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Solution of an associating lattice gas model with density anomaly on a Husimi lattice
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We study a model of a lattice gas with orientational degrees of freedom which resemble the
formation of hydrogen bonds between the molecules. In this model, which is the simplified version
of the Henriques-Barbosa model, no distinction is made between donors and acceptors in the bonding
arms. We solve the model in the grand-canonical ensemble on a Husimi lattice built with hexagonal
plaquettes with a central site. The ground-state of the model, which was originally defined on
the triangular lattice, is exactly reproduced by the solution on this Husimi lattice. In the phase
diagram, one gas and two liquid (high density-HDL and low density-LDL) phases are present. All
phase transitions (GAS-LDL, GAS-HDL, and LDL-HDL) are discontinuous, and the three phases
coexist at a triple point. A line of temperatures of maximum density (TMD) in the isobars is found
in the metastable GAS phase, as well as another line of temperatures of minimum density (TmD)
appears in the LDL phase, part of it in the stable region and another in the metastable region of this
phase. These findings are at variance with simulational results for the same model on the triangular
lattice, which suggested a phase diagram with two critical points. However, our results show very
good quantitative agreement with the simulations, both for the coexistence loci and the densities
of particles and of hydrogen bonds. We discuss the comparison of the simulations with our results.
Finally, we consider the same model if homogeneity of the configurations is assumed, and show
that a qualitatively different phase diagram is found, with a single liquid and a gas phase. Although
again a TMD is present in the homogeneous case, it is located in a part of the diagram with negative
entropy, thus providing additional evidence for the recent findings that requiring homogeneity in
such models may lead to unphysical results.

PACS numbers: 05.50.+q,61.20.Gy,65.20.-w

I. INTRODUCTION

The introduction of orientational degrees of freedom
in lattice gas models may result in rich phase diagrams.
As an example, we may mention the study of lattice gas
models with direction dependent interactions which were
found to exhibit closed loop coexistence curves [1], such
as the ones found in solutions of glycerol with guaia-
col [2], m-toluidine [3], and ethylbenzylamine [2], which
exhibit a nearly symmetric coexistence loop with both
an upper and a lower critical solution temperature. It
was suggested by Hirschfelder, Stevenson, and Eyring
[4], that the low-temperature critical point might be due
to a highly directional short-range interaction, such as a
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hydrogen bond: while at low temperature the ordering
of these interactions lowers the energy of solution, with
rising temperature this ordering is decreased and phase
separation occurs. These suggestion was followed in the
model proposed by Barker and Fock some time later [5],
and the solution of this model in the quasi-chemical ap-
proximation actually displays a closed coexistence loop.
A simplified version of the model defined on a conve-
niently decorated simple cubic lattice, may be mapped on
the three-dimensional Ising model and thus much precise
information is known about its thermodynamic behavior
[6]. When the directionality of the part of the interactions
in the model due to the hydrogen bonds is increased, the
results are closer to the experimental data for the mix-
tures cited above, although the correspondence to the
Ising model is lost [1].

In water, the ordering of hydrogen bonds is supposed to
be important in determining the unusual thermodynamic
and dynamic behavior, including the possible existence of
an experimentally unaccessible liquid-liquid phase tran-
sition [7]. Liquid-liquid phase transitions were originally
found by Monte Carlo simulations of realistic liquid water
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models with atomic details [8, 9], but they were already
observed experimentally in systems such as phosphorus
[10], triphenyl phosphite [11] and n-butanol [12, 13].
Tetrahedral liquids, such as silica and water, also present
thermodynamic and dynamic anomalies which can pos-
sibly be related to the second critical point (SCP) asso-
ciated with these transitions [14, 15, 16, 17, 18]. Among
these anomalous features, we note the increase of density
with temperature that happens in liquid water at tem-
peratures below 4oC and the apparent divergent behav-
ior of thermodynamic response functions with decreasing
temperatures towards the deep super-cooled liquid, at at-
mospheric pressures [7].

Several lattice models with orientational interactions,
usually called network-forming fluids or associating lat-
tice gases, have been proposed in two- [19, 20, 21, 22, 23]
and three-dimensions [24, 25, 26, 27, 28] to investi-
gate the thermodynamic anomalies presented by water
and tetrahedral liquids. Some of them were also found
to present dynamic anomalies similar to liquid water
[29, 30, 31]. Among these models, the distinction be-
tween hydrogen bonds and van der Waals interactions
is essential: these two main ingredients are present and
contribute to the appearance of a competition between
distinct molecular states presenting high density (lowly
bonded) and low density (highly bonded) structures.
Nevertheless, in many models, more specific molecular in-
teractions, and sometimes molecular structures, are used
to bias the system towards a low density liquid (LDL),
at low pressures, or a high density liquid (HDL), at high
pressures. For example, some models use many-body in-
teractions to unfavor molecular packing in the neighbor-
hood of a hydrogen bond [20, 24, 26, 27]. Others actu-
ally energetically favor the LDL states through a repul-
sive van der Waals interaction [21, 25, 28]. Some im-
plement fluctuating bonding structures [23], additional
unbounded molecular states (to stabilize a disordered
anomalous liquid) [20, 26, 27] and some even use ad hoc

variations of volume with bond formation [23].

Considering the increasing complexity found in mod-
els for water in the literature [32], simple three- and
two-dimensional models of liquid water, including only
van der Waals and hydrogen bond interactions, have
been investigated with the aim of finding the min-
imal requirements for water-like anomalous behavior
[21, 28, 30, 31, 33, 34, 35]. One of these models, the
GBHB model proposed by Girardi et al.[28], is a three-
dimensional fluid, defined on a body centered cubic lat-
tice, with first-neighbor van der Waals and hydrogen-
bond like interactions. It presents a phase diagram with
two distinct liquid phases (high-density and low-density
liquid - HDL and LDL) besides a GAS phase. Two coex-
istence lines (GAS-LDL and LDL-HDL) ending at crit-
ical points were originally found with Monte Carlo sim-
ulations by Girardi et al.[28]. Also, the isobars present
temperatures of maximum density (TMD) on a line in
the pressure-temperature plane, resembling qualitatively
the scenario emerging from the simulations by Poole et

al. [8]. Nevertheless, a qualitatively different phase dia-
gram was found for the same model in a recent work by
Buzzano and collaborators [36], in which the phase dia-
grams of a three-dimensional model of network forming
fluid [28] were investigated using the cluster variational
method [37]. With this approach they were able to show
that the topology of the phase diagram of the model was
much more complex than originally found with Monte
Carlo simulations but, at the same time, very diverse
from the one expected for water. It was found that the
so-called critical points were indeed tricritical points con-
nected to a line of critical points. Besides that, another
line of critical points was found separating the GAS and
HDL phases, terminating in a critical end point on the
GAS-LDL coexistence curve.

In a more recent paper [38] from the same group, the
previous analysis was extended by including another two
three-dimensional models of ‘liquid water’, also defined
on the bcc lattice, originally proposed by Bell [24] and
by Besseling and Lyklema [25]. They revisited the three
models using the same methodology and the same conclu-
sion holds for them: in all cases the phase diagrams were
indeed much more complex than originally expected. In
the previous analytical studies [24, 25], phase diagrams
were oversimplified due to a ‘homogeneity’ assumption
on the lattice sites, and by allowing sublattice ordering,
more stable ordered phases appear and the disordered,
homogeneous and water-like fluid becomes either unsta-
ble or metastable [38].

Here we investigate a simplified version of a two di-
mensional associating lattice gas model on the core of
the Husimi cactus [21], considering these recent results
on lattice models with water-like behavior. The original
model was proposed by Henriques and Barbosa and stud-
ied through Monte Carlo simulations in a series of papers
[21, 30, 33, 34, 39]. In the Henriques-Barbosa model each
site of a triangular lattice can be occupied by a water
molecule or empty. A molecule has four bonding arms
(two donors and two acceptors) and two inert arms sepa-
rated by an angle of 180o. All arms lie on lattice edges. A
HDL was found at low temperatures and high pressures
for repulsive van der Waals interactions, while a LDL was
found at low temperatures and lower pressures. The first
Monte Carlo simulations provided indications of a coex-
istence between the HDL and LDL, with the presence of
a second critical point (SCP) at the end of the HDL-LDL
coexistence locus [21, 33]. A temperature of maximum
density was also found in the neighborhood of this SCP.
Variations of this model were also investigated through
Monte Carlo simulations: the distinction between donors
and acceptors was excluded from the model and distor-
tions were introduced in the bonding arms [34]. In all
cases, the SCP and a line of TMD were found to be
present, in an indication of the apparent robustness of
these features in the phase diagram. More recently, the
phase diagram of the Henriques-Barbosa model was re-
visited using simulations and it was found to be much
more complex and richer than originally observed [39].
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The simulations suggest that the GAS-LDL coexistence
curve ends at a tricritical point, and that the LDL-HDL
coexistence ends at a bicritical point, where the two con-
tinuous transition lines (GAS-LDL and GAS-HDL) also
meet [39].

In this work we consider the version of the Henriques-
Barbosa model without distinction between proton
donors and acceptors [34]. This simplifying assumption
does not lead to essential differences in the phase di-
agrams of this model, particularly with respect to the
presence of the density anomaly and the HDL-LDL first
order phase transition [34]. The Husimi cactus is built
with hexagonal plaquettes with a central site (composed
by six elementary triangles) as base cells, hereafter called
hexagons only. This may be seen as a second-order ap-
proximation on the triangular lattice [40]. Hexagons were
chosen as a base cells because they are the simplest al-
ternative we found to reproduce exactly the ground state
of both ordered phases (LDL and HDL) on the trian-
gular lattice. We advance that the phase diagram of
the Henriques-Barbosa model we obtained turned out to
be very different from the one originally obtained with
Monte Carlo simulations [34]. Nevertheless, it is closer
to the more recent simulations of the model with dis-
tinction between donor and acceptor arms [39]. In our
study, the GAS-LDL and LDL-HDL coexistence lines de-
veloped into two first order phase transitions ending at a
triple point. In addition to this, a novel first order tran-
sition line between the GAS and HDL phases appeared
separating both phases for all pressures. Although our re-
sults show that the Henriques-Barbosa model may have a
complex and intriguing phase diagram, in the current for-
mulation the model seems to be unappropriate for liquid
water. Nevertheless it does present some water-like fea-
tures such as a temperature of maximum density (TMD)
in the fluid phase, which can be used as a starting point
for more complex two-dimensional models of liquid wa-
ter.

In our opinion, in models for complex fluids the combi-
nation of approximate calculations with extensive numer-
ical simulations are complementary in the study of their
thermodynamic behavior. Although being approximate
(the analytical calculations may lead to results which
are at variance with the real ones for the corresponding
model), they may also suggest more detailed numerical
studies of the model to ascertain that the correct behav-
ior is found. Besides, it is remarkable that a very good
agreement was found between the simulational and the
cluster-variational results for the 3D associating lattice
gas in [36]. As will be shown later, this is also true for
the 2D model studied here.

This paper is organized as follows. In section II the
model is introduced in more detail on the triangular
lattice and its ground state is analyzed. We then pro-
ceed defining the model in a Husimi lattice built with
hexagons, such that the ground state properties on the
triangular lattice are exactly reproduced on the Husimi
lattice. We also present the solution of the model in

terms of recursion relations and the calculations of the
grand-canonical potential in the bulk of the tree. In sec-
tion III the thermodynamic properties of the model are
studied and compared with Monte Carlo simulation data
found in the literature for the same model. The effect of
restricting the model to a homogeneous subspace of con-
figurations, without sublattice distinction and isotropic,
is discussed briefly in section IV. Final discussions and
the conclusions may be found in section V.

II. DEFINITION OF THE MODEL AND

SOLUTION ON THE HUSIMI LATTICE

We consider the Henriques-Barbosa model on the tri-
angular lattice. Each site of the lattice may be either
empty or occupied by a single molecule. A molecule has
four bonding arms, without distinction between donors
or acceptors of protons, and two neutral (non-bonding)
arms. The neutral arms form an angle 180o, and there-
fore each particle has three possible orientations of the
bonding arms. Thus, we are considering the symmet-
ric undistorted case discussed in [34]. Repulsive van der
Waals interactions ǫ > 0 exist between particles on first
neighbor sites, and an energy γ < 0 corresponds to each
hydrogen bond on the lattice. Therefore, if |γ| > ǫ, a pair
of particles on first neighbor sites with an hydrogen bond
between them is associated to a net negative energy and
thus the interaction becomes attractive. Since we will
study the model in the grand-canonical ensemble, an ac-
tivity z = exp(µ/kBT ) corresponds to each particle on
the lattice, where µ is the chemical potential. The rela-
tion between the parameters used here and those chosen
in reference [34] is simple, there a pair of first-neighbor
sites occupied by particles with a hydrogen bond between
them corresponds to an energy −v and if no hydrogen
bond is present this energy is −v + 2u [46]. Therefore,
both parametrizations are related by: ǫ = −v + 2u and
γ = −2u, and we notice that for u/v = 1 we have
|γ|/ǫ = 2. Since the simulations in [34] were done for
this particular choice, we restrict our numerical calcula-
tions to this case.

We will represent the possible configurations of a site
i by a variable ηi, which will be equal to 0 if the site
is empty and assume the values 1, 2 or 3 if the site is
occupied by a particle in one of the three possible ori-
entations of its bonding arms. Three phases were found
in the ground state in earlier investigations [21, 34]: The
GAS phase corresponds to the empty lattice, and is stable
at low values of the chemical potential; as the chemical
potential is increased, the low-density liquid (LDL) be-
comes stable, in which a fraction ρ = 3/4 of the sites
are occupied by particles and all lattice edges between
two particles are occupied by hydrogen bonds. For still
higher chemical potentials, a high-density liquid (HDL)
becomes stable, in which all sites are occupied and there-
fore ρ = 1. In Fig. 1 both liquid phases in the ground
state are depicted.
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FIG. 1: A representation of the two ordered phases of the
model with the configuration of each particle identified by
the orientation of the inert arms (upper panel). In both low
density liquid (middle panel) and high density liquid (bottom
panel) hydrogen bonds are indicated using full lines while
lattice edges or van der Waals interactions are drawn with
dashed lines.

To study the thermodynamic properties of this model,
we will solve it on a Husimi tree built with hexagonal
plaquettes with a site in its center. This tree was chosen
since the ground state of the model is the same as the
one on the original triangular lattice, with the two dis-
tinct liquid phases present. If we connect the central sites
of each plaquette, we will get a Cayley tree with coordi-
nation number q = 6. Considering the liquid phases, we
will define three sublattices for the sites on the perime-
ters of the hexagons, as is shown in Fig. 2. Let us discuss
the ground state of the model in some detail. In the GAS
phase all sites are empty and we will associate a vanish-
ing energy to this configuration, EGAS = 0. The LDL
phase on the Husimi lattice is characterized by empty
sites either at the center of each hexagon or at the sites
of one of the three sublattices A, B, and C, thus defining
four possible ground state configurations for this phase.
Recalling that all edges between first neighbor sites occu-
pied by particles have hydrogen bonds on them, the en-
ergy per hexagon (including the chemical potential term)
will be:

ELDL = 6(ǫ + γ) − 3µ, (1)

where it may be helpful to remember that each particle

on the vertices of the hexagons is shared by two plaque-
ttes. In the HDL phase, all sites are occupied and 8
of the 12 edges of each hexagon are occupied by hydro-
gen bonds, while the remaining 4 are not. Thus, there
are three possible configurations of the hydrogen bonds.
The energy per hexagon in this phase is:

EHDL = 12ǫ + 8γ − 4µ. (2)

It is easy to find which phase corresponds to the mini-
mum energy for given parameters ǫ, γ, and µ. It is con-
venient in this discussion of the ground state to use the
vdW interaction ǫ as the energy scale, so that we have
the dimensionless variables γ̄ = |γ|/ǫ and µ̄ = µ/ǫ. Now
we may obtain the phase diagram at vanishing temper-
ature in terms of these reduced variables. The ground
state corresponds to the GAS phase if µ̄ < 2(1 − γ̄), to
the LDL phase if 2(1 − γ̄) < µ̄ < 2(3 − γ̄), and to the
HDL if µ̄ > 2(3 − γ̄). As observed above, these values
are the same as the ones found for the ground state on
the triangular lattice [34].

A. Recurrence relations on the Husimi cactus

As usual, we start defining partial partition functions
for rooted subtrees, fixing the configuration of the root.
One of these subtrees is shown in Fig. 2. There are 3× 4
configurations of the root sites, so we define 12 partial
partition functions gi, i = 1, 2, . . . , 12, where the index i
stands for the root site configuration. We may associate
the configurations (s, η), where s = A, B, C stands for
the sublattice and η = 0, 1, 2, 3 for the site configuration,
to the indices i of the partial partition functions follow-
ing the convention: 1 → (A, 1), 2 → (A, 2) 3 → (A, 3),
4 → (B, 1), 5 → (B, 2), 6 → (B, 3), 7 → (C, 1),
8 → (C, 2), 9 → (C, 3), 10 → (A, 0), 11 → (B, 0), and
12 → (C, 0). It is also useful to define the configurations
of the bounding arms of a particle in a way which may be
applied to all sites of the tree (only sites at the perime-
ter of the hexagons are considered, since we will sum over
the configurations of the central sites). We therefore con-
sider a particular site j with a particle on it, which will
belong to two hexagons in different generations of the
tree, and imagine that we circle around the site clock-
wise, starting outside the hexagons. The variable ηj will
be equal to the number of lattice edges we cross until
the one where one of the inert arms of the particle are
located is reached, added with one. This definition is
illustrated in Fig. 2. We proceed considering the opera-
tion of attaching 5 subtrees with M generations to a new
root hexagon, building a subtree with M +1 generations.
Summing over the 45 = 1024 possible configurations of
the root sites of the M -generations subtree, we will arrive
to recursion relations for the partial partition functions,
which are of the form:

gM+1
i =

1024
∑

j=1

(

3
∑

k=0

zni,j,kω
pi,j,k
p ω

bi,j,k

b

)

12
∏

ℓ=1

(gM
ℓ )ei,j,ℓ , (3)
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FIG. 2: a) Definition of the sublattices. b) A subtree with three generations. c) Definition of η for a site occupied by a particle.
The numbers on the lattice edges correspond to the values of the variable η if the inert bonds of the particle are placed on
these edges.

where ni,j,k, pi,j,k, and bi,j,k are the number of parti-
cles, number of pairs of particles in first neighbor sites
and number of hydrogen bonds for each contribution j
to the partial partition function of gM+1

i , given that
the configuration η of the central site is equal to k.
ωp = exp[−ǫ/(kBT )] and ωb = exp[−γ/(kBT )] are the
Boltzmann factors associated to the hydrogen bonds and
van der Waals interactions, respectively. We notice that
the activity of the particle which eventually is placed on
the root site is not considered at this level. The expo-
nents ei,j,k assume integer values between 0 and 2.

In similar calculations, often the recursion relations
are obtained by hand, usually summing the contributions
with some graphical aid. In the present case, due to the
large number of contributions, this procedure is very te-
dious and therefore errors are quite frequent. Although
we actually obtained the recursion relations explicitly in
this way, using symmetries to generate the expressions
for the recursion relations, these expressions are much
too large to be given here. To assure that the recursion
relations are free of errors, we also decided to write a
rather simple code which generates the sets of 24 integer
numbers ni,j,k, pi,j,k, bi,j,k and ei,j,ℓ for each contribu-

tion j to the recursion relation for gM+1
i , similar to what

was done by Zara and Pretti in a model for RNA on the
Husimi lattice [41]. Since we are interested in the behav-
ior of the model in the thermodynamic limit, we should

consider fixed points of these recursion relations. As ex-
pected, however, the partial partition functions diverge
in this limit. So, we may define ratios of these functions,
which may approach a finite value as M → ∞. They are
R1 = g1/g10, R2 = g2/g10, R3 = g3/g10, R4 = g4/g11,
R5 = g5/g11, R6 = g6/g11, R7 = g7/g12, R8 = g8/g12,
and R9 = g9/g12. We may then obtain recursion rela-
tions for the ratios from the ones for the partial partition
functions, Eq. 3. They are:

RM+1
i =

1024
∑

j=1

(

3
∑

k=0

zni,j,kω
pi,j,k
p ω

bi,j,k

b

)

9
∏

ℓ=1

(RM
ℓ )ei,j,ℓ .

(4)

B. Densities in the core of the Husimi cactus

In order to obtain densities in the central region of the
tree, we consider the operation of attaching 6 subtrees to
the central hexagon, which leads to an expression for the
partition function of the whole tree:

YM =

4096
∑

j=1

(

3
∑

k=0

zNj,kω
Pj,k
p ω

Bj,k

b

)

12
∏

ℓ=1

(gM
ℓ )Ej,ℓ . (5)

Again the set of integer exponents was generated by a
computer program, as well as manually, and both proce-
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dures lead to the same final results. Now, for example,
the density of particles in the central hexagon will be
given by:

ρ =
z

7YM

∂YM

∂z
, (6)

where ρ is in the range [0, 1]. A similar procedure leads
to expressions for the densities of hydrogen bonds and
van der Waals interactions per site. Dividing both the
numerator and the denominator of the expressions for the
densities by (gM

10 gM
11 gM

12 )2 we may express them in terms
of the ratios and the parameters of the model. Thus, for
example:

ρ =
1

7

∑4096

j=1

(

∑3

k=0 Nj,kzNj,kω
Pj,k
p ω

Bj,k

b

)

∏9

ℓ=1(R
M
ℓ )Ej,ℓ

∑4096

j=1

(

∑3

k=0 zNj,kω
Pj,k
p ω

Bj,k

b

)

∏9

ℓ=1(R
M
ℓ )Ej,ℓ

.

(7)
To obtain the thermodynamic behavior of the model,

we may iterate the recursion relations until a fixed point
for the ratios Rℓ is reached with the required numerical
precision, and then calculate the densities at the center
of the tree. The convergence of the recursion relations
generally is quite fast. In certain regions of the parameter
space, more than one fixed point may be stable, signaling
coexistence of phases. To locate the first order transition
in such cases it is necessary to compare free energies of
different phases. An expression for the grand-canonical
free energy is obtained in what follows.

C. Grand-canonical free energy

To obtain the grand-canonical free energy of the model
in the core of the tree, we may proceed following the
prescription proposed by Gujrati [40]. We start noticing
that if we connect the central particle of each hexagon,
we end up with a Cayley tree with coordination q = 6

and ramification σ = q − 1 = 5. We then assume that
the free energy Φ of the model on the whole tree may be
written as the sum of contributions from the hexagons
on the surface and on the bulk of the tree:

Φ = Nsφs + Nbφb, (8)

where φs and φb are the free energies per hexagon on the
surface and in the bulk of the tree, respectively, while Ns

and Nb are their number. Actually, we expect this rela-
tion to be true only in the thermodynamic limit. Num-
bering the generations of a tree with M generations of
hexagons from the central hexagon (m = 0) to the one
on the surface (m = M), we may see that:

Ns,M+1 = 5Ns,M , (9)

Nb,M+1 = Ns,M + Nb,M . (10)

Solving these recursion relations we find Ns,M = 6×5M−1

and Nb,M = 1 + 6(5M−1 − 1)/4. For two trees with
successive numbers of generations we have:

ΦM = Ns,Mφs + Nb,Mφb (11)

ΦM+1 = Ns,M+1φs + Nb,M+1φb, (12)

and using the expressions for the numbers of hexagons
on the surface and in the bulk, we get:

φb =
1

2
(ΦM+1 − 5ΦM ), (13)

in the thermodynamic limit M → ∞. Now, since the
partition function on a M -generations tree is YM , we
have:

φb = −
1

2
kBT ln

(

YM+1

Y 5
M

)

. (14)

Substituting the partition function (5) in this expression,
and expressing the sums in terms of the ratios, we obtain:

YM+1

Y 5
M

=
1

[

∑4096

j=1

(

∑3

k=0 zNj,kω
Pj,k
p ω

Bj,k

b

)

∏9

ℓ=1(R
M
ℓ )Ej,ℓ

]4
×

(gM+1
10 gM+1

11 gM+1
12 )2

(gM
10gM

11gM
12 )10

. (15)

Now we may use the recursion relations Eqs. (3) to express the partial partition functions for subtrees with M + 1
generations in terms of the ones with M generations, and finally will arrive at the expression for the second fraction
in expression (15)

(gM+1
10 gM+1

11 gM+1
12 )2

(gM
10gM

11gM
12 )10

=

12
∏

i=10





1024
∑

j=1

(

3
∑

k=0

zni,j,kω
pi,j,k
p ω

bi,j,k

b

)

9
∏

ℓ=1

(RM
ℓ )ei,j,ℓ





2

. (16)

Therefore, we see that we may express the bulk free
energy per hexagon as a function of the parameters of

the model and the ratios Ri, and in the thermodynamical
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limit it will converge to a fixed point value. Finally, since
we are in the grand-canonical ensemble, we have that the
pressure is P = −Φ/V , where Φ is the grand-canonical
potential and V the volume. Associating a volume v0 to
each site of the lattice and recognizing φb as the grand-
canonical potential per hexagon for the solution on the
Husimi tree, the pressure may be written as

P = −φb/4v0, (17)

where it should be stressed that we have four sites per
hexagon in the core of the tree.

III. THERMODYNAMICAL BEHAVIOR OF

THE MODEL

To study the thermodynamical behavior of the model
on the Husimi lattice, we define reduced intensive or
fieldlike thermodynamic variables (temperature, pressure
and chemical potential) as T̄ = kBT/ǫ, µ̄ = µ/ǫ and
P̄ = Pv0/ǫ. Considering expressions (14) and (17), the
reduced pressure is given by:

P̄ = T̄
ln
(

YM+1

Y 5
M

)

8
. (18)

As mentioned before, we limited our study on the par-
ticular case γ̄ = 2, for which MC simulations were found
in the literature. For fixed values of T̄ and µ̄, we iterate
the recursion relations (4) for the ratios of partial parti-
tion functions, and once the fixed point is reached, de-
termine the mean numbers of particles, hydrogen bonds
and van der Waals interactions per lattice site, which
are represented by ρ, νhb, and νvW , respectively. The
densities of hydrogen bonds and van der Waals interac-
tions per site, normalized to be in the range [0, 1], will be
ρHB = νHB/2 and ρvW = νvW /3. Finally, the pressure
may be also obtained at the fixed point.

The phase diagram of the model was found using this
procedure, being presented in the (T̄ , P̄ ) plane on Fig.
3. The three phases used in our ground state analysis
were also found at finite temperature and coexistence
lines between these phases were calculated by requiring
the identity of their bulk free energies. All transitions are
discontinuous and a triple point, located at P̄ = 2.997,
T̄ = 0.835, and µ̄ = 1.959, was found. The coexistence
lines meeting at the triple point satisfy the thermody-
namical requirements for this situation, such as the 180
degree rule [42].

Our phase diagrams are qualitatively different from
the one originally suggested through Monte Carlo sim-
ulations [34], where the two coexistence lines start at low
temperatures and end at critical points. They are also
different from the cluster variational results obtained for
several waterlike models on the bcc lattice[36, 38], where
the coexistence lines end at tricritical points. In Fig. 3(c)
the MC simulation results presented in [34] are also
shown and a good agreement on the location of the phase
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FIG. 3: (color on line) a) Phase diagram (T̄ × P̄ ) of the
Henriques-Barbosa model on the Husimi lattice, as defined on
section II. Dashed lines are discontinuous transitions which
meet at triple point represented by a full circle (red on-line).
The full lines are the stability limits of the GAS (red), LDL
(blue), and HDL (green) phases. The dotted and dash-dotted
lines are the TmD and TMD, respectively. b) A detail of Fig.
a) where the lines of density anomalies are more visible. c)
Present results for the coexistence lines and triple point are
compared to the first order phase transitions (circles) and
TMD (triangles) from Monte Carlo simulations of Balladares
et al [34].
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transitions is found between those and our results, except
on the low-temperature region of the LDL-HDL coexis-
tence line. Along this region the simulations present a
rather large positive slope, and since the ground-state
value is exactly known (P̄ = 3), a large negative slope
should occur in the LDL-HDL coexistence line at low
temperatures. This effect is even enhanced if we recall
that, due to the third law of thermodynamics and the
Clausius-Clapeyron equation, the coexistence curve has
to be horizontal at vanishing temperature [47]. A simi-
lar situation was found in the simulations of the model
with distinction between donor and acceptor arms [21],
where this point is discussed, particularly with respect
to the implications of the Clausius-Clapeyron relation.
Although these simulations have been recently revisited
[39], the new results for the LDL-HDL coexistence line do
not include temperatures low enough to reach the region
we are discussing here. In our calculation, the HDL-LDL
coexistence curve starts with zero slope at vanishing tem-
perature. As the temperature increases, the slope has a
small positive value, then the curve presents a maximum
and the slope becomes negative close to the triple point.
These features are not visible in the scale of Fig. 3. It is
interesting to notice that the estimated location for the
LDL-HDL critical point in the simulations is quite close
to the triple point in our solution.

We carefully verified if the transitions are actually dis-
continuous by studying the stability limits of the fixed
points associated to each phase. These limits may be
found calculating the jacobian of the recursion rela-
tions (4)

Ji,j =

(

∂RM+1
i

∂RM
j

)

, (19)

at the fixed point (M → ∞), and then requiring the
absolute value of the largest eigenvalue of the jacobian
to be equal to one. In Fig. 3(a) the stability limits of
all phases are shown. Although in part of the GAS-LDL
coexistence line the stability limit of the LDL phase is
very close to the transition, they are never coincident,
thus assuring the discontinuity of the transition.

In order to find out if the stability limits of the fixed
points are in fact the spinodals (thermodynamic stability
limits), we also calculated the eigenvalues of the hessian
associated with the phases. For the ordered phases (LDL
and HDL) we found a good numerical coincidence of the
spinodals and the stability limits everywhere. For the
GAS phase, at low temperatures, we were able to assure
numerically the coincidence between these curves, but
at higher temperatures we had numerical problems to
evaluate the elements of the hessian, which are second
derivatives of the potential.

An interesting point is that the LDL-GAS coexistence
line has two regions with slopes of different signs, showing
a reentrant behavior. The µ̄ × T̄ phase diagram is quite
similar to the P̄ × T̄ phase diagram shown in Fig. 3. The
change of the sign happens at a point which is located at

0,0 0,2 0,4 0,6 0,8 1,0
ρ

0,2

0,4

0,6

0,8

1,0

1,2

T

LDL

LDL-HDL

GAS
GAS-LDL

GAS-LDL
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0,0 0,2 0,4 0,6 0,8 1,0
ρ
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LDL-HDL
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LDL-GAS

GAS-LDL

GAS-HDL
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FIG. 4: (color on line) Temperature × density diagrams. a)
Particle density. b) Hydrogen bond density. The temperature
of the triple point is indicated by a dashed line. Densities of
the phases at coexistence are indicated (blue: GAS, red: LDL,
black: HDL).

µ̄max = 0.137, T̄max = 1.029, and P̄max = 1.686. Since
the GAS phase has a larger entropy at the coexistence
with the LDL phase, the Clausius-Clapeyron relation in-
dicates that the particle density should be lower for the
GAS phase than for the LDL phase in the part of the
coexistence curve with pressures lower than P̄max. At
(T̄max, P̄max), the densities of both phases are identical
and in the remainder of the coexistence the density of
the GAS phase is higher. In fact, the equal densities at
this point are confirmed in Fig. 4(a), where the temper-
ature is shown as a function of the density of particles
at coexistence. It is important to remind that GAS and
LDL phases are not identical on this point (in this case
it would be a critical point). As can be observed in the
phase diagram with density of hydrogen bonds, instead of
particle density, shown in Fig. 4(b). Although not shown
here, densities of vdW interactions are also different for
both phases on this point.

Another relevant question is the location of the points
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FIG. 5: (color on line) Isobaric curves of densities as a function of temperature. Broken lines are the results obtained in this
work, with the vertical tielines also indicated at coexistence. Symbols are results from simulations by Balladares et al [34]

of maximum density in the isobars. We found that iso-
bars for the densities of particles as functions of the tem-
perature do actually present a maximum at pressures
above P̄max. This TMD is located in the metastable
extension of the GAS phase inside the LDL phase, in
Figs. 3(a) and 3(b), we represented the location of these
metastable TMD of the GAS with the dash dotted line.
It ends at the point of maximum temperature of the GAS
spinodal, as may be seen in the detail (Fig. 3(b)). We
also found a temperature of minimum density line (TmD)
inside the LDL phase, shown in Figs. 3(a) and (b) as a
dotted line. This line occurs also at pressures higher
than P̄max and, unlike the TMD, which is located in the
metastable GAS phase, the TmD line covers both stable
and metastable regions of the LDL, ending at the point
of maximum temperature of the LDL spinodal, a detail
also more visible in Fig. 3(b). It is actually expected that
lines of vanishing thermal expansion coefficient should
end at the points where the corresponding spinodals
change the sign of their slope [43]. Finally, it should be
mentioned that similar findings were reported by Pretti
and Buzzano in their homogeneous cluster variational
study of the symmetric Roberts-Debenedetti model [27].

In Fig. 5 we show some isobars for the densities of par-
ticles and hydrogen bonds. The results of the present
calculations are represented by the broken lines, and the
symbols close to the isobars are the MC simulation results
obtained by Balladares et al [34]. We notice a good quan-
titative agreement between them and our calculations, at
least not too close to the coexistence line. In the P̄ × T̄
diagram shown in Fig. 3(c), the locations of the TMD
points found in the simulations presented in [34] are rep-
resented by triangles, and in general we may notice that
they are located at temperatures larger than the ones of
coexistence. These estimates actually correspond to the
maxima in the density at the coexistence curve, and the
fact that they lie above the coexistence curve may be due
to finite-size effects. As another possibility, the Bethe

lattice approximation introduced here could underesti-
mate the location of the TMD due to the absence of a
LDL-GAS critical transition, observed in simulations, at
least for the model with distinction between donors and
acceptors [39]. In principle, the presence of such a criti-
cal line could increase the entropy-volume cross fluctua-
tions and shift the TMD line (V kBTα = 〈δV δS〉 = 0) to
higher temperatures. For example, this kind of TMD un-
derestimation happened in Bethe lattice solution of the
Bell-Lavis model of liquid water [35], when compared to
Monte Carlo simulations [45].

In Fig. 5(b) the mean number of hydrogen bonds per
particle (nHB = νHB/ρ = 2ρHB/ρ) is depicted at con-
stant pressure as a function of the temperature. Again, a
good quantitative agreement between our results and the
MC simulations was found. In the simulations, crossing
of different isobars was reported and its physical origin
was discussed [34], in relation to density anomaly. Nev-
ertheless, our calculations suggest the possibility of the
crossing being a consequence of the discontinuous tran-
sition between the LDL and GAS phases and finite-size
rounding effects in the isobars.

IV. HOMOGENEOUS VERSION OF THE

MODEL

In models as the one we study here, it is of central im-
portance to find the correct ground-state configurations,
and, if necessary, to consider the corresponding sublat-
tice ordering of these configurations. The need to define
three sublattices [48], as was done above, follows from
these considerations. In some studies of lattice gas mod-
els with orientational degrees of freedom it was assumed
from the beginning that the probability distribution of
the microscopic configurations should be site indepen-
dent.

This simplifying assumption is common in the liter-
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FIG. 6: (color on line)Phase diagram of the model if no sublat-
tices are considered (homogeneous case). On the dashed line
the GAS and HL phases coexist. It ends at a critical point,
represented by a circle. The full line (blue) is the spinodal of
the liquid phase. The TMD is the dotted (green) line, and at
temperatures below the ones defined by the dash-dotted line
the entropy is negative. The red line is the limit of stabil-
ity of the GAS phase when sublattice ordering is allowed, as
discussed in the text.

ature [19, 24, 26, 27] and an example is the study of
Besseling and Lykema [44] on a modified Bell model [24].
As discussed in detail by Pretti, Buzano and De Stefa-
nis in their recent work [38], this assumption may lead
to unphysical results, and by using a cluster variational
procedure without assuming homogeneity they obtained
a phase diagram for the Besseling-Lyklema model which
is qualitatively different from the original phase diagram
from Ref. [44], where the homogeneity assumption was
used. The same authors also presented similar results for
the phase diagram of a simplified version of the Besseling-
Lyklema model, proposed by Girardi et al. [28].

We will briefly show that for the version of the
Henriques-Barbosa model studied here the homogeneity
assumption also leads to a qualitatively different phase
diagram. Nevertheless, a closer look into the system re-
veals some unphysical features that result from this as-
sumption.

Without the definition of sublattices, the number of
partial partition functions is reduced to four, but if we
further require the hydrogen bonds to be ordered isotrop-
ically, only two of them remain, thus reducing the prob-
lem to a single recursion relation of the ratio of these two
partial partition functions. Only two fixed points of the
recursion relations are found, associated to a GAS and
a homogeneous liquid phase (HL). The phase diagram is
shown in Fig. 6. The GAS-HL coexistence curve ends at
a critical point. A TMD is found inside the superheated
metastable HL phase and it ends at the minimum of the
spinodal of the HL phase, as would be expected from the
argument by Speedy [43]. As opposed to the 3D mod-
els studied in Ref. [38], we did not find a ‘homogeneous’

liquid-liquid phase transition in the neighborhood of the
HDL-LDL transition. The entropy of the HL phase may
be obtained differentiating the bulk grand-canonical po-
tential obtained using Gujrati’s prescription (expression
14) with respect to the temperature, and it is found that
the entropy becomes negative at sufficiently low temper-
atures. The curve of vanishing entropy is depicted in the
phase diagram, and it starts at the minimum of the HL
spinodal, so that the entire TMD curve is in the region of
negative entropy in the metastable HL phase. To com-
plete the unphysical features of the phase diagram, we
notice that part of the coexistence curve and the criti-
cal point are located in the region where the GAS phase
is already unstable in the ‘full’ model, when sublattice
ordering is considered.

We thus may conclude, within the approximation of
our calculations, that under the homogeneity assump-
tion the model does present some interesting features in
its phase diagram, such as a TMD compatible with the
reentrant spinodal scenario [43], but a closer look on its
thermodynamic properties leads to unphysical features,
such as negative entropies, which are absent if the proper
sublattice ordering is allowed. These features are relevant
to stress the need of properly taking into account sublat-
tice ordering when studying lattice models for fluids.

V. FINAL DISCUSSION AND CONCLUSION

In this paper we solved the Henriques-Barbosa model
with symmetric arms [34] on a Husimi lattice built with
hexagons. Two liquid and one gas phase are present in
the phase diagram, but qualitative differences are found
when compared with the phase diagram which was ob-
tained with simulations. All transitions we found are
discontinuous, and also a triple point was found where
all phases coexist with different densities. We carefully
checked if the transitions are really discontinuous, since
in part of the coexistence loci the discontinuities are
rather small. Thus we assured that the stability lim-
its of the fixed points associated to the coexisting phases
are never coincident. Also, it may be seen in Figs. 4 that
the densities present a discontinuity at the coexistence
line, although it may be rather small, particularly in the
neighbourhood of the point of maximum temperature in
the GAS-LDL coexistence line.

Recently, more detailed simulations were reported on
this model with distinction between donor and acceptor
arms [39], and a diagram closer to the one we present here
was found. The difference is that the GAS-LDL transi-
tion line is discontinuous at low temperatures, but be-
comes a critical line when the temperature is increased,
thus a tricritical point is present. Also, the HDL-GAS
transition appears to be continuous in the new simula-
tions. The LDL-HDL line is always discontinuous, so
that in the simulations the point which corresponds to
the triple point in our phase diagrams appears as a bi-
critical point (which was called wrongly as a tricritical
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point in the caption of Fig. 3 in reference [39]). Never-
theless, a direct comparison between the present calcu-
lation and these new simulations may not be done, since
the distinction between donor and acceptor arms leads
to an increase of the entropy of the model. It is not im-
possible that a transition found to be discontinuous in
mean-field like approximations turns out to be continu-
ous in simulations or more precise calculations, such as
series expansions. However, we notice that the results
of the calculations presented here show, in general, good
agreement with data furnished by simulations, as was
also noticed by Buzano and collaborators in their study
of an associating lattice gas model, with tetragonal sym-
metry, on the bcc lattice [36]. It is worth mentioning that
the phase behavior presented by the most recent simu-
lations of the Henriques-Barbosa model is different from
that found for the associating lattice gas model studied
with the cluster variational method on Ref. [36]. There,
instead of a bicritical point, a tricritical and a critical
endpoint are present.

Although the results presented here for the coexistence
lines in the pressure-temperature phase diagram agreed
well with the data of simulations in [34], this is not the
case for the low-temperature region of the LDL-HDL co-
existence curve, where the simulations suggest a mini-
mum while a smooth behavior was found in our results.
The interpretation of this apparent minimum in relation
with the Clausius-Clapeyron equation seems unclear to
us, and we believe on the possibility that these results
might be spurious. Possibly, longer equilibration times
for MC simulations should be considered on this low-
temperature region.

If we adopt the qualitative phase diagram which
emerges from our calculations, the TMD found in the
simulations would corresponds to the coexistence line.
Nevertheless, it is also possible that the absence of a
critical line results in an overall decrease of the temper-
atures of the TMD line, as in the case of the Bell-Lavis
model [35, 45]. The crossing of isobaric curves for the
density of hydrogen bonds as function of the temperature
was observed in the simulations, but here it may be seen
as a consequence of rounding finite size effects for the dis-
continuous transition at the LDL-GAS coexistence curve,
with no relation to the TMD. The LDL-GAS coexistence
curve actually is a very weak discontinuous transition in
the region where the simulations suggested the presence
of a critical point. This indicates that the question of the
order of the transition in this region should be studied

very carefully in simulations.

The recent MC simulation data for the model with
distinction between donor and acceptor arms indicate the
presence of a tricritical point on the boundary between
the two phases. We are presently studying this model
with the same methods implemented on this paper.

When the model is studied on the Husimi lattice
without sublattice ordering (homogeneity assumption),
a qualitatively different phase diagram is found, with a
first order phase transition between a homogeneous liq-
uid and a gas ending in a critical point. As was already
pointed out by Pretti et al.[38], this restriction may lead
to unphysical results, as the proper stable ordered ther-
modynamic phases can be missed, and this actually hap-
pens in the present case, as unphysical features are found
in the homogeneous liquid phase of the model.

We finish remarking that many lattice models pro-
posed to investigate waterlike anomalous behavior were
found to present phase diagrams which were more com-
plex than originally expected. When sublattice order-
ing is properly considered, even the simplest models do
present at least a single critical line, and many of them
do not present gas-liquid phase transition ending in a
critical point or a temperature of maximum density in
a stable disordered (without sublattices) fluid. The ar-
bitrary use of the homogeneous assumptions can result
in some interesting phase diagrams but, in our opinion,
this could not be considered as a true implementation for
random lattice useful for representing fluids, as recently
proposed [38]. Considering the results obtained here and
in other recent papers [36, 38], the issue of finding a sim-
ple lattice model with minimal waterlike behavior seems
to be far from being resolved. Monte Carlo simulations
are certainly needed to determinate the ‘exact’ phase di-
agram but it seems that a modeling breakthrough will be
needed to achieve a better description of liquid water.
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