: the Boltzmann weight ω = exp(βε), where
−ε is the energy associated with each monomer–monomer interaction, and there will
be a competition between the repulsive excluded volume interactions and the attractive
interactions. The model reduces to the previous one for ω = 1, and as ω is increased the
continuous polymerization transition happens at lower values of the fugacity z, becoming
discontinuous if ω exceeds a value ωTC. Thus, a tricritical point is found in the phase
diagram of the model at (zTC, ωTC), as may be seen in the schematic diagram shown
in figure 1. In the canonical situation, the system is always on the border between the
non-polymerized and the polymerized phase [6]. At high temperatures (low values of ω),
the polymerized phase is indistinguishable from the non-polymerized phase, and thus has
vanishing monomer density. This phase is sometimes called the coil phase in the polymer
physics literature. Below the tricritical temperature (called the θ point [1]), the chain is
collapsed and the polymerized phase has nonzero density (the globule phase). Again it is
possible to map the SASAW’s model on a generalized ferromagnetic n-vector model [8]. In
two dimensions, the tricritical point of the model has been studied in detail using transfer
matrix techniques [9], and the tricritical value of the exponent which characterizes the
scaling behavior of the radius of gyration is νt = 4/7 [10].

More recently, an alternative model has been proposed by Krawczyk et al [11] for the
collapse transition of polymers. In this model, which we may call the MMS (multiple-
monomers-per-site) model and is a generalization of the Domb–Joyce model [12], up to
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Figure 1. Schematic phase diagram of the model of self-attracting self-avoiding
walks (SASAW’s) on a lattice. The continuous polymerization transition is
represented by a full line (black online) and the discontinuous transition is located
at the dashed line (red online). Both transition lines are separated by a tricritical
point, represented by the circle (green online).

K monomers may occupy the same site of the lattice. The canonical version of the
model, with chains of fixed (large) number of monomers M , was studied for K = 3
using computer simulations on the square and cubic lattices. Besides the case with no
additional restrictions, which was named the RA (immediate reversals allowed) model
by the authors, a more restrictive model, where the chain is not allowed to return to
the lattice site that it occupied two steps before (the RF model), was also studied.
Collapse transitions were found only for the RF model on the cubic lattice, indicating
that, at least for this lattice, the restrictions seem to be essential for the existence of
this transition. The weight of a site with two and three monomers in the model is ω1

and ω2, respectively, and in the two-dimensional parameter space of the model defined by
the variables β1 = ln ω1 and β2 = lnω2, it seems that the collapsed polymerized phase
(globule) is separated from the regular polymerized extended phase (coil) by lines of
continuous and discontinuous transitions, the two transition lines meeting at a tricritical
point. We note that, in the SASAW’s model discussed above, the extended–collapsed
transition in the canonical situation is continuous and of tricritical nature. One point
which needs to be understood is the apparent absence of transitions in both models on
the square lattice and in the RA model on the cubic lattice.

With motivation from the questions above, the grand-canonical version of the MMS
model was studied on Bethe and Husimi lattices. Initially, both versions of the model (RA
and RF) with K = 2 were solved on a Bethe lattice with general coordination number
q [13]. Although these initial calculations for the models resulted in phase diagrams with
some qualitative differences when compared to the usual behavior of SASAW’s, a revision
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using a different and better grounded procedure for finding the coexistence loci resulted
in diagrams which are similar to the ones for SASAW’s, in both cases (RA and RF), with
continuous transitions between the polymerized phases in the canonical formalism [14].
The solution of the K = 2 RF model on the Husimi lattice [15] led to a phase diagram
similar to the one found for the same model on the Bethe lattice. A natural interpretation
of this model is to consider that monomers on the same lattice attract each other, and so
the statistical weights of sites with one and two monomers will be ω1 = z and ω2 = ωz2,
where z is the fugacity of a monomer and ω = exp(−βε) is the Boltzmann factor associated
with the attractive energy ε of interaction between monomers on the same site. While
the tricritical point in the Bethe lattice solution of the model corresponds to ωTC = 1,
the solution on the Husimi lattice shows the tricritical point located at ω ≈ 1.09, in the
region of attractive monomer–monomer interactions, as expected. More recently, the RF
model for K = 3 was solved on the Bethe lattice in the grand-canonical ensemble [6].
In the two-dimensional subspace of the three-dimensional parameter space used in the
grand-canonical calculations which corresponds to the canonical phase diagram, again
the transitions between the polymerized phases are always continuous. Two transition
lines, one composed of tricritical points and the other of critical endpoints, meet at a
multicritical point, not far from the region in the parameter space where the tricritical
point was found in the original simulations of the K = 3 RF model on the cubic lattice.

Here we present calculations for the K = 3 RA model on the Bethe lattice, partially
motivated by the surprising result in the original simulations that no transition was found
for this unrestricted model between the polymerized phases, while at least in the K = 2
case the Bethe lattice calculations revealed no qualitative differences in the phase diagrams
of the RA and RF models, both similar to the one found for the SASAW’s model. In
section 2 we define the model in more detail and present its solution on the Bethe lattice
in terms of recursion relations. The thermodynamic behavior of the model is determined
by the fixed points of the recursion relations, together with a bulk free energy which is
useful for locating the coexistence loci, and these results may be found in section 3. Final
discussions and the conclusion are presented in section 4.

2. Definition of the model and solution in terms of recursion relations

We study the MMS-RA model proposed by Krawczyk et al in [11] in the core of a Cayley
tree with arbitrary coordination number q. In this model, self-avoiding and mutually
avoiding walks are considered but the excluded volume condition is relaxed, so each site
of the tree may be occupied by up to K = 3 monomers, or, equivalently, each lattice site
may be visited up to three times by the walks. No other restriction is imposed in the
model, so immediate reversals of the walk are allowed (RA model), in contrast to the case
for the more restrictive model studied in [6] where immediate reversals are forbidden (RF
model), and thus a subset of the configurations of the walks considered here was included.

As usual, no endpoints of the walks are allowed in the bulk of the tree. Like in
the original model [11], a walk is described by the sequence of sites that it visits, so the
monomers placed on the same site are considered to be indistinguishable. A statistical
weight ωi is associated with a site occupied by i monomers, with i = 1–3. So, the grand-
canonical partition function of the model will be given by

Y =
∑

conf

ωN1
1 ωN2

2 ωN3
3 (2)
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Figure 2. A contribution to the partition function of the model on a Cayley tree
with q = 4 and 3 generations. The weight of this contribution will be ω3

1ω
4
2ω

6
3.

where the sum is over the configurations of the walks on the tree, while Ni, i = 1–3, is the
number of sites visited i times by the walks. In figure 2, an example of a Cayley tree with
three generations of sites is shown, as well as the contribution to the partition function
which corresponds to the configuration of the walks in this case.

To solve the model on the Bethe lattice (the core of the Cayley tree) we start
considering rooted subtrees, defining partial partition functions (ppf’s) for them, where
we sum over all possible configurations of the chains for a fixed configuration of the root of
the subtree (this is the reason for calling the partition functions partial). The smallest set
of root configurations that we need to consider is determined by the information needed
to continue the chains which are incident on the root from above. We thus define fifteen
partial partition functions gi, i = 0, 1, . . . , 14, shown in figure 3. The number of partial
partition functions that we need to define for the RA model is larger than that for the
RF model, where four root configurations were sufficient [6], since more configurations are
allowed in the present case.

When we define the possible root configurations, with up to five polymer bonds on
the root edge, it is important to notice that, since immediate reversals of the walk are
now allowed, it is possible to have closed loops on the tree and the ppf’s have to be
carefully defined in order to avoid rings in the walks. This possibility does not exist in
the RF model on the Bethe lattice. When rings are allowed, even the universality class
of a polymer model changes to a magnetic model with n = 1 components in the order
parameter, that is, to the universality class of the Ising model. Therefore, in ppf’s with
two or more bonds on the root edge, we need to distinguish between bond pairs that are
connected (in earlier generations of the tree) and are not connected. In figure 3, we have
four ppf’s with two bonds in the root site (g2 to g5), for example. In bond pairs not
connected by horizontal lines in our notation, such as in the root configurations for g2

doi:10.1088/1742-5468/2011/01/P01026 6
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Figure 3. Illustration of the rooted subtrees which correspond to the partial
partition functions. The meaning of the horizontal lines between bonds on the
root edge is discussed in the text.

and g6 (taken two by two) and one pair of g10, the two walks will never meet on the tree
at a site in earlier generations, or, in other words, if the walks are followed all the way
to the surface of the tree, they end at different surface sites. When we draw horizontal
lines connecting two bonds at the root edge, it means that they are connected to the same
site in earlier generations and there are three possibilities for this: (1) the two bonds are
connected to the same monomer of the root site (one line); (2) both walks are connected
to the same monomer in some earlier generation and visit the same sites of the tree (two
lines); and (3) the same as case 2, but the walks visit different sites of the tree (three
lines). In the last case, the two bonds are distinguishable, because the sequences of visited
sites are different if we begin in one or the other bond, although the visited sites are the
same. These definitions are applied for every ppf with at least two bonds in the root site,
and lead to the rather large number of ppf’s that we need to define.

We then proceed with obtaining recursion relations for the ppf’s, by considering the
operation of attaching q − 1 subtrees with a certain number of generations to a new root
site and edge, thus building a subtree with an additional generation. In general, the partial
partition function g′

i with an additional generation is the sum of contributions involving
the parameters of the model ωi and the partial partition functions gi. The primes denote
the partial partition function of the subtree with one more generation. The recursion
relations for the 15 ppf’s are rather long and may be found in the appendix A.

The ppf’s are expected to grow exponentially with the number of iterations, so
we define ratios of them, which usually remain finite in the thermodynamic limit.
Furthermore, we notice in the above equations that some ppf’s only appear in linear
combinations; they are (g3 + g4 + 2g5), (g7 + g8 + 2g9) and (g11 + 2g12 + 4g13). Thus, it is
convenient to define the following ratios:

R1 =
g1

g0

, R2 =
g2

g0

, R3 =
(g3 + g4 + 2g5)

g0

, R4 =
g6

g0

R5 =
(g7 + g8 + 2g9)

g0

, R6 =
g10

g0

, R7 =
(g11 + 2g12 + 4g13)

g0

and R8 =
g14

g0

.

(3)
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From the recursion relations for the ppf’s, similar expressions may be obtained for the
ratios, which are also shown in appendix A.

The grand-canonical partition function of the model on the Cayley tree may be
obtained if we consider the operation of attaching q subtrees to the central site of the
lattice, similar to the one used for deriving the recursion relations for the ppf’s. The
result will be

Y = gq
0(1 + P + Q + S), (4)

where

P = ω1(c2R
2
1 + c1R2); (5a)

Q = ω2(3c4R
4
1 + 9c3R

2
1R2 + 3c3R

2
1R3 + 6c2R1R4 + 2c2R1R5

+ 3c2R
2
2 + 2c2R2R3 + c1R6); (5b)

S = ω3(15c6R
6
1 + 75c5R

4
1R2 + 90c4R

2
1R

2
2 + 72c4R

2
1R2R3 + 36c3R1R3R4

+ 90c3R1R2R4 + 36c3R1R2R5 + 30c5R
4
1R3 + 12c4R

2
1R

2
3 + 12c3R1R3R5

+ 60c4R
3
1R4 + 24c4R

3
1R5 + 18c3R

2
1R6 + 3c3R

2
1R7 + 2c2R1R8 + 15c3R

3
2

+ 18c3R
2
2R3 + 6c3R2R

2
3 + 12c2R2R6 + 2c2R2R7 + 4c2R3R6 + 15c2R

2
4

+ 12c2R4R5 + 2c2R
2
5) (5c)

where ci ≡
( q

i

)
. We notice that the contributions to P , Q, S correspond to placing one,

two and three monomers on the central site, respectively. Using the expressions above,
we may obtain the densities at the central site of the tree, considering the configuration
of this site for each contribution to the grand-canonical partition function equation (4).
The densities of sites occupied by one (ρ1), two (ρ2) and three (ρ3) monomers are given,
respectively, by

ρ1 =
P

1 + P + Q + S
, (6a)

ρ2 =
Q

1 + P + Q + S
, and (6b)

ρ3 =
S

1 + P + Q + S
. (6c)

The Bethe lattice solution of the model is defined by its thermodynamic behavior in the
core of the tree, described by the densities just defined. The total density of monomers on
the Bethe lattice, that is, the total number of monomers divided by the number of sites,
is ρ = ρ1 + 2ρ2 + 3ρ3, and will be in the range 0 ≤ ρ ≤ 3.

3. Thermodynamic properties of the model

The thermodynamic phases of the system on the Bethe lattice will be given by the stable
fixed points of the recursion relations, which are reached after infinite iterations of the
recursion relations and thus correspond to the thermodynamic limit. We find three
different stable solutions for the fixed point equations R′

i = Ri, associated with one
non-polymerized phase (NP) and two polymerized ones (P1 and P2).
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The NP phase is characterized by the fixed point Ri = 0 for all i, excluding i = 3 and
i = 7. These last two may be obtained solving the equations

2b2ω3R
2
3 + (b1ω2 + 2b2

1ω
2
3 − 1)R3 + (ω1 + b1ω2ω3) = 0, (7)

and

R7 = ω2 + 2b1ω3R3. (8)

The quadratic equation for R3 can be easily solved, but the explicit expression for RNP
3

is too large to be shown here. Looking at the equations (5) and (6) we see that ρ = 0 in
the NP phase, as expected.

For the two polymerized phases all ratios are non-vanishing and, in order to obtain
the fixed point values, we have to iterate the recursion relations or solve the fixed point
equations numerically. In these phases, the density of monomers does not vanish. In the
Bethe lattice solution of the K = 3 RF model [6], also, two distinct polymerized phases
were found, and they coexist in a region of the phase diagram. Here something similar
happens, but while in the RF model the polymerized phases had different symmetries on
the coexistence surface, here the densities ρ1, ρ2 and ρ3 are of the same order in the two
coexisting phases. As may be seen below, the phase P2 has larger values for all densities on
the coexistence surface. Another difference of the phase diagrams of the two models is that
the surface where the two polymerized phases coexist is much smaller for the RA model
than for the RF model. The phase transitions described below will be called continuous
or discontinuous if the densities ρ1, ρ2 and ρ3, conjugated to the statistical weights of
the model, are continuous or discontinuous, respectively. It is important to remark that
the metastable phases with double and triple occupation of sites, that appear in the RF
model [6], are absent here. As is discussed in [13], the immediate reversal of the walk
makes the probabilities for finding these configurations in the central site vanish.

The stability limits of all phases are obtained by calculating the Jacobian of the
recursion relations:

Ji,j =

(
∂R′

i

∂Rj

)
. (9)

A fixed point is stable if the dominant eigenvalue of the Jacobian has a modulus smaller
than unity, and the stability limit of the corresponding phase (spinodal) is located in the
loci where this modulus becomes equal to unity.

In order to find the coexistence surfaces in the phase diagrams, we obtain the free
energies of the thermodynamic phases of the model. This free energy cannot be calculated
directly from the partition function equation (4), since it refers to the whole Cayley tree
and, remembering that in the thermodynamic limit the number of surface sites corresponds
to a finite fraction of the total number of sites, reflects the influence of the surface. The
free energy per site in the core of the tree, which corresponds to the Bethe lattice solution,
may be calculated following Gujrati’s argument [16], which was also derived in another
way in [6]. The result for the grand-canonical free energy per site on the Bethe lattice
(divided by kBT ) is

φb = −1
2
[q ln (D) − (q − 2) ln (1 + P + Q + S)] . (10)

Using the spinodals to find the continuous transitions and the free energy to determine the
coexistence surfaces we built the whole phase diagram of the system. Before presenting
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Figure 4. Phase diagram for ω3 = 0. The red curve (above the tricritical point—
TCP) is a first-order transition and the black line (below the TCP) is a continuous
transition between the NP and P2 phases. The TCP is indicated by the green
square.

the complete three-dimensional phase diagram, in the space defined by the statistical
weights ω1, ω2, and ω3, it is instructive look at the thermodynamic behavior in some cuts
of the parameter space. All results presented below are for a lattice of coordination q = 4
and qualitatively identical diagrams are obtained for other values of q > 2.

The diagram for ω3 = 0 (K = 2) is shown in figure 4. For small values of ω2, we find a
continuous transition, between the NP and P2 phases, which ends up at a tricritical point

(TCP) located at ω
TCP(K=2)
1 = 0.2177 and ω

TCP(K=2)
2 = 0.1146. Above the tricritical point

the transition becomes discontinuous. It is important to stress that this particular case
(ω3 = 0) was studied by one of the authors in [13], considering distinguishable monomers
and using the natural initial conditions method to find the coexistence lines. There, only a
discontinuous transition between the non-polymerized phase and a polymerized one (called
P2 here) was found. We notice that the diagram of [13] changes if Gujrati’s prescription
is used to obtain the bulk free energy and the coexistence lines are determined using this
free energy. Since this latter procedure is better grounded than the earlier one based on
natural initial conditions [6], the results provided by it are more reliable. We also notice
that the phase diagram found here is very similar to one obtained for the RF model in [6].
However, the RF tricritical point was located at ωRF

1 = 1/3 and ωRF
2 = 1/9 [6], which is

far from the location found here. A generalization of the model for K = 2, with the RA
and RF models as particular cases, shows a line of tricritical points joining those for the
two models [14].

For increasing values of ω3, the qualitative behavior of the phase diagrams, in the
(ω1, ω2) plane, is similar to that depicted in figure 4. Thus, there is a tricritical point
(TCP) line in the three-dimensional phase diagram. This line ends up at a multicritical
point (MCP), located at (ωMCP

1 = 0.270 0819, ωMCP
2 = 0.018 2769, ωMCP

3 = 0.045 0771), so
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Figure 5. Phase diagram for ω2 = 0. At the red (left of the critical endpoint—
CEP) and the magenta (right of the CEP) curves we find first-order transitions
between the polymerized phase (P1) and the non-polymerized phase (NP) and
between the two polymerized phases, respectively. The black line (below the
CEP) corresponds to continuous transitions between the NP and the polymerized
phases. The blue (square) and magenta (circle) points are the critical endpoint
(CEP) and a critical point (CP), respectively. All these features are better seen in
the inset, which shows a small region close to the point where the discontinuous
(NP–P2) and continuous (NP–polymerized) transition lines meet.

the TCP line lies in the region 0 ≤ ω3 < ωMCP
3 . For ω3 > ωMCP

3 , more complex diagrams
are found, as will be discussed below. The location of this multicritical point may be
determined by noting that it corresponds to a higher order NP root of the fixed point
equations. This will be discussed in some detail in appendix B.

A rich phase diagram was found in the ω2 = 0 plane, as shown in figure 5. For small
values of ω1 there is a first-order transition between the NP and P2 phases, ending at a
critical endpoint (CEP), located at ωCEP

1 ≈ 0.2823 and ωCEP
3 ≈ 0.0518. In a tiny region

of the phase diagram, where ω1 > ωCEP
1 and ω3 � ωCEP

3 , the second polymerized phase
(P1) was found. The two polymerized phases (P1 and P2) coexist on a line which limits
this region until a critical point is reached (at ωCP

1 ≈ 0.2831 and ωCP
3 ≈ 0.0516). This is

shown in the inset of figure 5. Below the coexistence line (for ω1 > ωCEP
1 and ω3 < ωCEP

3 ),
there is a continuous transition line between the NP and the polymerized phases.

Comparing the phase diagram of figure 5 with the one for the RF model (for
ω2 = 0) [6], we can see that the qualitative picture is the same. However, in the RF
model, the P1–P2 coexistence region is larger than the one for the RA model. Besides,
as shown in [6], for the RF model, the phase P1 is characterized by ρ1 � ρ2, ρ3 at the
coexistence with the P2 phase, for which ρ1 ∼ ρ2 ∼ ρ3. On the other hand, here we found
that in the P1 and P2 phases all densities are of the same order, and thus the two phases
have the same symmetries. In figure 6, we show the densities (defined in equation (6)) for
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Figure 6. Densities as a function of ω3, for ω1 = 0.2799 and ω2 = 0.004. In the
inset we show a detail of the region with discontinuous transitions.

increasing values of ω3, with ω1 and ω2 fixed in the P1–P2 coexistence region. In the face
of this result, we can conclude that the restriction imposed in the RF model changes the
nature of the P1 phase, which became approximately a SAW in that case, with dominance
of sites with a single monomer, while when immediate reversals (the RA model) for the
walks are allowed, the P1 phase behaves like a regular polymerized phase in the MMS
model. We propose that this difference of the P1 phase in the two models may explain the
different regimes found in the phase boundaries in the canonical simulations of Krawczyk
et al [11]. This point will be discussed in more detail below.

The (ω1, ω3) phase diagrams are similar to the one in figure 5, for all ω2 smaller than
the multicritical point value (ω2 < ωMCP

2 ). Therefore, we have lines of CP and CEP in
the phase diagram and a P1–P2 coexistence surface between these lines. Thus, there
exists a NP–P2 coexistence surface and an NP–polymerized critical surface in the three-
dimensional diagram. For increasing values of ω2, the CP line gets closer to the CEP line,
making the numerical determination of their locations very hard. At the multicritical

point these lines meet, together with the TCP line. When ωMCP
2 < ω2 < ω

TCP(K=2)
2 , the

tricritical point line crosses the (ω1, ω3) plane and the ω1 × ω3 diagrams resemble the one
shown in figure 4.

In figure 7, we show several diagrams, in the (ω2, ω3) plane, for different fixed
values of ω1. For ω1 = 0 (figure 7(a)), there is only a NP–P2 coexistence line and, for

ω1 < ω
TCP(K=2)
1 , similar diagrams are obtained, forming the NP–P2 coexistence surface.

In the range ω
TCP(K=2)
1 < ω1 < ωMCP

1 , the NP–P2 transition may be continuous or
discontinuous, and the two transition lines meet at a tricritical point. In figure 7(b)
we show an example of these diagrams for ω1 = 0.23. Finally, for ω1 > ωMCP

1 , we find the
same behavior of the (ω1, ω3) diagram for small ω2 (see figure 5), with two coexistence
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Figure 7. Phase diagrams for (a) ω1 = 0.0, (b) ω1 = 0.23 and (c) ω1 = 0.275.
The red and magenta (dashed) curves show NP–P2 and P1–P2 discontinuous
transitions, respectively. The black line shows the NP–polymerized continuous
transition.
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Figure 8. Sketch of the three-dimensional phase diagram. The NP–P2
discontinuous transition surface (red, dashed lines) and the NP–polymerized
critical surface (black, continuous line) are shown. The P1–P2 coexistence surface
and critical line close to the CEP line are too small to be represented here.

lines (NP–P2 and P1–P2) which meet at a critical endpoint, where the line of continuous
transition between the NP and the polymerized phases ends (see figure 7(c)).

Again, the diagrams found here with fixed ω1 are similar to those of the RF model [6].
The main difference is that the tricritical and critical endpoint lines of the RA model are
functions of the three parameters (ω1, ω2 and ω3), while in the RF model these lines lie in
the plane ω1 = 1/3. In the same way, in the RA model the NP–polymerized continuous
transition appears as a curved surface, while in the RF model, it is located in the plane
ω1 = 1/3.

A sketch of the whole three-dimensional phase diagram is shown in figure 8,
summarizing the features that we have discussed above. Like what we discussed above,
the CEP and CP lines are very close in the phase diagram and we cannot distinguish
the two lines in figure 8. Therefore, we show only the CEP line in the diagram, but it is
important to keep in mind that there is also a CP line in the neighborhood of this line.
In particular, due to the existence of this additional coexistence surface between the two
polymerized phases, the NP–P critical surface and the NP–P coexistence surface do not
meet tangentially at the CEP line, and the angle between the vectors normal to the two
surfaces at this line becomes larger as we move further from the multicritical point, where
the tricritical, critical endpoint and P1–P2 critical lines meet tangentially. Therefore, this
angle is largest when ω2 = 0, as may be seen in figure 5.

4. Final discussions and conclusions

Although the Bethe lattice solution of the RA model is close to that of the restrictive RF
model, the polymerized phases P1 are very different in the two models. Moreover, in the
RF model the continuous transition surface exists between the NP and P1 phases only,
while here the main part of this surface lies between the NP and a polymerized phase that
cannot be identified as P1 or P2, because it is located above the critical point line. These
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results may explain the difference found in the canonical simulations of Krawczyk et al
[11] between the RA and RF models. For the RF model, Krawczyk et al [11] suggest a
canonical phase diagram with discontinuous and continuous transition lines which meet at
a tricritical point, between a SAW-like phase (sites occupied mainly by a single monomer)
and a collapsed one (sites predominantly with two or three monomers). The location of
the TCP is not defined precisely by the simulations, but the authors suggest that it is
in the region of attractive interaction between monomers, namely, the first quadrant in
the (β1, β2) parameter space. The Bethe lattice solution of this model [6] shows that,
in fact, there is a SAW-like phase (the NP–P1 critical surface) and a collapsed phase
(the NP–P2 coexistence surface). However, the discontinuous and continuous transition
lines, suggested in the simulations, are a tricritical and a CEP line in this approximation,
respectively. On the other hand, no SAW–collapsed transition was found in the simulations
of the RA model in [11]. This is in agreement with our results, because here the NP–
polymerized critical surface does not lead to a SAW-like phase in the canonical diagram.
In contrast with the RF model case, where the sites are predominantly visited by one
monomer, here the densities in phase P1 are of the same order and depend only on the
statistical weights (ωi), like in the phase P2. Thus, the NP–polymerized critical surface
and the NP–P2 coexistence surface are both associated with collapsed phases, since the
sites are occupied predominantly by more than one monomer in both cases. The former
leads to a collapsed phase with low density (CLD) of monomers and the latter has a larger
density (CHD). We believe that the similarity between these phases makes it difficult to
distinguish between them in the simulations, which could have led to the conclusion of no
transition for the canonical RA model reached in [11].

In order to compare our grand-canonical results for the RA with the canonical ones
obtained in the simulations for the RF model [11], we map our grand-canonical diagram
into the canonical one. As was discussed in [6], the canonical variables used in the
simulations [11] are related to the Boltzmann weights of our solution as

β1 = ln

[
ω2

ω2
1

]
and β2 = ln

[
ω3

ω3
1

]
, (11)

and in the canonical formalism we are always restricted to the boundary of the NP phase.
The canonical phase diagram which we found in the β1, β2 parameter space is shown
in figure 9. Like what we discussed above, we found two collapsed phases with high
(CHD) and low (CLD) monomer densities that are related to the grand-canonical NP–P2
coexistence surface and NP–polymerized critical surface, respectively.

The CLD–CHD transitions are always continuous, but of different types: for values
of β2 below the multicritical point there is a tricritical line and above this point a
critical endpoint line separates the two phases. The multicritical point is located at
β1 = −1.384 0554 and β2 = 0.827 7081. The same behavior was found in the Bethe lattice
solution of the RF model [6], but there the whole TCP line lies in the region of negative
values for the negative β2 axis (β1 = 0, β2 < 0) and the MCP is placed at the origin
(β1 = β2 = 0). Curiously, here the MCP is located in a region with repulsive interaction
between monomers at the same site, when only two monomers are present. Thus, in
this region, sites occupied by two monomers are penalized, while sites with one or three
monomers are favored. In fact, in figure 6, that shows the densities in a region close to
the MCP, we can see that ρ1, ρ3 � ρ2.
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Figure 9. Canonical phase diagram. The green curve (below the MCP,
represented by the black circle) is the tricritical line and the blue one (above
the MCP) is the CEP line. On the line β2 = 3β1 (dashed) the MMS-RA model
is related to the SASAW’s model.

A connection can be established between the MMS and the SASAW’s models, as
was already discussed in [6]. If we suppose that only monomers located at the same
site interact pairwise with an attractive energy −ε, in the grand-canonical ensemble we
should have ω1 = z, ω2 = z2ω, and ω3 = 3z3ω, where, as before, ω = exp(βε). In the
canonical situation, from equations (11), this leads to β2 = 3β1 = 3ω. This line is shown
in figure 9, and it crosses the tricritical line, so the collapse transition in the subspace
of the parameter space where the MMS-RA model on the Bethe lattice with K = 3 is
related to the SASAW’s model is tricritical, as it is also in the SASAW’s model.

In conclusion, to study the thermodynamic behavior of models for complex fluids such
as the one considered here, for which exact solutions are usually difficult to obtain, we
think it is useful to combine numerical simulations with approximate analytic solutions.
In particular, the findings in this work suggest that the qualitative behavior of the MMS
model without restrictions (RA) may be similar to that of the restricted model (RF).
Also, on the Bethe lattice, the MMS model shows a behavior which is close to that of the
standard SAW’s model for the collapse transition of polymers. Of course one has to be
aware that Bethe lattice solutions, like all mean-field-like approximations, overestimate
the interactions, and therefore may predict phase transitions in situations where better
approximations or exact solutions find none, but in our opinion the results found on the
Bethe lattice for the MMS model suggest that additional investigations using simulations
or other more precise techniques are desirable.
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Appendix A. Recursion relations for the ppf’s and their ratios

Whenever appropriate, the contributions to the sums begin with a product of two
numerical factors, the first of which is the multiplicity of the configuration of the incoming
bonds, the second being the multiplicity of the connections with the monomers located
at the new root site. In the expressions below, fi ≡ ( σ

i

)
gi

0, where σ = q − 1 is the
ramification of the tree. The recursion relations for the fifteen partial partition functions
are

g′
0 = f0 + ω1[f2g

2
1 + f1g2] + ω2[f4 × 3g4

1 + 3f3 × 3g2
1g2 + 3f3g

2
1(g3 + g4 + 2g5)

+ 2f2 × 3g1g6 + 2f2g1(g7 + g8 + 2g9) + f2 × 3g2
2 + 2f2g2(g3 + g4 + 2g5)

+ f1g10] + ω3[f6 × 15g6
1 + 5f5 × 15g4

1g2 + 6f4 × 15g2
1g

2
2 + 12f4

× 6g2
1g2(g3 + g4 + 2g5) + 6f3 × 15g1g2g6 + 6f3 × 6g1g2(g7 + g8 + 2g9)

+ 5f5 × 6g4
1(g3 + g4 + 2g5) + 6f4 × 2g2

1(g3 + g4 + 2g5)
2 + 6f3

× 6g1(g3 + g4 + 2g5)g6 + 6f3 × 2g1(g3 + g4 + 2g5)(g7 + g8 + 2g9)

+ 4f4 × 15g3
1g6 + 4f4 × 6g3

1(g7 + g8 + 2g9) + 3f3 × 6g2
1g10

+ 3f3g
2
1(g11 + 2g12 + 4g13) + 2f2g1g14 + f3 × 15g3

2 + 3f3

× 6g2
2(g3 + g4 + 2g5) + 3f3 × 2g2(g3 + g4 + 2g5)

2 + 2f2 × 6g2g10

+ 2f2g2(g11 + 2g12 + 4g13) + 2f2 × 2(g3 + g4 + 2g5)g10

+ f2 × 15g2
6 + 2f2 × 6g6(g7 + g8 + 2g9) + f2 × 2(g7 + g8 + 2g9)

2]; (A.1)

g′
1 = ω1f1g1 + ω2[f3 × 3g3

1 + 2f2 × 3g1g2 + 2f2g1(g3 + g4 + 2g5) + f1 × 3g6

+ f1(g7 + g8 + 2g9)] + ω3[f5 × 15g5
1 + 4f4 × 15g3

1g2 + 3f3 × 15g1g
2
2 + 6f3

× 6g1g2(g3 + g4 + 2g5) + 4f4 × 6g3
1(g3 + g4 + 2g5) + 3f3

× 2g1(g3 + g4 + 2g5)
2 + 3f3 × 15g2

1g6 + 3f3 × 6g2
1(g7 + g8 + 2g9)

+ 2f2 × 6g1g10 + 2f2g1(g11 + 2g12 + 4g13) + 2f2 × 15g2g6

+ 2f2 × 6g2(g7 + g8 + 2g9) + 2f2 × 6(g3 + g4 + 2g5)g6

+ 2f2 × 2(g3 + g4 + 2g5)(g7 + g8 + 2g9) + f1g14]; (A.2)

g′
2 = ω2[f2g

2
1 + f1g2] + ω3[f4 × 6g4

1 + 3f3 × 6g2
1g2 + 3f3 × 2g2

1(g3 + g4 + 2g5) + 2f2 × 6g1g6

+ 2f2 × 2g1(g7 + g8 + 2g9) + f2 × 6g2
2 + 2f2 × 2g2(g3 + g4 + 2g5)

+ f1 × 2g10]; (A.3)

g′
3 = ω1 + ω2[f2g

2
1 + f1g2] + ω3[f4 × 3g4

1 + 3f3 × 3g2
1g2 + 3f3g

2
1(g3 + g4 + 2g5)

+ 2f2 × 3g1g6 + 2f2g1(g7 + g8 + 2g9) + f2 × 3g2
2 + 2f2g2(g3 + g4 + 2g5)

+ f1g10]; (A.4)

g′
4 = ω2f1(g3 + g4) + ω3[3f3g

2
1(g3 + g4) + 2f2g1(g7 + g8) + 2f2g2(g3 + g4)

+ f1g10 + f1g11]; (A.5)

g′
5 = ω2f1g5 + ω3[3f3g

2
1g5 + 2f2g1g9 + 2f2g2g5 + f2(g3 + g4 + 2g5)

2

+ f1(g12 + 2g13)]; (A.6)

g′
6 = ω3[f3g

3
1 + 2f2g1g2 + f1g6]; (A.7)
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g′
7 = ω2f1g1 + ω3[f3 × 3g3

1 + 2f2 × 3g1g2 + 2f2g1(g3 + g4 + 2g5) + f1 × 3g6

+ f1(g7 + g8 + 2g9)]; (A.8)

g′
8 = ω3[2f2g1(g3 + g4) + f1(g7 + g8)]; (A.9)

g′
9 = ω3[2f2g1g5 + f1g9]; (A.10)

g′
10 = ω3[f2g

2
1 + f1g2]; (A.11)

g′
11 = ω2 + ω3[f2g

2
1 + f1g2]; (A.12)

g′
12 = ω3f1(g3 + g4); (A.13)

g′
13 = ω3f1g5; (A.14)

g′
14 = ω3f1g1. (A.15)

Denoting the binomial coefficients as bi ≡
( σ

i

)
, the recursion relations for the ratios

of ppf’s defined in equations (3) are

R′
1 =

1

D
[ω1b1R1 + ω2(3b3R

3
1 + 6b2R1R2 + 2b2R1R3 + 3b1R4 + b1R5)

+ ω3(15b5R
5
1 + 60b4R

3
1R2 + 45b3R1R

2
2 + 36b3R1R2R3 + 24b4R

3
1R3

+ 6b3R1R
2
3 + 45b3R

2
1R4 + 18b3R

2
1R5 + 12b2R1R6 + 2b2R1R7 + 30b2R2R4

+ 12b2R2R5 + 12b2R3R4 + 4b2R3R5 + b1R8)]; (A.16)

R′
2 =

1

D
[ω2(b2R

2
1 + b1R2) + ω3(6b4R

4
1 + 18b3R

2
1R2 + 6b3R

2
1R3 + 12b2R1R4

+ 4b2R1R5 + 6b2R
2
2 + 4b2R2R3 + 2b1R6)]; (A.17)

R′
3 =

1

D
[ω1 + ω2(b2R

2
1 + b1R2 + b1R3) + ω3(3b4R

4
1 + 9b3R

2
1R2 + 6b3R

2
1R3 +

6b2R1R4 + 4b2R1R5 + 3b2R
2
2 + 4b2R2R3 + 2b2R

2
3 + 2b1R6 + b1R7)]; (A.18)

R′
4 =

ω3

D
[b3R

3
1 + 2b2R1R2 + b1R4]; (A.19)

R′
5 =

1

D
[ω2b1R1 + ω3(3b3R

3
1 + 6b2R1R2 + 4b2R1R3 + 3b1R4 + 2b1R5)]; (A.20)

R′
6 =

ω3

D
[b2R

2
1 + b1R2]; (A.21)

R′
7 =

1

D
[ω2 + ω3(b2R

2
1 + b1R2 + 2b1R3)]; (A.22)

R′
8 =

ω3

D
b1R1. (A.23)
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The denominator D is defined as

D = 1 + ω1(b2R
2
1 + b1R2) + ω2(3b4R

4
1 + 9b3R

2
1R2 + 3b3R

2
1R3 + 6b2R1R4 + 2b2R1R5

+ 3b2R
2
2 + 2b2R2R3 + b1R6) + ω3(15b6R

6
1 + 75b5R

4
1R2 + 90b4R

2
1R

2
2

+ 72b4R
2
1R2R3 + 36b3R1R3R4 + 90b3R1R2R4 + 36b3R1R2R5 + 30b5R

4
1R3

+ 12b4R
2
1R

2
3 + 12b3R1R3R5 + 60b4R

3
1R4 + 24b4R

3
1R5 + 18b3R

2
1R6

+ 3b3R
2
1R7 + 2b2R1R8 + 15b3R

3
2 + 18b3R

2
2R3 + 6b3R2R

2
3

+ 12b2R2R6 + 2b2R2R7 + 4b2R3R6 + 15b2R
2
4 + 12b2R4R5 + 2b2R

2
5). (A.24)

Appendix B. Determination of the location of the multicritical point

The multicritical point may be defined as the common point of the lines of tricritical points
and critical endpoints, as may be seen in the full phase diagram depicted in figure 8.
This definition, however, does not lead directly to a precise algorithm for determining
the location of the multicritical point, due to the rather intricate nonlinear fixed point
equations which need to be handled for this purpose. Sometimes, in Bethe or Husimi
lattice solutions, it may be possible to reduce the fixed point equations to a polynomial,
and then the higher order transition loci can be identified with the higher order roots
of the NP fixed point; an example of this procedure is described for the particular case
K = 2 of the RF–RA model in [14]. We were not able to accomplish a similar calculation
in the present case.

Another possibility, which was used for the K = 3 RF model in [6], is to assume that,
close to the NP fixed point, the remaining ratios may be expanded in powers of one of
them. By expanding the fixed point equations in powers of the chosen ratio, one then
requires the higher order transition loci to be a higher order root of the resulting set of
equations in the parameters of the model and the expansion coefficients. In the present
case, we expanded the remaining ratios in powers of R1 and found a consistent solution of
this kind by requiring the multicritical point to satisfy the expanded fixed point equations
up to order R5

1. This rather high order is necessary due to parity effects that we found
in the expansions of the ratios. We assumed that, up to order R5

1, the ratios may be
expanded as follows:

R2 = a22R
2
1 + a24R

4
1, (B.1a)

R3 = a30 + a32R
2
1 + a34R

4
1, (B.1b)

R4 = a43R
3
1 + a45R

5
1, (B.1c)

R5 = a51R1 + a53R
3
1 + a55R

5
1, (B.1d)

R6 = a62R
2
1 + a64R

4
1, (B.1e)

R7 = a70 + a72R
2
1 + a74R

4
1, (B.1f )

R8 = a81R1 + a83R
3
1 + a85R

5
1. (B.1g)

Now these expressions are substituted into the eight fixed point equations which are
obtained by imposing R′

i = Ri in the recursion relations for the ratios in equations (A.16)–
(A.23). Expanding these fixed point equations up to order R5

1, using algebra software for
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this task, we obtain several expansion coefficients of the fixed point equations. Considering
the parity of the expansions shown in equations (B1) and denoting by Cij the coefficient of

order Rj
1 in the fixed point equation obtained from the recursion relation for Ri, we are led

to 21 equations Ci,j = 0, corresponding the coefficients (1, 1), (1, 3), (1, 5), (2, 2), (2, 4),
(3, 0), (3, 2), (3, 4), (4, 3), (4, 5), (5, 1), (5, 3), (5, 5), (6, 1), (6, 3), (6, 5), (7, 0), (7, 2), (7, 4),
(8, 1), (8, 3) and (8, 5). In particular, C3,0 = 0 and C7,0 = 0 lead to the pair of equations (7)
and (8) for the fixed point values of the NP phase presented above. The complete set of
equations is too long to be given here. Solving this set of nonlinear algebraic equations for
the 18 expansion coefficients aij and the three statistical weights ωi, we obtain the result:
a22 = 0.488 233 5108, a24 = 0.286 952 3407, a30 = 0.332 976 7741, a32 = −0.038 095 922 95,
a34 = 0.151 941 5331, a43 = 0.204 824 7034, a45 = −0.263 344 9211, a51 = 0.322 048 3966,
a53 = 0.181 375 1089, a55 = −0.651 947 8195, a62 = 0.201 255 7404, a64 = −0.261 216 9532,
a70 = 0.108 334 7046, a72 = 0.038 725 484 34, a74 = −0.116 900 8783, a81 = 0.135 231 2919,
a83 = −0.201 595 9772, and a85 = 0.126 931 3668 for the expansion coefficients and
ω1 = 0.270 081 9945, ω2 = 0.018 276 945 93, and ω3 = 0.045 077 097 31 for the statistical
weights. We did some numerical calculations for the fixed point values of the ratios in
the neighborhood of the multicritical point, and found that they are consistent with the
expansion coefficients above.
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