AN INTRODUCTION TO LISP 1.5 PROGRAMMING LANGUAGE

AND

ITS 18M 1620 INTERPRETER

THOMAS A, BRODY

UNIVERSIDAD AUTONOMA DE MEXICO
INSTITUTD DE FISICA

CIUDAD UNIVERSITARTA

MEXICO 20, M

GEORGES SCHWACHHEIM
ADILSON T. DE MEDETIRUS

- CENTRO BRASILEIRO DE PESQUISAS FISICA

DIVISAQ DO COMPUTADOR
RIO DE JANEIRO. IC 82
BR AL, L

B0 e el RS AR R KRR AR AR R AR R AT KK A KA ek o ok st o o e ek ok ok ke

* *
* %
*® 303 R e e e R A R e e e e R K ok *
* * TABLE OF CONTENTS =# *
* A 308 300 3% 3% 3 3% 3 200 3% 9 5 e e e e K e e o EY
* %
* x
* PAGE SUBJECT . *
* IR E Y] %
% ' %
* %
* 1 PREFACE *
* %
¥ 2 COMPUTERS AND LANGUAGES *
X ®
* 4 LIST STRUCTURE *
* *
* 6 RECURSIVE FUNCTIDNS *
* *
® 8 _ BASIC CONCEPTS OF LISP *
- _ L LU . M
9 MACHINE FUNCTIGONS *
i *
% 14 THE BASIC FUNCTIONS IN LISP *
* *
= 21 CONDITIONAL EXPRESSIDNS *
* : _ %*
* 25 LOGICAL FUNCTIONS %
% : . *
¥ 29 ARITHMETIC FUNCTIONS *
* *
%® 34 LAMBDA NOTATION *
* £
® 41 PROPERTIES OF LISTS *
* X
% 45 APPLICATIONS OF EUNCTIDNS *
* *
® 47 SPECIAL FUNCTIONS %
* . %*
% 50 A COMPLETE L ISP PROGRAM *
* -3
¥ 58 PEBUGGING IN LISP :
*

* 60 OPERATING INSTRUCTION :
-

* 63 LISP EXERCICES ¥
* X*
79 REFERENCES ¥
%]
* 80 INDEX *
® . #
% %

O TG R0 R 4 6 90 3 o e 2 e 0 50 o e e e ol 0 o e 0 R e e o e e e st ok ok abe e s slksbende s koo o o o e e e ol e e ok e e e

PAG. 01

e e 3 o e o ek R
* PREFACE * »
B RN R gk

_ THE PRESENT ATTEMPT TO CREATE A SYMBOL MANIPULATION LANGUAGE
PROCESSOR FOR A RELATIVELY SMALL COMPUTER WAS MADE BECAUSE OF THE POSSIBILITY IT
WOULD OFFER TO OPENM UP THE FIELD OF SYMBOL MANIPULATION TO THE MANY GROUPS WHD
D0 NOT HAVE A LARGE COMPUTER AT THEIR . DISPOSAL. 'THIS IS THE CASE, FOR INSTANCE,
IN LATIN AMERICA AMD IN SEVERAL EURDPEAN COUNTRIES. THE RESULTING PROCESSOR HAS
PROVED USEFUL BO1H . IN THE TEACHING OF SYMBOL MANIPULATION TECHNIQUES AND FOR
SEVERAL OTHER APPLICATIONS DF A NOT TOO EXTENSIVE CHARACTER.

THE PROCESSOR DESCRIBED IN THIS MANUAL WILL RUN ON AN I.8.M.
1620 MOD. I1 MACHINE EQUIPPED WITH THE FOLLOWING ADDITIONAL FEATURES —

AT LEAST 40000 PDSITIONS OF CORE MEMORY
INDEX REGISTERS FEATURE :
1311 CISK STORAGE UNIT

. IF MORE THAN 40000 POSITIONS OF CORE STORAGE ARE AVATLABLE
THE INTERPREVER IS AUTDMATICALLY MUDIFIED TO MAKE USE OF ADDITIONAL MEMORY. AnNY
INPUT OR OUTPUT MEDIUM, CARD READ/PUNCH, PAPER TAPE READER/PUNCH, TYPEWRITER,
1443 HIGH SPEED PRINTER, CAN BE USED IF AVAILABLE.

PAG. 02

s 30 g 8 SRR R AR AR MR KA R YA

% 1., COMPUTERS AND LANGUAGES *
x*###t#*#*###*###*x#*#####*#*##

SINCE 1945, WHEN THE FIRST COMPUTER WAS INTRODUCED, THE ITERA
TION MAN-MACHINE BECOMES INDISPENSABLE. IN THIS FEW YEARS THAT COME TO PASS THE
USE OF THE MACHINE [N MANY FIELDS OF HUMAN ATIVITY WAS SD DIRECT AND UNDERTOOK
TOO EFFICIENT THA1 MAN WITH THE ADVANCE OF ELETRONICS IMPROVE HIS OWN MACHINES
AND THE METHOD OF H1S$S USE. THUS, THE DEVELOPMENT OF COMPUTERS SCIENCE WAS VERY
FAST AND TODAY MACHINE FULFIL AN IMPORTANT PLACE IN ALL THE SOCIALS ACTIVITIES.

THE PROGRAMMING LANGUAGES HAD TOO THEIR OWN DEVELQOPMENT. AT
THE BEGINNING THE COMPUTERS, BUILT BY SMALL GROUPS OF ELETRONIC ENGINEERS MAINLY
FOR THEIR OWN USE, THE CONTACT MAN-MACHINE WAS MADE USUALLY IN MACHINE-LANGUAGE.

FURTHER ON, WITH THE GENERAL APPEARANCE OF COMMERCIALLY BUILT
COMPUTERS, METHODS HAVE BEEN DEVELDPED WHICH ALLOW THE MACHINE ITSELF TQ TAKE

OVER THE ROUTINE PARTS OF PROGRAMMING, FOR THIS PURPOSEs, A NEW LANGUAGE IS5
DEFINED IN WHICH COMPUTER INSTRUCTIONS ARE WRITTENs; AND A SPECIAL PROGRAM CALLED
A PROCESSDR ACCEPTS STATEMENTS IN THIS LANGUAGE AS DATA, AND PRODUCES AS QUTPUT
THE TRANSLATION INTO MACHINE LANGUAGE.

PROCESSORS ARE MOSTLY OF TWO TYPES, ASSEMBLERS AND CDMPILE?S;
AND EACH HAS ITS CORRESPONDING LANGUAGES.

BY MEANS OF A VERY SIMPLE MACHINE LANGUAGE THE MACHINE READS
AN INSTRUCTION OF THE TYPE -

21 10000 15000
(MEANING CARRY OUT OPERATION 21, ADDING, FOR EXAMPLE, THE DATA IN LOCATION 15000
OF MEMODRY TO DATA IN LOCATION 10000). BUT, THIS KIND OF INSTRUCTION FDRCES THE
USER TO LEARN WHAT KIND OF OPERATION IS CARRIED OUT BY THE MACHINE IN READING 21
AND ALSD TO TAKE INTO ACCOUNT THE PRECISE ADDRESS WHERE 1T 1S GOING TO BE USED.

AN . ASSEMBLER COULD BE CALLED A MORE SOPHYSTICATED LANGUAGE
AND WILL ACCEPT INSTRUCTIONS OF THE FORM

ADD A.B
THAT WILL BE TRANSLATED INTO A CONVENIENT MACHINE LANGUAGE.
NEVERTHELESS,; FOR SUCH AN ASSEMBLER, ONE MUST STILL WRITE ONE

INSTRUCTION IN THE ASSEMBLY LANGUAGE FOR EACH MACHINE LANGUAGE INSTRUCTION

PRODUCED. FOR A LARGE PROGRAM, AND PROGRAMS WITH MANY THOUSANDS OF INSTRUCTIONS
ARE NO LONGER A RARITY, THIS IS STILL A LENGTHY AND BDRING TASK.

BY MEANS OF A COMPILER WE CAN GIVE INSTRUCTIONS IN THE FORM
OF ALGEBRAIC FORMULAS WRITING SOMETHING LIKE -~

X =1 % (A + B + 3)

PAG. 03

MEANING ~ CALL X THE QUANTITY OBTAINED FROM QUAMTITIES Z,A,8 AND 3 SUBJECTED TO
THE INDICATED OPERATIONS. 1IN THIS MANNER ONE CAN HANDLE PROBLEMS THAT ARE VERY
COMPLICATED IN A SIMPLE FORM. WITH THESE TECHMIQUES THE PROGRAMMING OF NUMERICAL
PROBLEMS HAS BEEN SIMPLIFIED TO THE POINT WHERE IT SURELY RETARDS SERIOUSLY THE
SOLUTION OF THE PROBLEM. THUS BASE HAVE APPEARED LANGUAGES SUCH FORTRAN, ALGOL,-
PL/1 AMD OTHERS THAT SUPPLY THE USERS THE SOLUTION OF NUMERICAL PROBLEMS. BUT,
SIDE BY SIDE WITH THE IDEA OF LANGUAGES TO SOLVE NUMERICAL PROBLEMS, CAME ALSU
THE IDEA OF LANGUAGES TO SOLYE NON-NUMERICAL PROBLEMS, FOR THE SOLUTION ON THE
COMPUTER OUF MANY ESSENTIALLY LOGICAL PROBLEMS AS THE HANDL ING OF AL GEBRAIC
EXPRESSIONS AND INFORMATION HANDLING SUCH AS INFORMATIGN RETRIEVAL, DETECTION OF
RELEVANT EXPERIMENIAL DATA, GAMES THEORY, PATTERN RECUGNITION AND OTHER HNON=NUME
RICAL QUESTIONS,

THE RESEARCH ON THIS FIELD OF LANGUAGES THAT HAVE BEEN CALLED
SYMBOL MANIPULATION LANGUAGES HAD ALSO A FAST DEVELOPMENT. THE FIRST SUCCESFULL
ATEMPT WAS MADE BY A GROUP QF .THREE PSYCHOLOGISTS, NEWELL, SIMON AND SHAW
(1956-1957), WHO ATEMPTED TO SIMULATE HUMAN INTELLIGENCE WITH A MACHINE. WHAT
IS IMPORTANT IN THEIR WORK 1S A METHOD CF DYNAMIC MEMORY ALLOCATION. IN &
NUMERICAL COMPILER THE ADDRESSES WHERE ALL QUANTITIES WILL BE STORED ARE FIXED
AT THE TIME OF TRﬁNSLATIQﬁ; BUT IN USING A COMPUTER TO "SOLVE LOGICAL PROBLEMS IT
- IS GENERALLY NOT POSSIBLE AT THE BREGINNING TO MAKE AN ESTIMATION OF WHAT KIMD
AND QUANTITY OF INFORMATION IS TO BE USED AT A PARTICULAR STAGE~THEREFORE THESE
AUTHURS INCLUDED THE POSSIBILITY OF A CONTINUAL CHANGE OF LOCATION OF DATA AWD

ALSO THE POSSIBILITY CF RECOVERING MEMORY LCCATIONS WHICH HOLD INFORMATION THAT
WILL NO LONGER BE NkEEDED. '

MEWELL, SIMON AND SHAW WROTE A COMPUTER LANGUAGE TO HANDLE
THESE THINGS -~ THE INFORMATION PROCESSING LANGUAGE , CALLED LATTER IPL - V. THE
MOST TMPORTANT CONCEPT FEATURE INTRODUCED BY THESE AUTHORS ON THE STRUCTURE GF

THE LANGUAGE WAS THE COMCEPT OF A LIST STRUCTURE THAT WILL BE STUDIED IN CHAPTER
Two, :

: BETWEEN 1958 AND 1959, AT MIT, JONH MCCARTHY AND OTHERS
DEVELOPED A SYMBOL MANIPULATION LANGUAGE CALLED LISP (LIST PROCESSING) THAT
WILL BE SUBJECT QF THIS MAMUAL. THIS LANGUAGE HAS BEEN LARGELY USED IN HIS
FIELD OF APPLICATIONS BECAUSE OF LTS EXTREMELY SIMPLE NOTATION. TAKING ADVAN-
TAGE OF THE IDEA OF AUTHORS OF 1PL=V, THE STRUCTURAL FEATURES OF THE LANGUAGE
ARE REPRESENTED " BY HEANS OF LIST STRUCTURES. IT USES ALSO THE GENERAL IDEA OF
RECURSIVE FUNCTION DEFINITION THAT WILL BE SUBJECT OF CHAPTER THREE,

PAG., 04

A T A A0 0 S 20 T 0 0 N e e e 3R

% 24 LIST STRUCTURE =*
AN R ot e A A A

* 2,1 ATOMS AND LISTS *
g Rk e R A AR A A AR

THE PROBLEM WE ARE CONCERNED WITH IS HOW TO - PRESENT DATA
WHOSE STRUCTURE MAY BE FAR MORE COMPLEX THAN THAT OF A NUMBER OR ARRAY TO THE
CUMPUTER. THIS CAN BE ACHIEVED BY MEANS OF LIST STRUCTURE, A METHOD WHICH WAS
FIRST INTRODUCED BY NEWELL, SIMON AND SHAW,.

TO INTRODUCE THE CONCEPT OF LIST STRUCTURE, WE NEED FIRST TO
INTRODUCE ANOTHER ONE - THE CONCEPT OF ATOM. AN ATOM CAN BE DEFINED AS ANY
SEQUENCE OF LETTERS, HNUMBERS OR OFHER SYMBOLS EXCEPT FOR THE RIGHT AND LEFT
PARENTHESIS AND BEANK SPACES.

* EXAMPLES =*

A

AS

COMPUTER

EVEN

-COMPUTER1

RTODEJANEIROI SAGREATCITY

ON"THE IBM 1620 AN ATOM NAME MAY NOT EXCEED 30 CHARACTERS 1IN
LENGTH. -

A LIST IS AN ARRANGEMENT OF ATOMS. WE CAN REPRESENT A SIMPLE
LIST 8Y ENCLOSING THE SEQUENCE OF ATOMS COMPOSING IT IN PARENTHESES.
FOR INSTANCE

(A B C)

THIS LIST 1S COMPOSED OF THREE ATOMS - A, B AND C. NOTE THE STRUCTURE OQOF THIS
REPRESENTATION. IT BEGINS WITH A LEFT PARENTHESES, THE ATOMS SEPARATE BY
BLANK SPACES AND AT LAST, A RIGHT PARENTHESES.

A LIST MAY HAVE SUBLISTSs AND THESE SUBLISTS MAY ALSO HAVE
SUBLISTS. IT IS CONVENIENT TO SPEAK @OF ELEMENTS OF A LIST,. AN ELE-
MENT MAY BE AN ATOM, A LIST OF ATOMS, A LIST OF LISTS OR A LIST OF ATOMS AND
LISTS.

* EXAMPLES =

1)
({A B)IC DY{E F) F)

COMMENTS - THIS IS A LIST OF FOUR ELEMENTS. THE FIRST ELEMENT IS THE LIST -
(A B)y THE SECOND, THE LIST (C D), THE THIRD, THE LIST (E F} AND THE FOURTH ELE-
MENT, THE ATOM F,

2)
{({{tA B} C D) EF}

COMMENTS =~ THIS IS A LIST OF THREE ELEMENTS. THE FIRST 1S THE LIST ({A B) C D)
AND THE OTHERS, THE ATOMS E AND F.

PAG. 05

3)
(Gl {H5 I}{F (M D P4y SY'T VYY)
COMMENTS - THIS IS A LIST WITH ONE ELEMENT - THE LIST
(Gl [H5 IJ(F (M O P4} S} T V)
4)
C(THIS IS A (LIST} STRUCTURE IN)} LISP)
5)

{THIS IS A LIST OF ATOMS}

o _IT KUST BE NOTED THAT WE CAN HAVE A LIST WITH NO ELEMENTS
CALLED - EMP1Y-LIST AND REPRESENTED By

it}

IN DEALING WITH LOGICAL PROBLEMS IT 1S INPORTANT TO REMEMBER
THE DISTINCTIDN BETWEEM AN OBJECT ANS ITS NAME. IN ORDINARY DISCOURSE THERE

ARE RARELY PRUBLEMS SINCE NAME AND OBJECT ARE OF DIFFERENT NATURE. NO ONE WiLL
FALL INTO CONFUSION BETWEEN

MEXICO HAS 35 MILLION TNHABITANTS
AND

MEXICO HAS SIX LETTERS

If PRECISION IS REQUIRED ONE WRITES THAT THE NAME MEXICO HAS
SIX LETTERS. OR ELSE ONE USES QUDTES TO SIGNAL THAT THE NAME ITSELF IS MEANT
RATHER THAN THE OBJECT NAMED.

IN LISP . THE DISTINCTION HAYE TO BE MADE CLEARLY, SINCE
MES AND UBJECTS MAY BE OF THE SAME .TYPE, THAT 1S, ATOMS. MOREOVER, THE OBJECT
JICATED BY A NAME MAY ITSELF BE A NAME FOR ANDTHER OBJECT. THE SITUATION.IS
AILAR TO THAT OF MATHEMATICAL NOTATION — 5 + A WHICH CANNOT BE EVALUATED

ML WE KNOW WHAY A STANDS FOR, THAT IS, DF WHAT NUMBER IT IS THE NAME.

WE WILL LEARN AT CHAPTER 5 HOW TO INTRODUCE NAMES AND THE

SPECTIVELY OBJECTS. BY NOW, ONE MUST REMEMBER THAT LISTS OR ATOMS MAY HAVE Na
5. ’

Tk AR Ao AR
PP skdok s
B ek

2 *

PAG. 06

3 s e A e 3t 4R e A o e o e o e e e e e R e 2

* 3, RECURSIVE FUNCTIDNS *
AR AR 4R 0 AR e R AR AR AN A K

70 INTRODUCE THE CONCEPT OF RECURSIVE FUNCTIONS, LET US

CONSIDER A SIMPLE PROBLEM — WE WISH TO KNOW HOW MANY ELEMENTS THERE ARE “IN ™A

GIVEN LIST.

1}
2)

3)
4}

51

1}

2)

LET US WRITE INSENGLISH THE STEPS TO SOLVE OUR PROBLEM.

LET N BE A COUNTER FOR THE NUMBER OF ELEMENTS OF A LIST.
INITIALIZE N T ZERO.

TAKE THE NEXT ELEMENT OF THE LIST.

ADD 1 T9 COUNTER.

IF THE LIST HAS MORE ELEMENTS, BACK TO STEP 3. OTHERWISE, END THE
PROCESS AND THE RESULT IS GIVEN BY THE COUNTER.

THIS METHOD OF GOUNTING HAS THE FOLLOWING CHARACTERISTICS -

EACH CYCLE OF THE PROCESS (FROM I1TEM 3 TO ITEM 5) IS COMPLETELY
EXECUTED BEFORE THE NEXT CYCLE IS BEGUNy AND THE DECISION ON
WHENEVER TO CONTINUE THE CYCLE IS USUALLY TAKEN AT THE END DF THE
CYCLE, USING THE RESULTS OBTAINED DURING THE CURRENT EXECUTION OF
17,

THE RESULTS OBTAINED IN EACH CYCLE OF EXECUTIDN SERVE AS STARTING
POINT FOR THE NEXT CYCLE, BUT THEREAFTER THEY CAN BE ABANDONED - IN
PRACTICE,THE RESULTS OF EACH EXECUTION OF THE CYCLE OVERWRITE THOSE
OF THE PREVIOUS ONE.

A DIFFERENT TYPE OF PRPCEDURE 1S CALLED RECURSIVE. A PROCE -

DURE IS CALLED RECURSIVE WHEN IT 1S USED WITHIN ITS OWN DEFINITION. FOR INSTAN-
CE, THE PROBLEM DESCRIBED ABOVE COULD BE SOLVED RECURSIVELY AS FOLLOWS =~

1)

2]

IF THE LIST IS EMPTY THEN THE NUMBER OF ITS ELEMENTS IS ZERO.
IF THE LIST IS NOT EMPTY, THE NUMBER OF ITS ELEMENTS WILL BE 1 PLUS

THE NUMBER OF ELEMENTS OF THE LIST OBTAINED BY REMOVING FROM THE
ORIGINAL LIST ITS FIRST ELEMENT.

WE SEE THAT THIS METHOD FOR COUNTING THE NUMBER OF ELEMENTS

USE ITSELF IN THE SECOND PART OF THE DEFINITION THAT 1S CARACTERISTIC OF A RECUR
SIVE PROCEDURE.

LET US FOLLOW STEP BY STEP THIS METHOD FOR THE LIST (A B8}.

{A B) IS NOT AN EMPTY LIST, SO THE NUMBER OF ITS ELEMENTS IS EQUAL TO 1 PLUS THE
NUMBER OF ELEMENTS OF THE LIST (B). WE MUST REMEMBER THIS CONCLUSION AND TRY
TO DETERMINE THE NUMBER OF ELEMENTS OF (B) B8Y THE SAME METHOD.

_ AS (B} IS NOT EMPTY, AGAIN . THE NUMBER OF ITS ELEMENTS IS

(EQUAL TO ONE- PLUS THE NUMBER OF ELEMENTS OF AN EMPTY LIST. HERE THE METHOD GI
VE DIRECTLY THE® INDICATION THAT THE NUMBER QF ELEMENTS IS ZERO. GOING BACKWARDS
WE CAN-NOW COMPLETE THE DETERMINATION OF THE NUMBER DF ELEMENTS OF THE LIST (B}
IT IS EQUAL TO 1 PLUS ZERC, THAT IS: 1. :

WE CAN USE THIS RESULT TO COMPLETE THE DETERMINATION OF THE
NUMBER OF ELEMENTS OF THE LIST (A B), EQUAL (AS WE REMEMBER) 10 1 PLUS 1y GIVING
US THE FINAL RESULT THAT THE LIST (A B} HAS TWO ELEMENTS.

ALTHOUGH THE MECHANISM OF THIS SECOND METHOD IS MUCH MORE
INVOLVED THAN FOR THE FIRST ONE, THE DEFINITION OF THE METHOD IS SIMPLER. THIS
TENDS TD BE A RULE FOR THE RECURSIVE METHOD.

THIS TYPE OF PRUOCEDURE ARE CHARACTERIZED BY -

A} EACH CYCLE OF RECURSION ({WHICH WILL BE CALLED A LEVEL IN WHAT
FOLLOWS) IS NOT COMPLETED BEFORE THE NEXT IS BEGUN.

B} PARTIALLY COMPLETED RESULTS FROM ALL PREVIOUS LEVELS MUST BE KEPT
AVAILABLE, SO THAT THEY MAY BE PICKED UP AGAIN ON RETURN.

C} THE POINT AT WHICH THE PROGRAM REPRESENTING THE RECURSIVE FUNCT!ON

"WAS LEFT MUST BE REMEMBERED, SINCE ON RETURNING WE MUST PICK UP EXE
CUTION WHERE IT LEFT ON LEAVING THIS LEVEL.

TO RESUME, IN A RECURSIVE PROCEDURE, ALL LEVELS ARE CALLED uP
TO MAXTMUM RECURSION DEPTH, BUT THEIR EXECUTION IS ONLY COMPLETED UPON COMING
BACK UP. ALMOST THE FUNCTIONS USED BY LISP LANGUAGE ARE DEFINED BY RECURSION SO
THAT IT IS INTERESTING TO KNOW WHAT XIND OF FUNCTIONS MAY BE DEFINED RECURSIVELY
= IT CAN BE SHOWN THAT ALL COMPUTABLE FUNCTIONS CAN BE DEFINED BY RECURSIDN.

THE CONCEPT OF COMPUTABLE FUNCTIONS IS AT FIRST RATHER VAGUE
AND INTUITIVE, BUT TWO CONDITIONS MUST EVIDENTLY BE FULFILLED.

A} THERE MUST BE A CERTAIN PROCEDURE, TO BE CARRIED ODUT UNAMBIGUOUSLY,
WHICH DEFINES THE FUNCTIONS,

B) THE NUMBER OF -STEPS INVOLVED MUST BE FINITE.

WHEN WE CONSTRUCT A RECURSIVE FUNCTION, IT' IS NECESSARY
THAT FOR SUME VALUES OF THE ARGUMENT THE FUNCTION IS DEFINED NON-RECURSIVELY.

UTHERWISE, 1HE RECURSION WILL NOT END, AND ITS VALUE (IF IT EXISTS) COULD NOT
BE UBTAINEL IN A FINITE NUMBER OF STEPS., THE NON-RECURSIVE PART DF THE DEFINI -

TION IS XKNUWN AS THE TERMINAL CONDITION.
THE RECURSION MAY BE COMPLICATED. THE FUNCTION MAY HAVE SEVE
RAL ARGUMENT 5, IN I1S OEFINITION SEVERAL TERMINAL CONDIT IONS AND SEVERAL RECUR -

SIVE ELEMENTS MAY OCCUR. THE KECURSION MAY ALSD BE INDIRECT, AS WHEN A FUNCTICi
F CALLS ANDIHER FUMCTIUN G, WHICH IN TURNS CALL F AND SO ON.

PAG. 08

300300 0l 000 30 e e K 0 2 S o e e X e g o o

* 4, BASIC CONCEPTS OF LISP *
35 e e 20t 48 0 K S 48 o0 3¢ e e e ageols e e e ek el o

_ THE EXECUTION OF A LISP PROGRAM CONSISTS TO A SERIES OF
EVALUATIONS DF LIST STRUCTURES.

WE MUST ODEFINE THE CONCEPT OF EVALUATION RECURSIVELY.
THE EVALUATION OF A LIST 1S5 MADE ELEMENT BY ELEMENTs FROM LEFT TO RIGHT. WHEN A
GIVEN ELEMENT IS NOT AN ATOM BUT A SUBLIST, THIS SUBLIST IS EVALUATED BEFORE
PROCEEDING WITH THE EVALUATION OF THE LIST. THE RESULT CAN BE -

A LIBRARY BEFINED'FUNCTfﬂN OF LISP.
A PREDICATE
A LITERAL

A FUNCTION

A LIBRARY DEFINED FUNCTION OF GLISP ARE FUNCTIONS LIKE CAR,
CDR ETCy THAT WE WILL SEE IN FURTHER CHAPTERS, THAT HAVE THEIR OWN RULES OF
EVALUAT ION.)

A PREDICATE IS A BUOULEAN VARIABLE WITH ONLY THE TWO VALUES -
"TRUE OR FALSE. '
) A LITERAL IS5 AN ATOM, LIST OR NUMBER WHOSE EVALUATION [S
PREVENTED . ‘

A FUNCTION NOT OF THE SYSTEM LIBRARY 1S DEFINED THROUGH THE
LAMBDA NOTATION.

COMPARED WITH OTHER LANGUAGES, LISP HAS A COMPLETELY DIFFE -
RENT GRAFIC FORM. ONLY AS AN EXAMPLE, WE WILL SHOW BELOW. A PROGRAM WRITTEN IN
LESP LANGUAGE .

{DEFINE {LEVEL (LAMBDA (L} (COND
{(ATOM (CAR L}}{QUOTE FIRST})
((ATOMICAAR L)} QUOTE SECOND)}
({AND) {QUOTE(THIRD OR MORE))))1}}.)
{APPLY .LEVEL (A})

NOTE THAT THERE ARE NO LABELS AND NG BRANCHES, DEVICES SO
FAMILIAR- TO A PROGRAMMER., THE STRUCTURE IS QUITE SIMPLE DESPITE THE MANY
PARENTHESES.

LISP IS NOT A NUMERICAL LANGUAGEs BUT FOR MANY APPLICATIONS
AT LEAST A SIMPLE ARITHMETIC IS REQUESTED, OUE TO THE LIMITATIONS OF THE 1BM
1620 WE CAN REPRESENT ONLY INTEGER NUMBERS OF UP TO FOUR DIGITS. ARITHMETIC
¥ilLL BE TREATED IN THE CHAPTER 9, :

PAG. 09

SRR A A AR R AR R A ARG A K

2 5, MACHINE FUNCTIONS *
Nese 5§ s AR e AR A A A AR R

IN THIS CHAPTER WE WILL DESCRIBE FOUR MACHINE FUNCTIONS THAT
WILL HELP US TO UNDERSTAND SUCCEEDLNG CHAPTERS. '

THIS FUNCTIONS ARE -

DEFINE
QUOTE
VAL
LET

* 5.1 DEFINE =*
EE 2 L

THIS FUNCTION HAS AN INDEFINITE NUMBER OF PAIRS OF ARGUMENTS
AND GIVES NAMES TO -ATOMS, LISTS OR FUNCTIONS. 1T HAS THE FORM ~

LDEFINE 1ALl X1)
' ' (A2 X2}

R

(AN AN)

WHRE Aly A2y +as 3 AN ARE ATOMS AND Xly %25 ee» 3+ XN ARE EXPRESSIONS THAT ARE
THERE DEFINED AS THE VALUES OF CORRESPONDING ATOMS. AN EXPRESSION IS COWMPOSED UOF
ATOMS AND NAMES OF FUNCTIDNS WITH PARENTHESIS THAT DEFINE THEIR EVALUATION.

THE EVALUATIDN OF AN EXPRESSION CAN BE REDUCED TO THE EVALUA-
TION BF A FUNCTION AND TO THE EVALUATION OF AN ATOM. EACH FUNCTION IS5 EVALUATED

ACCORDING TO THEIR RULES AND THE EVALUATION OF AN ATOM CORRESPONDS TO ITS REPLA-
CEMENT BY THE CORRESPONDING EXPRESSION GIVEN.BY DEFINE. IT IS ILLEGAL TO EVALUA

TE AN ATOM WHOSE VALUE HAS NOT B8EENM DEFINED. THE VALUE OF DEFINE IS ALLWAYS
TRUE.

® EXAMPLES #

1)
{DEFINE tA Bl
(0 (L M NI)

COMMENTS -~ IN THIS EXAMPLE WE USE THE SIMPLEST WAY OF INTRODUCING THE
VALUE OF AN ATOM AND OF A LIST. FIRST WE DEFINE AN ATOW

NAMED A, WHOSE VALUE IS B AND THEN THE LIST NAMED D
WHOSE VALUE IS (L M Ni.

PAG. 10
2}

(DEFINE (X ({A BY(C DI(F G))]
{y ({tAa B)'C) D))
{Z K) '
(v (l. 2. 3. 1)))

-3)

(DEFINE {L .X)
(X (A B))
LA (C'D F))
(B {1.2 3}})

4)
(DEFINE (S Q)
(P 1)
(X (AS P)})

5) ' '
(DEFINE {TAB. {1l =« 2 « 3 o & « 5 « 6 +« T «+ 8 .9 . 1)

(CARDS {(KING SPADES}){SEVEN CLUBS)})
{ NAMES (JGHN MARY PAUL)))

¥ ERRORS IN THE USE OF DEFINE =
e e e e e e e 3 R SRR AN N

WHEN THE FUNCTION DEFINE IS EXECUTED CORRECTLY BY THE LISP
INTERPRETER OF THE IBM 1620 THE MESSAGE

DEFIhE/SETPROP EXECUTED

[S.TYPED ON TYPEWRITER. BUT, IF AN ERROR OCCURS, THE MESSAGE
ERROR.,. INCORRECT DEFINE/SETPROP

IS TYPED. FOR INSTANCE -

(DEFINE (1) A)}
ERROR... INCORRECT DEFINE/SETPROP

IN THIS CASE, THIS MESSAGE IS TYPED BECAUSE THE NAME OF AN
ATOM COULD NOT BE AN EMPTY LIST.
THE SAME MESSAGE IS GIVEN IN THE FOLLOWING CASES -

(DEFINE({(A B C)({A})
(BEFINE A)

PAG. 11

* 5.2 QUOTE. ¥
TRREEERAERE

THIS FUNCTION HAS ONE ARGUMENT AND HAS THE FORM
(QUOTE X)
WHERE X MAY BE ANYTHING. THE ARGUMENT X IS NOT EVALUATED AND THE VALUE ~ OF
THIS FUNCTION 1S I1STARGUMENT. THIS FUNCTION IS USED WHEN IT IS NECESSARY TD
PREVENT THE FURTHER EVALUATION OF THE ARGUMENT. FOR INSTANCE -
(QUOTE A}

RESULTS IN THE LITERAL A BUT NOT THE VALUE OF A.

*EXAMPLES#
(QUDTE B) = B
{QUDOTE 1) = 1
{QUOTE (}) = ()
(QUITE (A B CI) = (A B C)
(QUDTE (LA B C) D)) = {(AB ¢) o)
(QUOTE (A (A B) CJ) = (A (A B)C)
{QUOTE LISP} = LISP
(QUOTE A B) = A
(QUOTE. EMPTY-LIST) = EMPTY-LIST

" {QUOTE (ATOM NAME)) = (ATOM NAME)

(QUOTE ATOM-NAME) = ATOM-NAME

% 5,3 VAL ¥

o e AR

1T HAS ONE ARGUMENT AND THE FODRM -
{VAL A)

WHERE A 1S EVALUATED AND MUST HAVE AN ATOM AS ITS VALUE. IT RETURNS THE VALUE
OF THIS ATOM. FOR INSTANCE, IF WE EXECUTE -

{ DEFINE {C bN
AND THEN

(VvaL (QUOTE C})

PAG. 12

WE WILL HAVE AS RESULT THE ATOM D BECAUSE . (QUOTE C) EVALUATES TO THE ATOM C,
AND C HAS THE VALUE D. THUS, WE HAVE THE FOLLOWING IDENTITY -

X = (VAL (QUOTE X))

WHEN THE ARGUMENT EVALUATES TO A LIST INSTEAD OF AN ATOM,
THE RESULT WILL BE THE FIRST ELEMENT OF THIS LIST.
FOR INSTANCE, IF WE EXECUTE -

{DEF INE (v A)
tA (B C)))

AND THEN -

(VAL A}

-AS A EVALUATES TO THE LIST (B C)y THE RESULT WILL BE
THE ATOM B, THAT IS8, THE FIRST ELEMENT OF THE LIST (B C). '

* EXAMPLES *
IF WE EXECUTE

(DEFINE {SBL +)
(A (X Y Z))
(X (F G H))
(+ PLUS})

THEM -

(VAL (QUOTE SBL}) = +
{VAL (QUOTE A)) = (X Y 2)
{VAL A) = X

(VAL (QUDTE X)} = (F G H)
(VAL X) = F

(VAL SBL). = PLUS

(VAL (QUOTE (A B}}} = A

* ERRORS IN THE USE OF - VAL =
s R L]

(VAL Y]}
ERROR..» VARIABLE NAME HAS NO VALUE

(VAL +)
ERROR..+ UNDEFINED ARGUMENT FOR FUNCTION DEFINITION

(VAL (SBL))
ERROR... UNDEFINED ARGUMENT FOR FUNCTION DEFINITION

PAG. 13

¥ 5.4 LET =
R AR AR

THIS FUNCTLON HAS TWO ARGUMENTS AND HAS THE FORM -
(LET X Y}

BOTH ARGUMENTS ARE EVALUATED. THE FIRST MUST EVALUATE TO AN
ATOM THAT WILL ADQUIRE AS ITS VALUE THE VALUE OF THE SECOND ARGUMENT.

THE VALUE OF LET WILL BE THE VALUE OF ITS SECOND ARGUMENT.

THIS FUNCTION ALLOWS A PERMANENT CHANGE OF VALUE FOR A GIVEN

QUANTITY. THE .PREVIOUS VALUE IS LOST AND THE NEW ONE IS RETAINED UNTIL ANOTHER
APPLICATION OF LET.

¥ EXAMPLES »
LET US FIRST EXECUTE -

{DEFINE (X (A B C))

Y (Z M L))
(Z v)

(Vv {C K}))
1) _
{LET {QUOTE X}{QUOTE Y}}

COMMENTS -~ THE NEW VALUE OF X WILL BE THE ATOM Y. THE OLD VALUE
THAT IS, THE LIST (A B C} IS LOST. -
2}
{LET (QUOTE X} YY)
COMMENTS - THE NEW VALUE DF X WILL BE THE VALUE OF Y, THAT IS, THE
LIST tz M L)y, :
3)
{LET (QUOTE Y) (VAL V)))
COMMENTS - THE VALUE OF Y WILL BE THE VALUE OF V, THAT 1S5, THE ATOM C
4)
(LET (VAL(QUOTE Z))(QUOTE Y))
COMMENTS =— (VAL{QUOTE Z}) EVALUATES TO THE ATOM V. IT WILL TAKE A

NEW VALUE, THE ATOM Y.

* ERRORS IN THE USE DOF LET =
R 0 0 0% 2 e e e ol e RN AR e e K A AR

(LET A B}
ERROR... VARTABLE NAME HAS NO VALUE

(LET 1 2)

PAG. 14

%3 20t 26 S o o o ek ol R T 40 00 e e e R SRR e R e e ke e e e ol o ek e

* 6. THE BASIC FUNCTIONS IN LISP #
e 23 e 25 X e e e A 0 X e g 2k e e e 3 e e e et e e e e e ok e ale e sk

 THE. BASIC FUNCTIONS DESCRIBED IN THIS CHAPTER WILL ENABLE Uus
TO MAKE A LOT OF INTERESTING SIMBOLIC MANIPULATIONS..

THERE ARE SEVEN BASIC FUNCTIONS -

CAR
COR
CONS
ATOM
EQ
NULL
LIST

* 6.1 THE BASIC FUNCTION CAR =
TR R R R AR AR MR A A AR R N X

THIS FUNCTION HAS ONE ARGUMENT. AND IS WRITTEN IN THE FORM -

(CAR X)

THIS FUNCTION EVALUATES X

IS THE FIRST ELEMENT OF THIS LIST, 'WHETHER THIS IS AN ATOM OR A SUBLIST.
VALUE OF X IS NOT & LIST OR DO NOT EXIST,

* EXAMPLES *

(CAR (QUOTE (1 5 2)))

{CAR {(QUOTE (A B (1 2) C)}}
(CAR {(QUDTE (A B) & HI})

(CAR (QUOTE (A)}) =
(CAR {QUOTE ((A})}) =

AND TF 1T IS A LIST,

{CAR X) IS UNDEFINED.

{a B)

{CAR (QUOTE {i{A B) C D) E F)})

(CAR (QUQTE {))) =

IN THE LAST - EXAMPLE
'EVALUATED AND THE RESULT IS THE ATOM 1.

* 6,2 THE BASIC FUNCTION CDR =*
3¢ 4 46 0 50 2 3 S 4 9 3 2 2 o o 2 e 6 TR N

UNDEFINED
{CAR (QUOTE 1}} = UNDEFINED
(CAR (CAR (QUOTE {(1 5 2)})))

PAIR
EVALUATED FIRST AND THE RESULT IS THE LIST (1 5 2).

1

({a B) € D}

RESULT
IF THE

OF INTERNAL PARENTHESIS IS

THEN 4

THIS IS A FUNCTION OF ONE ARGUMENT.

{CDR X}

THIS FUNCTION EVALUATES THE ARGUMENT AND IF THE VALUE
LiST, GIVES AS A RESULT THE SAME LIST WITHOUT 1TS FIRST ELEMENT.

IS

IT HAS THE FORM -

IS A

WHEN THE VALUE

OF THE ARGUMENT IS A LIST WiTH ONE ELEMENT,THE RESULT 1S AN EMPTY LIST. WHEN THE -
YALUE OF THE ARGUMENT IS AN EMPTY LIST, DR AN ATOM OR DO NOT EXISTS, THE CDR OF

IT IS UNDEFINED.

PAG. 15

* EXAMPLES =

{COR (QUOTE {F J K L))) = {J K L}

{CDOR (QUOTE (BJ}} = ()

{COR (QUOTE A}) = UNDEFINED

{COR (QUOTE (})) = UNDEFINED

(COR (QUOTE ((A B}{C D(E F) G1)) = ({C O (E F} G))

: IN THE LAST EXAMPLE, WE HAVE A LIST WITH TWO ELEMENTS - (A B)
AND (C D {E F) G). HENCE, THE CDR WILL BE THE SAME LIST WITHOUT THE FIRST ELE-
MENT =~ #1C D (E F) G). NOTE THAT THE PARENTHESES THAT BELONGS TO THE MAIN LIST
ARE -WANTAINED .

* 6.2 THE COFMPOSITES OF CAR AND COR =
AR A AR B TR A0 e X 0 K e R

IN ACTUAL PROGRAMS DNE ENCQUNTERS FREQUENTLY COMBINATIONS OF
CAR AND CDR, OFTEN TO A COMSIDERABLE DEPTH. 1IN VIEW OF THE SIZE OF THE 1BM 1620
IT HAS BEEN POSSTBLE TO INCLUDE ONLY COMPOSITES UP TO DEPTH 3.

{CAAR X) = ({CAR (CAR X))

{CDDR X} = {CDR (LDR X))

{CADR X) = ({CAR {(CDR X)}

{CDAR X) = ({CDR (CAR X))
(CAAAR X} = - {CAR (CAR (CAR X)}]
(CDDDR X} = (CDR (CDR {CDR X))}
(CADDR X} = (CAR {CDR (CDR X}}Y¥
(CAADR X) = (CAR {CAR (CDR X) 1}
(CADAR X) = (CAR {CDR (CAR X)))
{CDAAR X} = (CDR (CAR (CAR X))}
{(CODAR X) = (CDR (CDR (CAR X)}}
(CDADR X) = (CDR {CAR {CDR X}))

ALL THESE COMPOSITES ARE, OF COURSE, ONLY DEFINED IF THEIR
ARGUMENTS FULLFIL THE APPROPRIATE CONDITIONS., THUS FGR {CDAR X}, THE ARGUMENT X
MUST BE A LIST WHOSE FIRST ELEMENT 1S ITSELF A NCN-EMPTY LIST, AND SO ON.

*EXAMPLE $%
1CAR (QUOTE (ABCODEFGH) = A
{CADR (QUOTE (ABCDEFG)) = B
{CADOR (QUOTE (ABCDEFGI) = ¢
(CAR (CDDDR (QUOTE (ABCDEFGII) = O
{CADR(CDDDR{QUOTE (A B C D E F G}))) = E
{CADDR (CDDDR (QUOTE. (A-B C D E F G)))) = F
{CAR(CDDDR (CODDR(QUOTE (A B C D E F G))J)) = G
(CDOR {QUOTE (CC{1 J) K) L M) NIDD £ ()
{CDAR {QUOTE (LT B K) LMY NIDY = (L M)
[CAAR (QUOTE- ((((I JI'K} L M) N)J} = ((I-J) K},
(CAAAR (QUOTE (((({I J) K} L M} N))} = (I J)
(CCOAR (QUOTE ((((I J) K} L M) N})} = (M)
(COAAR (QUOTE ((((I J) K} L M) N)}I) = (K}
(CADAR (QUOTE ({{{1 J)'K}. L M) N})) = |
(CAADR {QUOTE (D ((F Q R} S) TI)) = (P Q R)
(CDADR (QUOTE (D ((P.Q R} §) T}}) = (8)

PAG. 16

* ERROR MESSAGES WITH CAR AND CDR =*
Aol e A AR AR AR AR R R R

"OFTEN WE MADE MISTAKES IN THE APPLICATIONS OF CAR AND CDR.
BELOW THERE ARE SOME BAD PROPOSITIONS AND ITS CORRESPONDING MESSAGE .

1)
(CAR A)
ERROR... VARIABLE NAME HAS NO VALUE

COMMENTS = THE MACHINE GIVES THIS MESSAGE BECAUSE THE NAME A WAS NOT
DEFINED. THE SAME MESSAGE WILL BE GIVEN IN THE FOLLOWING CASES -

{CAAR (A B))

{CDR (C DR})
{CAR P @)
{(CADR {iL M N))

2)
(CAR (QUOTE {)
ERROR... EMPTY-LIST ARGUMENT FOR CAR

(CDR (QUOTE (1)
ERROR... EMPTY LIST ARGUMENT FDR CDR

COMMENTS "= THE ARGUMENT OF CAR DR CDR CANNOT BE AN EMPTY LIST.

3)
{(CAR (QUOTE A))
ERROR... ATOMIC ARGUMENT FOR CAR

{COR (QUOTE C1}}
ERROR. .. ATOMIC ARGUMENT FOR CDR

&)
(CAR 1)
ERRCR ... NUMERICAL ARGUMENT FOR CAR

{CDR 2}
ERROR,... NUMERICAL ARGUMENT FOR CDR

REMARK - I7T MUSY BE NOTED THAT THE MESSAGE - VARIABLE NAME HAS ND VALUE WILL

BE TYPED EVERY TIME WE USE A LISP FUNCTION WITH AN ARGUMENT NOT DEFI-
NED.

PAG. 17

* & 4 THE BASIC FUNCTION CONS =
AR AR AR A R g A R A O MR

THIS IS A FUNCTION WITH TWO ARGUMENTS USED TO CREATE A LIST.
IT HAS THE FORM = :

{CONS -X YY)

WHERE THE VALUE OF X MAY BE ANYTHING, BUT THE VALUE OF Y MUST BE A LIST, WHICH
MAY BE EMPTY. THIS FUNCTION EVALUATES BOTH X AND Y AND THEN CREATES A LIST THE
FIRST ELEMEMNT.-OF WHICH IS X, WHILE ALL THE OTHERS ARE THOSE DOF Y. IF THE VALUE
OF Y IS NOY A LIS1, THE RESULT IS UNDEFINED.

- THE FULLOWING IDENTITY IS TRUE FOR ANY LIST L

(CONS (CAR L)}(COR L}) = L

* EXAMPLES =%

tCONS (QUCTE AY(QUOTE (B C D E})) = {(ABCDE}

{CONS (QUOTE X)(QUOTE { })) = (X}

(CONS (QUOTE FI{CDR (QUATE (A 8 C}23)} = (F B C)

(CONS {CAR {QUDTE i{A B))){QUOTE {8 C D}}} = (A B L D}
(CONS (QUOTE () {QUOTE (X)) = ({ } X)

{CONS [CONS {(QUOTE XMIQUOTE ()}I(QUATE €3})} = {{x))
(CONS (QUOTE X)LQUEBTE {(A) B CJ))) = (X {A) B C)

IN THE LAST EXAMPLE A LIST IS CONSTRUCTED WITH THE FIRST ELE-
MENT BEING THE FIRST ARGUMENT OF CONS, IN THIS CASE THE ATOM X AND THE REMAIN-
ING ELEMENTS THOSE OF THE SECOND ARGUMENT,

ERRORS IN THE USE OF CONS *
e 0 e 0 M SR A R KRR o

(CONS (QUOTE A) {(QUOTE B))
ERROR ... ATOMIC ARGUMENT FOR CONS

(CONS A B
ERROR... VARIABLE NAME HAS NO VALUE

(CONS (QUOTE A) 1)
ERROR... NUMERICAL ARGUMENT FDR CONS

PAG. 18

* 6.5 THE PREDICATE ATOM =
P T T

THE THREE FOLLOWING FUNCT.IONS ARE CALLED PREDICATES FOR, AS
WE HAVE SEEN, THEY TAKE ONLY THE VALUES TRUE OR FALSE. SO0 THE RESULT OF THESE

FUNCTIONS IS NOT A LIST OR AN ATOM BUT A LOGICAL RESULT EQUAL TO ONE OF TWO
CONDITIDNS, TRUE OR FALSE

THE PREDICATE ATOM HAS ONE ARGUMENT AND CAN BE WRITTEN -
(ATOM X)

IT EVALUA%ES THE ARGUMENT X, AND IF IT IS AN ATOM, THE RESULT
is TRUE - OTHERWISE, IF IT IS A LIST, THE ANSWER IS FALSE.

® EXAMPLES

(ATOM (QUOTE A)} = TRUE

{ATOM (QUOTE (AJ)) = FALSE

(ATOM (QUOTE (A B C D E)J) = FALSE

(ATOM (CAR (QUOTE ({K) P G}})) = FALSE
(ATGM (CADR(QUOTE ((K) P G})J) = TRUE
(ATOM (CDR (QUQTE {(K) P G}}}) = FALSE
{ATOM (CADDR (QUOTE {(K} P G)))} = TRUE

¥ b.,6 THE PREDICATE EQ =
30 e R A R AR AR NI T

THIS FUNCTLON HAS TWO ARGUMENTS AND CAN BE WRITTEN -
(EQ X ¥)
IT EVALUATES BOTH X AND Y. [IF BOTH VALUES ARE THE SAME ATGH

THE RESULT IS TRUE. 1F THE VALUES ARE DIFFERENT ATOMS, OR IF ONE OF THEM IS A
LIST, THE ANSWER IS FALSE. 1F BOTH VALUES ARE LISTS, THE FUNCTION IS UNDEFINEG.

* EXAMPLES =
(EQ {(QUOTE A(QUOTE A)) = TYRUE
IEQ (QUOTE A} (QUOTE {A)})} = FALSE
(EQ (QUOTE V)IEAR-lQUUTE {A B CY))) = FALSE
{EQ {(QUOTE (A)}{QUOTE (A})} = UNDEFINED
{EQ (QUOTE C){CDR(QUOTE(C C)))} = FALSE
{EQ {CADR(QUDTE(S G H}))(CAR(QUOTEIG S Hl})) = TRUE

PAG. 19

* 6.7 THE PREDICATE NULL =
AR 20 0 MR S R X 3 A K

THIS PREDICATE HAS ONE ARGUMENT AND HAS THE FORM -
{NULL L)

IT WILL BE TRUE ONLY IF L EVALUATES TO AN EMPTY LIST. NOTE
THAT THE LISI

(e 1)

IS NOT AN EMPIY LIST. IT IS A LIST THAT CONTAINS A SUBLIST WHOSE VALUE 1§ AN
EMPTY LIST. .

® EXAMPLES =

INULL (QUOTE { 33} = TRUE

(NULL (QUOTE A)} = FALSE

(NULL {CAR (QUOTE ({) B C)))) = TRUE
{NULL (CDR (QUOTE {Z}))) = TRUE
INULL (QUOTE (A B8 C))}) = FALSE

* 6.8 THE FUNCTION LIST =
3350 290 40 00 3 5 0 0K ¢ 3 e e e e

THIS FUNCTION HAS AN INDEFINITE NUMBER OF ARGUMENTS. IT HAS
THE FORM -

(LIST A B € 4uiaeeal

| IT EVALUATES ALL THE ARGUMENTS AND THEN FORMS A LIST OF THE
RESULTS s IN THE ORCER UF THE ARGUMENTS. 1F THERE ARE NO ARGUMENTS, THAT IS, IF
WE WRITE ~

(LIST)
THE RESULT WILL BE AN EMPTY LIST.

THE FUNCTIONS LIST AND CONS ENABLE US TO FORM ANY. NEW. LIST.
NUTE THE DIFFERENCE BETWEEN THESE TWO FUNCTIONS. FOR INSTANCE, IF WE EXECUTE --

{DEFINE {x P}
(L {ABC))

AND THEN -
(LIST'X L)
THE RESULT WILL'BE (P (A B C))
BUT, INSTEAD OF LIST WE USE -
(CONS X L)

THE RESULT WILL BE {P A B C)

% EXAMPLES =

(LIST (QUODTE A){(QUQTE B)) = (A B)

{LIST (QUOTE (A B CN(QUOTE (C D)1 = (tAa B CYHIC D))
(LIST (QUOTE (}I(QUOTEL ¥)») = (L 30 1)

(LIST (QUOTEt(A 8} C)I{(QUOTE S} = ({(A B) C} 5)
tLiST (QUOTELV W)IILLIST)) = (¥ W)()

(LIST {QUOTE A)ICONSIQUOTE(L))(QUOTE{B C))} = (A ((L) B L))

(LIST(CONS(QUOTE C}{QUOTEIC D))} (CAR{QUOTE(A B)))}) =
({C C D) A}

{LISTLCONSYLISTLLESTIHILISTYIY = (((}) {)}

PAG. 21

BN E R FERFFRRRA R R TR
¥ 7. CONDITIONAL EXPRESSIONS =
RO 3% e e a0 e 8 0000000 NE e R 3w ke e e RE AR e ke ok ol

FROM THE BASIC FUNCTIINS OF THE .CHAPTER 6 IT IS POSSIBLE
TO BUILD UP MORE COMPLEX ONES, SINCE ALL OF THEM EVALUATE THEIR ARGUMENTS., IF
AN ARGUMENT 1S IN TURN A FUNCTION WRITTEN, AS HAS BEEN SEENy AS A LIST WHICH MAY
BE HANDLED BY LISP - IT 1S, OF COURSE, EVALUATED BY CARRYING QUT THE FUNCTION IN
QUESTION. hOWEVER, MORE SYMBOLS ARE NEEDED IN QORDER TC EXPRESS THE LOGICAL RE ~-
LATIONS OF THE CONDITIONS FOR A RECURSION. THIS IS THE MAIN(THOUGH NOT THE ONLY)
PURPUSE UF ThE SYMEOLS COND AND 1IF AND, THEY DIFFER BASICALLY FROM THE ELEMEN=
TARY FUNCTION BECAUSE THEY DO NOT NECESSARILY EVALUATE. ALL THEIR ARGUMENTS.

* 7.1 THE CONDITIUNAL EXPRESSION IF =
e e S L T T e T T

THE CONDITIONAL EXPRESSION IF HAS THREE ARGUMENTS AND THE
FORM -

(IF P &4 B)

WHERE P IS A PREDICATE, A AND B EXPRESSTIONS. THE PREDICATE IS EVALUATED AND
LF IT HAS THE VALUE TRUE THEN THE EXPRESSION A IS EVALUATED AND ITS VALUE IS
THAT OF THE IF-~EXPRESSION., OTHERWISE, WHEM THE PREDICATE HAS THE VALUE FALSE,
THE EXPRESSIUN 1 IS EVALUATED AND TAKEN AS THE RESULY OF THE IF-EXPRESSIOM.
IN EITHER CASE THE OTHER EXPRESSION IS NOT EVALUATED AND MAY (CONTAIN ELEMENTS
WHICH UNDER THESE CONDITIONS AKE UNDEFINED, E.G. THE COR DF AN EMPTY LIST.

* EXAMPLES =#

1}
{IF(ATOM(QUOTE G)! (CAR{QUOTE(A B C)}) (CAR{QUQOTE(D E F)}))

COMMENTS - AS THE PREDICATE (ATOM (QUOTE P)) HAS THE VALUE TRUE,
THEN THE VALUE OF THE 1IF ~ EXPRESSION WILL BE THE SAME AS THAT OF -

(CAR {QUOTE (A 8 CJ}})
THAT 1S, THE ATOM a,

21
{IF (ATOMIQUOTE(R T))) (CDR{QUOTE(Q W})) {CADR{QUOTE(S J K))} }

COMMENTS - IN THIS CASE, THE PREDICATE IS FALSE BECAUSE THE ARGUMENT
OF THE PREDICATE ATOM IS A LISTy NOT AN ATOM. HENCE, . THE VALUE OF THE IF

EXPRESSION WILL BE THE SAME AS THAT OF THE THE VALUE OF {CADR {QUUTE {S J K})),
THAT 1S, THE ATOM .,

2)
{IF (EQ (CAR(QUOTE{A))){CARI(QUOTE(8))}) {CDR{QUOTE(M)})(CARI{QUOTEIC))))

CUMMENTS =~ AS THE PREDICATE IS FALSE BEC@USE__THE YALUE .GF -
{(CARIQUOTE{A))) DIFFER FROM THE VALUE OF {CAR{QUOTE(B})), THEN THE RESULT OE
THIS CONDITIONAL EXPRESSIUN WILL BE THE VALUE OF (CAR{QUOTEIC)}), THAT IS, THE
ATOM C.

PAG. 22

4)
(IF (NULL(QUOTEL(L))))
{LIST(CONS{QUOTE A)(QUOTE{)} {LIST}):
{LIST{LIST(QUOTE A)Y{QUAOTE 8))){CONS{QUOTE()} {QUATE()}}
COMMENTS - AS THE PREDICATE IS FALSE, BECAUSE THE LIST (()) IS A
LIST WITH ONE ELEMENT, THE LAST EXPRESSTION IS EVALUATED
GIVING AS RESULT - ((a B))({)))
5)

SUPPOSE THE FOLLOWING LISTS WERE DEFINED -
(DEFINE (X (A B C})

(L (B 8C)))

WE WOULD LIKE TO PRINT THE WORD EQUAL IF THE FIRST ELEMENT
OF X IS EQUAL TO THE SECOND OF L AND THE FIRST OF L IS EQUAL TO THE SECOND
OF X. OTHERWISE WE WILL PRINT THE WORD DIFFERENT.

{IF {EQ{CADR L} (CAR X))}
(IF {EQ{CAR L){CADR X})
{QUOTE EQUAL)
{QUOTE DIFFERENT))
{QUOTE DIFFERENT))

HERE WE USE A CONDITIONAL 1IF INSIDE ANOTHER ONE. IF THE
PREDICATE OF THE FIRST EVALUATES TO TRUE, THE ANSWER IS ANOTHER CONDITIONAL EX-
PRESSION, THUS, WE MAY USE AS MANY 1IF AS WE DESIRE.

% 742 THE CONDITIONAL EXPRESSION COND =*
e 7 3 0 22 3005 R X238 AR 0 0 X 20 2 0 e N A T B e o T

THIS CONDITIONAL EXPRESSION MAY HAVE ANY NUMBER OF PAIRS
OF ARGUMENTS AND HAS THE FORM -

{COND (Pl E1)(P2 E2} secaseasss{PN ENJ)

HERE ALL P(I) MUST BE PREDICATES, THE E(I) CAN BE ANY KIND OF EXPRESSIONS. PI(1])
IS FIRST EVALUATED, IF IT IS TRUE E1 IS EVALUATED AND 1TS VALUE GIVEN AS THE VA-
LUE OF COND., IF P(1) IS FALSE, E{1l) IS NOT EVALUATED, BUT P(2} 15 EXAMINED, IF
TRUE THEN THE VALUE OF E(2) IS THE VALUE DF COND, OTHERWISE THE NEXT PREDICATE
IS EVALUATED UNTIL. A TRUE PREDICATE IS REACHED, WHOSE ASSOCIATED EXPRESSION THEN
GIVES THE VALUE OF COND. NEITHER THE COMPANION EXPRESSION OF FALSE PREDICATES
NOR THE REMAINING PAIRS AFTER A TRUE PREDICATE ARE EVALUATED. IF THE LAST PREDI
CATE 1S REACHED AND IS FALSE, COND IS UNDEFINED. TO AVOID THIS, THE LAST PREDI-
CATE 1S FREGUENLY (AND) WHICH FOR REASDNS WE WILL SEE LATTER 15 ALWAYS TRUE.

PAG. 23

* EXAMPLES =

1)
{COND {{ATOM (QUOTE (A 6))) (CAR {QUOTE (F K)1})
LLATOM (QUOTE (F K})) {CAR {QUOTE (A 8))))
((ET (CAR(QUOTE(A B)))(CAR{QUDOTE(F KJ})) ({CADR (QUOTE(F K))})
{(ATOM (QUOTE P)) ' - {CADR{QUOTE(A B})})
({NULL (QUOTE (A}))) {CAR(QUOTELA B))Y)))
COMMENTS - NOTE THE STRUCTURE OF THE COND. IT HAS FIVE PAIRS

IN ‘WHICH WE HAVE THE PREDICATE AND THE CORRESPOMDING EXPRESSION. AS THE
ARGUMENTS OF THE PREDICATE ATOM IN THE FIRST THD PROPOSITIONS ARE LISTSs THE
RESULT OF THESE PREDICATES IS FALSE. 50, THE RESPECTIVELY EXPRESSIONS ARE NOT
EVALUATED, THE THIRD PAIR VERIFY IF THE VALUE OF CAR OF TWO CIFFERENT LISTS ARE
EQUAL. THE EQUALITY IS MOT TRUE AND THE CORRESPONDING EXPRESSICM IS NOT EVALU-
ATED. THEN, IN THE 4TH PAIR, AS P ‘IS AN ATGM, THE PREDICATE IS TRUE AML THE EX-
PRESSION {CADR {QUOTE (A B))} IS EVALUATED GIVING A4S THE RESULT, THE ATOM B,

THIS RESULT wILL BE ALSO THE RESULT OF THE FUNCTIOM COND AND THE REMAINING Pa-
IR TS NOT EVALUATED.

2} .
SUPPOSE WE EXECUTE THE FOLLOWING DEFINITION -

{DEFINE (A (XY Z K})

AFTER SOME MANIPULATIONS WITH THE LIST Ay, WE WISK TO KNOW IF
THIS LIST HAS ONE, TWO, THREE CR MORE ELEMENTS. FOR THIS: WE CAN CONSTRUCT A
PIECE OF PROGRAM THINKING GENERICALLY ON A LIST NAMED A.

LETS WRITE IN ENGLISH THE STEPS TQ GIVE THE SOLUTION TO OUuR
PROBLEM =

1} IF THE CDR OF THE LIST- A IS EMPTY, THE LIST HAS ONE ELEMENT.
2) IF THE CDOR OF THE LIST A IS EMPTY, THE LIST HAS TWO ELEMENTS,
3) OTHERWISE, THE LIST HAS THREE OR MORE ELEMENTS.

FOR WRITE THIS IN LISP LANGUAGE, WE CAN USE THE CONDITIONAL
FUNCTION COND. WE MAY WRITE - '

(COND :

{ (NULL (CDR A)} {(QUOTE(ONE ELEMENT}})

LINULL{CDOR A}} (QUOTE{TWO ELEMENTS}))

{{AND) (QUOTE(THREE OR. MORE ELEMENTS})))

MNOTE THAT THE FUNCTION (AND) EVALUATES TO TRUE AND MAKES THE
COUNDITIONAL FUNCTION COND ALSO TRUE.

PAG. 24

3

SUPPOSE WE DEFINE A LIST AND AN ATCOM -

THE ATOM A IS THE

%)

(DEFINE {L t8 €)}
(A B))

AFTER SOME MANIPULATIONS WITH THE LIST L, WE WISH TO KNOW IF
FIRST, THE SECUND OR IS NOT AN ELEMENT OF THE LI1ST L.

‘THE PIECE OF PROGRAM COULD BE WRITE -

(COND

((EQ (CAR L) A} (QUOTE FIRST-ELEMENT}}
{{EQ (CADR L) A) (QUOTE SECOND-ELEMENT})
{ tAND) (QUOTE NO—-ELEMENT)))

SUPPOSE THE FOLLOWING LISTS WERE DEFINED ~

(DEFINE (X {A B C))
{L (B B C)))

OF X IS EQUAL TO SECOND OF L. PRINT THE WORD EQUAL IF THEY

ATOM AND THE WORLD

{IF

AFTER SOME. MANIPULATIONS WE WISH TO KNOW IF THE FIRST ELEMENT

REFER TGO THE SAME
DIFF OTHERWI SE.

({COND

{(EQ{CAR XJ(CADR L))(QUOTE EQUAL))
t{AND) {QUOTE DIFF)))

AS WE HAVE ONLY ONE CONDITION WE MAY USE IF INSTEAD OF COND.
{EQ (CAR X) (CADR L))}

{QUOTE EQuUAL)
(QUOTE DIFF})

* ERRORS IN THE USE OF CONDITIONALS =
SR o 4 A e A AL AT RO R N SR N R e o ek e

(COND ({ATOM (QUOIE

{A B))¥{QUOTE €1))

ERRDR... NO TRUE PREDICATE IN COND

{(COND ({1 (QUOTE B))4QUOTE C)1})
ERROR,... NMUMBER AS FUNCTION DEFINITION

PAG. 25

Ne 3 3 e e e o R R 3 e e A Ak o R x kok

* 8. LOGICAL FUNCTIONS *
AR R AR R R A A R A e

LOGICAL FUNCTIONS OIFFER FROM THE PREDICATES PREVIDUSLY
DESCRIBED IN THAT NOT ONLY THEIR VALUES BUT ALSO THEIR ARGUMENTS TAKE ONLY THE

. TWO POSSIBLE VALUES TRUE OR FALSE. THE ARE ALSO CALLED BOOLEAN FUNCTIONS. IN
LISP, ONE OF THEIR PRINCIPAL USES IS TD COMBINE. PREDICATES OF VARIOUS KINDS INTO
MORE POWERFUL ONES FOR USE WITH IF OR COND.

THE THREE LOGICAL FUNCTIONS ARE -

AND
OR

NOT

* 8,1 THE LOGICAL FUNCTION AND #
AN R R AR N K KA A AR

THIS FUNCTION HAS ANY NUMBER OF ARGUMENTS AND HAS THE FORM -

(AND PL P2 .eexe PN}

THE ARGUMENTS ARE EVALUATED IN THE ORDER GIVEN. IF ANY OF THE
ARGUMENTS 1S FALSE, THEN THE VALUE OF THE FUNCTION AND WILL BE FALSE AND THE
REMAINING ARGUMENTS ARE NOT EVALUATED. OTHERWISE, IF NO FALSE ARGUMENT)

FOUND, THE VALUE OF THE FUNCTION WILL BE THE VALUE OF THE LAST ARGUMENT.

THE FUNCTION AND WITHOUT ARGUMENTS HAS THE VALUE TRUE. IT
HAS THE FORM - '

{AND)

THIS IS OFTEN USED AS THE LAST PREDICATE OF THE FUNCTION COND
FOR, AS WE HAVE SEEN, ITS LAST PREDICATE MUST BE TRUE.

* EXAMPLES =

1)
(AND (ATOM{QUOTE A))} (NULL{QUOTE(1))}

COMMENTS - BOTH ARGUMENTS ARE PREDICATES AND THEY EVALUATES TO THE
VALUE TRUE, THEM THE FUNCTION AND IS TRUE.

PAG., 26

2)
(AND (NULL (QUOTELJ}))}(ATOM (QUOTEC(LX))))

COMMENTS - THE FUNCTIONS NULL AND. ATOM ARE PREDICATES. AS THE FIRST

ONE -EVALUATES TO A VALUE TRUE AND THE SECOND TO A VALUE FALSE THEN, THE FUNCTION
AND WILL BE FALSE.

ER] : '
{AND (CAR{QUOTE(A B))} (ATOM (QUOTE A)}))
COMMENTS - THE FIRST ARGUMENTS EVALUATES 7O THE VALUE A {NOT A PREDI-
CATE}y, THE SECOND, IS A PREDICATE THAT EVALUATES TO A VALUE TRUE. THE VALUE OF
THE FUNCTION IS TRUE,
4}

(AND {ATOMIQUOTE A))}(CAR(QUOTE (A 81)))

COMMENTS - AS ONE OF THE ARGUMENTS IS NOT A PREDICATE, THE VALUE OF

THE FUNCTION WILL BE THE VALUE OF THE LAST ARGUMENT OF AND. THE RESULT IS THE
ATOM A,

5)
[AND {CAR(QUBTE(A))}{CAR(QUOTE(B}))}

COMMENTS. - THE ARGUMENTS ARE NOT PREDICATES, SO THAT THEY ARE EVALUA~

TED AND THE RESULT OF THE FUNCTION WILL BE THE RESULT OF THE EVALUATION QF THE -
LAST ARGUMENT, THAT IS, THE ATOM B,

6)
(AND(LIST(QUOTE (B C})}(LET{QUOTE A)}{CONSIQUOTE A){(QUDTE(8 C)}))}

COMMENTS = THE THWO ARGUMENTS ARE NOT PREDICATES. THEY ARE EVALUATED
AND THE RESULT OF THE FUNCTION WILL BE (A B C), THAT IS THE RESULT OF THE EVALUA
TION OF THE LAST ARGUMENT,

T
(AND (ATOM {QUOTE (A)))}(CAR{QUOTE(A B)}})

COMMENTS - AS THE FIRST ARGUMENT IS A PREDICATE THAT EVALUATES TO A
VALUE FALSEs THE RESULT WILL BE FALSE.

PAG. 27

* 8.2 THE LOGICAL FUNCTION OR =
e33R e Ao 30 40 30 30 35 00 0048 o R KON S RO e

THIS FUNCTION HAS ANY NUMBER OF ARGUHENTS'AND_HAS THE FORM -
(OR Pl P2 csewes PN)

THE ARGUMENTS ARE EVALUATED IN THE ORDER GIVEN. IF ANY OF
THE ARGUMENTS IS TRUE, THEN THE VALUE OF THE FUNCTIOM WILL BE TRUE: OTHERWISE,
IF NO TRUE ARGUMENT IS FUUND, THE VALUE OF THE FUNCTION WILL BE THE VALUE OF
THE LAST ARGUMENT. THE FUNCTION OR WITH MO ARGUMENTS EVALUATES TO A VALUE FAL-
SE.

* EXAMPLES =

11} '
{OR (ATOM(QUOTE(A B))) (NULL(QUGTE{A B})}))

COMMENTS - THE RESULT OF THE FUNCTION OR WILL BE FALSE BECAUSE BOTH
ARGUMENTS EVALUATES TO THE VALUE FALSE.

2}
(OR {ATOMI{QUOTE A)){CAR{QUOTE{A B)}))

COMMENTS - THE RESULT OF THE FUNCTION OR WILL BE TRUE, BECAUSE
THE FIRST ARGUMENT IS A PREDICATE THAT EVALUATES TU A VALUE TRUE. THE REST OF
THE ARGUMENTS ARE NOT EVALUATED.

3}
{OR (CAR({QUOTE(A B)}){CAR{QUOTE(B C)})}

COMMENTS - BOTH ARGUMENTS ARE NDT PREDICATES. THEN, THE VALUE OF THE
FUNCTION OR WILL BE THE VALUE OF THE LAST ARGUMENT, THAT 1$, THE ATOM B.

4}
{OR (CAR(QUOTE{A}}) {ATOM(QUOTEIB)}))

COMMENTS ~ THE FIRST ARGUMENT IS EVALUATED AND HAS THE VALUE A. THE
SECOND ARGUMENT IS A PREDICATE THAT EVALUATES TO A VALUE FALSE. AS THIS ARGU-
MENT IS THE LAST ARGUMENT OF THE FUNCTION OR, ITS VALUE WILL BE THE VALUE OF THE
FUNCTIDN, THAT 1S, FALSE.

5)

{OR {ATOM {QUOTE A)} (CAR (QUOTE A}))
COMMENTS - AS THE FIRST ARGUMENT EVALUATES TO A VALUE TRUE THE RESULT
OF THE FUNCTION WILL BE TRUE EVEN IF THE SECOND ARGUMENT CANNOT BE EVALUATED,

PAG. 28

* 8.3 THE LOGICAL FUNCTION NOT %
S e e o o e R e R o e o A 0 e OR e

THIS FUNCTION HAS ONE ARGUMENT AND HAS THE FORM -
(NOT X)
IT EVALUATES ‘THE ARGUMENT AND IF A PREDICATE THAT EVALUATES TO A VALUE TRUE, THE
FUNCTION NOT WILL HAVE .THE VALUE FALSE. OTHERWISE, IF THE PREDICATE HAS A VA-
LUE FALSE THE FUNCTION NOT WILL HAVE THE VALUE TRUE. IF THE ARGUMENT IS NOT A
PREDICATE, THE ARGUMENT IS EVALUATED, AND THE RESULT WILL BE THE VALUE OF THE
FUNCTION NOT.

* EXAMPLES =

H (NOT (ATOM (QUOTE (A B C)))) = TRUE
(NOT (ATOM {QUOTE A)1) = FALSE
{INOT (NULL {QUOTE (A}))) = TRUE
(NOT (NULL (QUOTE { }))) = FALSE
{NOT (EQ (QUOTE A){QUOTE A)}} = FALSE
{(NOT (QUOTE A)) = A
2) _
SUPPOSE WE EXECUTE -
(DEFINE {A (L (M N} O)}
(P 0))
AND THEM -
A} : (NDT (ATOM{CADDR A}})}
COMMENTS =~ AS THE ARGUMENT OF THE LOGICAL FUNCTION NOT, EVALUATES TO

TRUE, THE RESULT OF THIS FUNCTIGN WILL BE FALSE.

B)
(AND (EQ{E€AR A) P}{EQ {CADDR A} P})

COMMENTS - THE ARGUMENTS OF THE LOGICAL FUNCTION AND ARE EVALUATED.AS
THE FIRST ARGUMEN1 EVALUATES TQ FALSE, THE ENDING VALUE OF THIS LOGICAL FUNCTION
WItL BE ALSO FALSE.

c)
{OR {ATOM{CADR A}}(NOT(ATOM{CADDR A))1}UATOM P))

COMMENTS - THE LOGICAL FUNCTION DR WILL BE FALSE IF ALL ITS ARGUMENTS
EVALUATES TO FALSE BUT IF AT LEAST ONE OF THEM EVALUATES TG TRUE, THEN THE FUNC-
TION WILL BE TRUE. IN THIS EXAMPLE, THE TWO FIRST ARGUMENTS ARE FALSE BUT THE
LAST DNE IS TRUE, SO0, THE FUNCTION IS TRUE, ’

D)
{AND (AND)(OR}}

COMMENTS - THE LOGICAL FUNCTION AND, IS TRUE IF ALL ITS ARGUMENTS EVA
LUATES TO TRUE. THE FIRST ARGUMENT, (AND), IS TRUE BUT, THE SECOND (QR) EVALUA-
TES TO FALSE. THUS, THE RESULT NF THF PRNPASIT.IOM 18 SalSE.

PAG. 29

R AR RO A AR A e e R e e A e e e

¥ 9. ARLTHMETIC FUNCTIONS *
R Y L L T

DUE TO THE LIMITATIONS OF THE IBM 1620, THE ARITHMETIC “FUNC-
TIONS OF THE LISP INTERPRETER FOR THIS CDMPUTER HAS ALSO ITS LTIMITATIONS.

WE CAN HANDLE ONLY INTEGZRS. A NUMBER 1S DEFINED AS AN INTE-
GER OF UP TO FOUR DIGITS; WITH AN OPTIOMAL SIGN 1IN FRONT. A NUMBER WILL BE
TREATED AS AN ATOM WHOSE VALUE IS ITS NAME. NO OTHER VALUE WAY THEREFORE BE
ASSIGNED TD IT, WHICH MEANS THAT A NUMBER CANNDT BE THE NAME OF A FUNCTION OR A
VARITABLE. AS A RESULT, WHEN A NUMBER OCCURS AS A CONSTANT WITHIN A FUNCTION DE—
FINITION, IT IS NOT NECESSARY TO QUOTE ITe AN INTEGER OF MCRE THAN FOUR DIGITS
IS NOT RECOGNIZED AS NUKBERy IS TREATED AS AN ORDINARY ATOMN AND NG FIXED VALUE
IS THEREFORE ASSOCIATED WITH IT. '

THERE ARE SEVEN FUMNCTIONS AVAILABLE -

ADD
sus
MULT
DIv

SG

NUM
RANDOM

THE RULES OF THE ARITHMETIC IN L ISP ARE THE SAME OF THE
ALGERRAIC RULES.

* 9.1 ADD =
e

THIS FUNCTION HAS TWO ARGUMENTS AND HAS THE FORM -
(ADD N M)

IT EVALUATES BOTH ARGUMENTS AND IF THEY ARE INTEGER NUMBERS, THE RESULT WILL BE

THE ALGEBRAIC SUM N + M, IF THE ARGUMENTS ARE NOT NUMBERS, AN ERROR MESSAGE IS
GIVEN.

* EXAMPLES =*

1) IF WE EXECUTE -
(DEF INE A 2)
{B 5))
- AND THEN - -
(ADD A B}

THE RESULT WILL BE THE ALGEBRAIC SUM 2 + 5, THAT ISy T.

2) tADD 1 .0) = 1
(ADD +& +18} = 24
{ADD -7 8} = 1
tADD ~9 =-8) = -17

{ADD ODR -04Y = 2

PAG. 30

* 9,2 SUB x
R E R

THIS FUNCTION HAS TWO ARGUMENTS. IT HAS THE FORM -
{SUB N M)

IT EVALUATES BOTH ARGUMENTS AND IF BOTH ARE NUMBERS, THE RESULT WILL BE THE AL-
GEBRAIC DIFFERENCE N - M. |

IF THE ARGUMENTS DD NOT EVALUATES TO NUMBERS AN ERROR MESSAGE
IS GIVEN.

* EXAMPLES #

1) IF WE EXECUTE -~
{DEFINE (C 10)
(D 51 1)
AND THEN -
tsue C D}

THE RESULT WILL BE THE ALGEBRAIC DIFFERENCE 10 - 5,THAT 18, 5.

2} (SyB -5 4} = =9
(SUB 10 =5) = 15
(SUB -4 ~8) = 4
(SuB 9 9) = 0

* ERRORS IN THE APPLICATION OF ADD/SUBTRACT *
RSN R A e R TR M S KRR A RO R R KRR F R

WHEN WE TRY TO ADD OR SUBTRACT TWO INTEGERS AND THE RESULT IS
AN INTEGER WITH MORE THAN FOUR DIGITS, THE ERROR MESSAGE ~--

ERROR.ss ADD/SUBTRACT OVERFLOM
1S GIVEN. FOR INSTANCEs WE WILL HAVE THIS MESSAGE WE EXECUTE -

(ADD 1235 9999)
{suB 1234 -9999}

8Y OTHER HAND IF WE USE AN hRITHHETiC FUNCTIONS WITH AN ARGU-
MENT WITH MORE THAN FOUR DIGITS WE WILL HAVE AMNOTHER ERROR MESSAGE -
ERROR ... VARIABLE NAME HAS ND VALUE
THIS WILL BE TYPED IF WE TRY -

{SUB 19999 1}
(ADD 1 42568)

PAG. 31

¥ 9,3 MULT *
AR EANE

THIS FUNCTION HAS TWO ARGUMENTS AND HAS THE FORM -
{MULT N M}

IT EVALUATES BOTH ARGUMENTS AND [F THEY ARE NUMBERS, GIVES THE PRODUCT NM. [IF
THE ARGUMENTS DO NOT EVALUATES TO NUMBERS, AN ERROR MESSAGE IS GIVEN.

* EXAMPLES ¥

1) IF WE EXECUTE -
{DEFINE (E 10}
-~ {F 6})
AND THEN -
(MULT E F)

THE RESULT WILL BE 60.

2} (MULT & =10) = =50
{MULT -2 -5} = 10
(MULT 7 2} = 14

{MULT -4 5) = =20

{MULT 2 8) 16

IF A PRODUCT HAS MORE THAN FOUR DIGITS AN ERROR HMESSAGE IS
GIVEN. FOR INSTANCE,

{MULT 145 789)
ERROR oo MULTIPLY OVERFLOW

{MULT 9999 2)
ERROR..,. MULTIPLY OVERFLUW

{MULT 1235 986}
ERROR «s e MULTIPLY OVERFLOW

(MULT 23568 1)
ERROR... VARTABLE NAME HAS ND VALUE

PAG. 32

% 9,4 DIV *
R AR

THIS FUNCTION HAS TWO ARGUMENTS AND HAS THE FORM -
(DIV N M)

IT EVALUATES BOTH ARGUMENTS AND, IF THEY ARE NUMBERS, GIVES THE INTEGER QUOTIENT

BETWEEN N AND M, [IF THE ARGUMENTS DO NOT EVALUATE TO NUMBERS OR If A DIVISION
BY ZERQ OCCURS, AN ERROR MESSAGE IS GIVEN.

* EXAMPLES *

{DIV 8 2}

(DIV 100 2)
(DIV T 2)

(DIV 45 8)
{DIV -9 -8)
(DIiv -9 1)
{DIV 40 l000) =
(DIV 1154 1000) = 1
{DIV 2486 1000) = 2

0

(=

4
5
3
5
1
0

IF A DIVISION BY ZERD IS ATTEMPTED, AN ERROR MESSAGE IS TYPED
FOR INSTANCE - '

(DIV 82 0)
ERROR... DIVISION BY ZERO

(DIV 45 12345) _
ERROR... VARIABLE NAME HAS NO VALUE

*x 9,5 RANDOM =
HEROR R A A AR

" YH1S FUNCTION HAS NO ARGUMENTS AND HAS THE FORM -
(RANDOM)

IT GIVES AN INTEGER RANDOM NUMBER BETWEEN 0 AND 9999 WITH AN UNIFORM DISTRIBU -
TION.

EXAMPLES =

1)
{LET {QUOTE A} {(DIV (RANDOM) 1000))

COMMENTS =— THIS PROPOSITION ASSIGNS TO THE ATOM A, AN INTEGER NUMBER
FROM ZERC TO NINE. THE FUNCTION RANDOM GIVES AN INTEGER BETWEEN ZERCO AND 9999.

AS THE DIVISION IS INTEGER THE QUOTIENT WILL BE THE DIGIT OF THE THOUSANDS OF
THE RANDOM NUMBER.

PAG. 33

% 9,6 S5G *
FRmAAR

TH1S FUNCTION IS A PREDICATE WITH TWO ARGUMENTS. IT HAS THE
FORM =

{56 N M}
'IT WILL .HAVE THE VALUE TRUE IF THE VALUE OF N IS GREATER THAN THE VALUE OF M,

FALSE OTHERWISE. IF THE ARGUMENTS DO NOT EVALUATE 7O NUMBERS, AN ERROR MESSAGE
IS GIVEN. :

* EXAMPLES =

tS6 2 1) = TRUE
(6 1 5 = FALSE
{SG 123 489) = FALSE
{S6 58 24) .= TRUE

¥ 9,7 NUM =
AR R

THIS FUNCTECN IS A PREDICATE WITH ONE ARGUMENT. iT HAS THE
FORM -

(NUM X}

IT EVALUATES THE ARGUMENT AND IF IT IS A NUMBER, THE VALUE OF THE PREDICATE WILL
BE TRUE. DOTHERWISE, IT WILL BE FALSE.

#EXAMPLES =

1}
{NUM 4) = TRUE
{NUM -9) = TRUE
(INUM {QUOTE A)}) = FALSE
, {NUM (QUCTE Al)} = FALSE
)
SUPPOSE WE EXECUTE -
(DEFINE (N (1 2 3))
_ (L tA B CH)
A) (AND (LET (CAR L) 6]
{ADD (VAL (CAR L1} (CADR N}))
CUMMENTS ~- THE RESULT OF THE FUNCTION AND WILL BE 8.
B)

(AND {LET (CAR LJ 1)
{LET (CADR L) 2)
(LET (CADDR L) 3)
(ADD {ADD (VAL{CAR LJ){CADDR N)}(vAL (CACR L}))}

COMMFNTS — THF RESIHT WTI) AFE 4

PAG. 34

BRI AR T A A N AR qe o AR

* 10, LAMBDA NOTATION =
0 2 30 o0 e kR AR AT A AR R Bl R K e

WE ARE NOW CONCERNED WITH THE DEFINITION OF FUNCTIONS 3Y: THE
PROGRAMMER ., FOR INSTANCE, WE WANT DEFINE.A FUNCTION TO DETERMINE IF A GIVEN LIST
HAS ONE, TWO, THREE OR MORE ELEMENTS. BY MEANS OF THE FUNCTIONS GIVEN 1IN THE
PREVIOUS CHAPTER WE ARE ABLE ‘TO DO IT - THE FUNCTION DESCRIPTION 1S - '

(COND ((NULL{CDR L)}{QUOTE{ONE ELEMENT)})
CINULL(CDDR L)}{(QUOTE (TWO ELEMENTS)})
((AND) (QUOTE{THREE OR MORE ELEMENTS)]))

HOWEVER, FOR A COMPLETE DEFINITIONs WE MUST ALSD SPECIFY -

1) HOW TO ASSOCIATE A NAME WITH A FUNCTION DESCRIPTION.

2) HOW TO INDICATE PRECISELY WHAT ARE VARIABLES AND THEREFORE T0.GlVE
THEM VALUES.

THIS WAS ANSWERED BY THE LAMBDA THEORY INTRODUCED BY CHURCH.
HE SOLVED THESE PROBLEMS BY MEANS OF A LIST OF THREE ELEMENTS -

(LAMBDA (A B.C) (FORM))

THE FIRST ELEMENT IS THE WORD LAMBDA AND 1IT INDICATES TO
THE MACHINE THAT -THE .FOLLOWING ELEMENT IS THE LIST OF VARIABLES FOR THE
FUNCTION. THE THIRD ELEMENTy {(FORM), IS SOME EXPRESSION THAT DEFINES THE FUNC -
TION. IN THE"SAMPLE GIVEN ABOVE THERE ARE THREE VARIABLES - A, B AND C.

THE LIST OF VARIABLES CAN BE AN EMPTY LIST BUT MUST EXIST

AS DTHERWISE, THE MACHINE TAKES THE FOLLOWING EXPRESSION AS THE LIST OF
VARIABLES. '

_ WE CAN APPL?'.A FUNCTION WITH A LIST OF VARIABLES TG BE
ASSOCTATED WITH THE ARGUMENTS. 1T HAS THE FORM -~)

t{LAMBDA{Vl V2 44020 VN) (FORM}) Al A2 cs4vas AN)

HEREy THE VALUES OF Al,A2 AN GIVE THE VALUES TO BE

ASSOCIATED WITH THE VARIABLES V1, V2 YNy BY PAIRING THEM OFF ; Al WITH V1,
A2 WITH V2; AND SO ON.

THIS NOTATION IS THE SAME AS THE ONE USED IN THE PREVIOUS
CHAPTER - THE FIRST ELEMENT OF THE LIST IS THE FUNCTION TO BE CALCULATED -

{LAMBDA -{V]1 V2 YN} (FORM))
AND THE SECOND, ARE THE ARGUMENTS -
{(.......‘...ll.l Al AZ L B AN}

THE ARGUMENTS Al, A2 AN CAN BE FUNCTIONS (INCLUDING, OF

COURSE, THEIR ARGUMENTS) THAT ARE EVALUATED BEFORE PROCEEDING TO FIND THE VALUE
OF THE FUNCTION,

) 1T MUST BE NOTED THAT THE VARIABLES V1, V2 ... VN IN THESE
EXPRESS JUNS ARE DUMMY VARIABLES. IF ONE OF THEM IS EXCHANGED FOR ANOTHER NAME,
THRDUGHOUY THE LAMBDA EXPRESSION, THE VALUE ASSOCIATED ARE THE SAME AND HENCE
THE VALUE OF THE FULL EXPRESSION IS UNCHANGED. FOR SHORTy T WILL CALL THE DUMMY
VARTIABLES JUST VARIABLES, AMD THE ASSOCIATED VALUES, ARGUMENTS.

PAG. 35

WE NOTE THEN THAT IN ORDER TO EVALUATE:A FUNCTION, ARGUMENTS
MUST BE™ ASSBCPATED TO ITS VARIABLES. ~THIS: ASSUCIATION; GALLED BINDING, IS VALID
ONLY.:DURING® THE LAMBDA EXPRESSION. ANY VﬁRIABLES CONTAINED IN THE FUNCTIONAL
EDRM 'T'NUE,BUUND BY THE VARIABLE LI'ST AFTERYTHE LAMBDAS ARECCALLED FREE VARIA -
BLES.% - BEFDRE THE FUNCTION CAN BE EVALUATED, -THEY MUST: OF COURSE HAVE BEEN BOUnND
THEMSELVES. THIS USUALLY OCCLRS ON A, HIGHER LEVELy THAT IS, THROUGH ANDTHER
FUNCTIUN HHICH CALLS THE FUNCTION HHERE THE FEEE VARIABLES OCCUR.

WE HAVE ALREADY SEEN HOW T CDNSTRUCT FUNCTIONS BUT NOT HOW
TO GIVE IT A NAME. THIS PROBLEM IS SUOLVED UI‘ " THE FUNCTION DEFIME (CHAPTER 5).
THE WHOLE DEFINITION OF ONE DR MORE FUNCTIGNS "WILL HAVE THE FURM -

(DEFINE
(NAMEL (LAMBDA (vl ...VN) (FORML)))
INAME2 (LAMBDA (X1 ... XN} (FORMZ}})

-.....I............l...............

{NAMEN {LAMBDA {Z1 <+e IN) (FORMN)))}

EACH PAIR 15 FORMED BY AN ATOM (NOT A LIST) THAT WILL BE THE
MAME ©OF THE FUNCTION AND BY THE LAMBDA EXPRESSIUN WHICH WILL BE CALLED BY THIS
NAME .

NOW, WE.CAN COMPLETE QUR FUNCTION TO FIND IF A LIST HAS ONE,
TWO, THREE OR MORE ELEMENTS. LET US CALL THE ‘FUNCTION ELEM.

{DEFINE {ELEM (LAMBDAIL}- {COND
{{ATONM- L}{QUOTE (NOT A LIST}}) :
{{NULL (CDR L)}(QUOTE (ONE ELEMENT)))
({NULL (CDDR L}}({QUOTE{TRO ELENENTS;;;

{LAND) {QUOTE{ THREE DR HURE ELEMENTS 1

THE .NAME OF THE FUMCTICN IS ELEM AND IT HAS ONE VARTALLE
CALLED L. '

FUNCTIONS MUST ALWAYS HAVE BEEN DEFINED BEFDRE BEING LS Ely
BUT -~ WITHIN THE DEFINITION THE NAME OF THE FUNCTION BEING DEFINED MAY
OCCUR - THIS MAKES RECURSIVE FUNCTIONS POSSIBLE. FOR INSTANCE, LET US CONSIDER
A FUNCTION THAT GIVES THE FIRST ATOM NAME ON A LIST WHATEVER MAY BE ITS LEVEL
DEPTH. THIS PROELEM CAN BE HANDLE ONLY BY MEANS OF A RECURSIVE FUNCTIOM, &S
THERE IS NO KNOWLEDGE OF THE LEVEL IN WHICH THE ATOM MAY BE FOURD.

THE FUNCTION MAY BE CALLED FIRSIATDM AND CAN BE DEFINED BY -~

{DEFINE {FIRSTATOM (LAMBDA (L} {IF {ATOM (CAR L})
{CAR L) -
{FIRSTATOM (CAR L))} 1))

THERE I§ ALSD ONLY ONE RECURSIVE CONDITION. IF AT ANY
STAGE (CAR L) IS AN ATOM, THEN (CAR L) IS OUR ANSWER. BUT IFf NOT, THEN WE MUST
REPEAT THE RECURSIONs EXCEPT THAT NOW THE ARGUMENT OF FIRSTATOM HILL MOT BE
THE ORIGINAL VALUE OF L, BUT THE CAR OF 1T,
SUPPDSE WE USE FIRSTATOM WITH THE ARGUHMENT (({{A}B)C}. AT
FIRST STAGE {CAR L) IS [(A)B} ANMD NOT &M ATOM. HENCE THE PREDICATE OF THE IF IS
FALSE, FIRSTATOM IS CALLED AGAIN, AND {({A) B) GIVEN TO IT AS ITS ARGUMENTS. THE
CAR OF THIS IS (A), STILL NOT AN ATOM - AND FIRSTATOM IS - THEREFOURE CALLED A
THIRD TIME, THIS TIME, WIIH ARGUMENT (A). BUT NOW, THE CAR OF THIS IS A;AN ATUm
THE IF PREDICATE IS5 YHEREFORE TRUEy AND A IS RETURNED AS THE ANSWER OF THIS [F,
HENCE ALSU OF THE THIRD - LEVEL CALL. I TURN THIS GIVES THE ANSWER FOR THE

SECOND LEVEL, AND THEN FOR THE FIRST LEVEL. THUS THE FIMAL RESULT, wHICH WILL
BE PRINTED GUT, 15§ A,

PAG. 36

. NOTE THAT THIS FUNCTION, AS WE HAVE DEFINED IT, WOULD NOT RE-
TURN AN ANSWER IF APPLIED TO L = ({) A}, SINCE (CAR { }} IS NOT DEFINED.
WE CAN ALSO DEFIMNE THE FUNCTION -

(OEFINE {FIRSTATOM (LAMBDA (L) (IF fATOM.L)
L
{FIRSTATOM (CAR L1} 1)

NQTE THAT WRITING THE DEFINITIONS ON VARIOUS LINES DO NOT IN
ANY WAY AFFECT THE MEANING, BUT DOES HELP TO UNDERSTAND HOW THE FUNCTION WORKS.

* EXAMPLES *
SUPPOSE WE EXECUTE —

{DEFINE (L {ABCDN)
(M (A B C))
(X 8))

1} :

WE WISH TO VERIFY AFTER SOME MANIPULATICNS IF THE ATOM X
STILL 1S MEMBER OF THE LIST L. LET US CALL THE FUNCTION MEMBER AND WRITE iN
ENGLISH THE STEPS TO SOLVE THIS PROBLEN.

1) IF THE LIST L IS NutL, THE RESULT IS FALSE.
2} IF-THE FIRST ELEMENT OF L 1S EQUAL TO X. THE RESULT IS TRUE.

3} OTHERWISE WE MAY APPLY THE FUNCTION MEMBER TO THE REMAINDER OF THE
LIST(THE CDRy OF COURSE).

NOTE THAT THE DESCRIPTION IS RECURSIVE. IN THE LAST ITEM, WE
APPLY THE FUNCTION MEMBER TG THE CDR OF THE LIST BECAUSE WE ALREADY KNOW THAT
THE CAR IS NOT EQUAL TO THE ATOM X. THUS, THE NEW ARGUMENT OF MEMBER IS THE ATOM
Xy THAT REMAIN UNCHANGED AND THE LIST (B C D}« WITH THESE . ARGUMENTS, THE STEP
1 IS FALSE (LOOKING TO THE LIST L PREVIDUSLY DECLARED) BUT THE STEP 2 15 TRUE
BECAUSE THE CAR OF {B C D) IS EQUAL TO THE.ATOM X. SO, THE RECURSION 1S ENDED,
AND THE FUNCTION MEMBER WILL HAVE THE VALUE TRUE.

IN. LISP WE CAN WRITE -

{DEFINE (MEMBER {(LAMBDA (X L) (COND
(LNULL L} (DR} 1}
({EQ (CAR L} X) {AND))
((AND} {(MEMBER X (CDR L))} }1))

LET US ANALYSE THIS DEFINITION. THE DEFINE STATEMENT HAS ONE
PATR OF ARGUMENTS. THE FIRST ONE IS A NAME AND THE SECOND A FUNCTION DEFINITION
INDICATED BY THE LAMBDA NOTATION. FOLLOWING, THE LIST OF VARIABLES FOR THE FUNC
TION - THE ATOM AND THE LIST AND THEN THE BODY OF THE DEFINITION.

PAG. 37

i

THE ARGUMENTS CAN bt

] _ : : TO SAM N THE FUNCTION MuST
EVALUATE TO & VALUE TRUE, OTHERWISE IT MUST BE FALSE.

LET US WRITE IN ENGLISH THE STEPS TO SOLVE THIS PROBLEMS, LET

US CALL THE FUNCTION. EQuAL, AND' THE .ARGUMENTS x AND Y.

1) IF X IS AN ATODM, WE VERIFY IF X HAS THE sAME VALUE THAN Y, TREAT-
ING BOTH X AND Y AS AToms.

2} IF X IS NOT AN ATOH-AND Y IS AN ATOM, THEN THE FUNCTION MUST BE
FALSE. '

31 AS WE KNOW THAT X IS A LIST, WE ASK IF IT 1S5 AN EMPTY=LIST. IF THIS
1S TRUE; WE ASK AGAIN IF. 'Y IS "NULL. IF BOTH ARE EMPTY~LISTS THE
RESULT WILL BE TRUE 8UT TF XIS EMPTY AND v 15 NOT, THE RESULT 15

4) AS WE KNOW SURELY THAT X IS NOT AN EMPTY LIST, WE ASK IF v IS NuLL.
IF IT IS TRUE, THE RESULT Is FALSE,

3) NOW WE KNOW THAT X AND Y ARE BOTH LISTS WITH ELEMENTS. WE MUST
VERIFY IF THE LISTS HAS THE SAME ELEMENTS. FOR THIS we CAN APPLY
THE FUNCTION ‘EQUAL RECURSIVELY, HAVING AS ARGUMENTS, THE FIRST ELE-
MENT OF EACH LIST. [IF THIS EVALUATES TO TRUE, THEN WE. MUST APPLY
THE FUNCTION EQUAL TQ THE REMATNDER OF THE LISTS.

6) DTHERWISE, THE FUNCTION IS FALSE,

IN LISP THIS FUNCTION SHOULD BE WRITTEN -

(DEFINE

(EQUAL (LAMBDA (X Y) {COND

({ATOM X) (£Q X Y))
{(ATOM Y) (OR))

CONULL XD (NULL Y))
LINULL Y)(DR)}

((EQUAL {CAR X)({CAR Y)) (EQUAL (CDR X)(CDR Y}})
{LAND) (DR1J))))

PAG. 238

3]

' . GIVEN A LIST WITH N ELEMENTS, DEFINE A PROCEDURE TO REVERSE
THE ORDER OF THE ELEMENTS OF THIS LIST. 1IN WORDSy THE STEPS TQ SQLVE THIS
PROBLEM COULD BE WRITTEN -

1) WE INTRODUCE A LIST CALLED FOR EXAMPLE, M, INITIALLY EMPTY,
2) IF THE L13T OF ELEMENTS IS EMPTY, THEN THE ANSWER IS THE LIST M.

3) DOTHERWISE, APPLY THE WHOLE DEFINITION TO THE GIVEN LIST EXCEPT THE

FIRST ELEMENT AND PUT THIS FIRST ELEMENT AS FIRST ELEMENT OF THE
LIST M.

(DEFINE {REVERSE { LAMBDA (L M) (IF

{NULL LT M
(REVERSE {CDR L)} (CONS {CAR L) M))) }})

IN ORDER TO APPLY THIS FUNCTIDN WE MUST GIVE TO L THE VALUE
OF THE LIST WHICH WE WANT TGO REVERSE AND THE VALUE DF THE L1ST M MUST BE EMPTY.

TO FACILITATE THE APPLICATION OF THIS DEFINITION, WE CAN CONS
TRUCT AN AUXILIARY DEFINITION TU GIVE ONLY THE VALUE OF THE LIST L.

(DEFINE {REV+ (LAMBDA (L) {REVERSE L (LIST)}}) }

: NOTE THAT THE AUXILIARY FUNCTION REV+ APPLIES THE GIVEN LIST
L AND THE LIST M IS EMPTY.

4)
DEFENE A FUNCTLON TO .FIND THE LAST ELEMENT OF A GIVEN LIST.
THE STEPS TO SDLVE THIS PROBLEM ARE -

1) 1F THE REMAINDER OF THE LIST, EXCEPT FDR THE FIRST ELEMENT IS5 EMPTY,
- THEN 1HE LAST ELEMENT IS THE FIRST ELEMENT DF THE GIVEN LIST.

2) OTHERWISE, APPLY THE WHOLE GEFINITION TO THE REMAINDER OF THE LIST
EXCEPY1 THE FIRST ELEMENT.

(DEFINE (LAST (LAMBDA (L) [(IF

(NULL (CDR L}) (CAR L)
{LAST(COR L)) }})}

THIS SIMPLE DEFINITION ONLY WORKS IF THE ARGUMENT IS A NON-
EMPTY LIST.

PAG. 39

5)
] DEFINE A PROCEDURE TD CONSTRUCT A LIST FROM THE ELEMENTS 0
TWO GIVEN LISTS. SUPPOSE THE LISTS ARE CALLED A AND B. THE STEPS ARE -~

1) IF THE LIST A IS NULL THEN THE ANSWER IS- THE LIST 8,
2) OTHERWISE, CONSTRUCT A LIST WITH THE FIRST ELEMENT BEING THE FIRS
ELEMENT OF A AND THE REMAINDER BEING THE ELEMENTS EVALUATED BY TH

WHOLE DEFINITION APPLIED WITH THE FOLLOWING ARGUMENTS - THE L1SY
EXCEPT THE FIRST ELEMENT AND THE LIST B.

‘{DEFINE {APPEND (LAMBDA {A B} (IF
(NULL A) B
(CONS{CAR A){APPEND (CDR AIBYY)1))

NOTE THE ODIFFERENCE BETWEEN CONS, LIST AND APPEND. SUPPOSH
WE HAVE DEFINED -

(DEFINE (L (A B C))

(M (0P Q}))
THEN -
fCONS L. M) = ((ABCIO.P Q)
(LIST L M) = {(AB CI{OP Q))
(APPEND L M} = (A BC QP Q)

6) _ : . :
GIVEN A LIST OF N ELEMENTS AND A NUMBER OF AN ELEMENT, DEFINE
A PROCEDURE TO GIVE THE ELEMENT OF THE.LIST THAT CORRESPONDS TO THAT NUMBER,

1} IF THE LIST 1S EMPTY SEND A MESSAGE
¢} IF THE NUMBER IS. 1 THE ANSHWER IS THE FIRST ELEMENT OF THE LIST,

3) OTHERWISE APPLY THE WHOLE DEFINITION HAVING AS ARGUMENTS THE NUMBER

MINUS ONE AND THE LIST EXCEPT THE FIRST ELEMENT,

{DEFINE (ASSOCIATION {LAMBDA (X L) (COND

((NULL L)(QUUTE (ELEMENT REQUESTED DO NOT EXISTS))) -
({EQ X 1){CAR L))
CLAND) (ASSOCIATION {SUB X1)(CDR L)})} }))

SUPPGSE WE WANT TO KNOW THE THIRD ELEMENT OF THE LIST (A 8)
THEN WE MAY APPLY THE FUNCTION ASSOCIATION HAVING AS ARGUMENTS THE NUMBER 3 AnND
THE LIST (A B C). THE ANSWER WILL BE THE ATOM C.

PAG. 40

T}
DEFINE A PROCEDURE TO DELEFTE FROM A GIVEN LIST A GIVEN ELEMENT
BEING A LIST OR AN ATOM. '
IN WORDS, THE STEPS TO SOLVE THIS PROBLEM ARE -

1) IF THE LIST IS NULL THEN THE ANSHWER IS AN EMPTY LIST

2) IF THE FIRST ELEMENT OF THE LIST IS EQUAL TO THE GIVEN ELEMENT, THEN
APPLY THE WHULE DEFINITION TO THE REMAINDER OF THE LIST EXCEPT THE
FIRST ELEMENT.

3) GTHERNISE CONSTRUCY A LIST HAVING AS FIRST ELEMENT THE FIRST ELEMENT
OF THE GIVEN LIST AND THE REMAINDER THOSE EVALUATED BY THE WHOLE DE-
FIMTTION APPLIED TO THE REMAINDER OF THE LIST EXCEPT THE FIRST ELE-
MENT. '

(DEFINE (DELETE (LAMBDA {A L) (COND
(INULL L} (LIST)) _
((EQUAL A (CAR L)) (DELETE ‘A 'tCOR L})) -
{ (AND) (CONS (CAR L) [DELETE A (COR L}}) J}1)

NOTE THAT IN THIS DEFINITION WE USE ANOTHER FUNCTION DEFINED

BY THE PROGRAMMERy THAT 1S, THE FUNCTION EQUAL. BEFORE THE FUNCTION DELETE IS
EXECUTED, THE FUNCTION EQUAL MUST BE ENTERED TO THE COMPUTER.

% ERRORS IN THE USE OF LAMBDA #
a4 e 3¢ K a3 S 0 0 SR o S KR RO R R A K R

THERE ARE THREE TYPES OF ERROR MESSAGE IN THE APPLICATION OF
LAMBDA NOTATION.

1) WHEN THERE ARE EXTRA PARENTHESIS IN THE LIST OF VARIABLES. FOR INS—
TAMCE -

(LAMBDA (LA) (B))} C)
ERROR,... UNPALRED ARGUMENT OR VARIABLE IN LAMBDA

2) WHEN THERE 1S NO FORM. FOR INSTANCE -

(LAMBDA (A B))
ERROR... UNPAIRED ARGUMENT OR VARIABLE IN LAMBDA

3) WHEN THERE IS5 A NUMBER AS FORM. FOR INSTANCE -

(LAMBDA (A B) 4)
ERROR ... UNPATRED ARGUMENT OR VARIABLE IN LAMBDA

PAG. 41
00 0 00 T8 A e e e e e e 0 o e s ok e ek o

* 11. PROPERTIES OF LISTS *
R0 R0 R0 AR 0T A 70 A A o e g0 e e AN ek

IN MANY APPLICATIONS IT IS USEFULL TO HAVE SIDE BY SIDE WITH

THE VALUES, A LIST OF PROPERTILES. EVERY ATOM THAT IS NOT A FUNCTION NAME, CAh
- HAVE PROPERT1ES. :

THERE ARE THREE FUNCTIDNS_EDR_TD_HANDLE_HITH PROPERTIES -

SETPROP
LETPROP
PROP
* 11,1 SETPROP =
FORRNERE N RO R
THIS FUNCTION HAS ANY NUMBER OF PAIRS OF ARGUMENTS AND HA
THE FORM - h = oS

{§ETPRDP (X1 PLI{X2 P2} weuas (XN PN}

SETPROP 1S SIMILAR TQ THE FUNCTION DEFINE. IT NOT EVALUA-
TES ITS ARGUMENTS., Pl p2 »eesenes PN WILL BE ASSIGNED RESPECTIVELY AS PROPER-
TIES OF X1y X2 eewse XN. .

* EXAMPLES =x

{SETPROP (4 1)
(B (X Y 7))
(K {6 A))
{KING SPADES))

2)

(SETPROP (A (Q R T})
(@ {S v))
(R {U X3))

* 11,2 PROP =
TN o e g e N

THIS FUNCTION HAS ONE ARGUMENT AND HAS THE FORM -
(PROP X)

IT EVALUATES THE ARGUMENT AND GIVES ITS PROPERTY. FDR INS -
TANCE, IF WE EXECUTE -

(SETPROP (A 5})
(B (XY Z2)))

AND THEN -
(PROP (QUOTE A))
THE RESULT WILL BE 5. AND,

(PROP {QUOTE B})

THE RESULT WILL BE (X ¥ 7)

PAG. 42

* EXAMPLES =
1) IF WE EXECUTE

(SETPROP (G (L M))
(P QJ)

\PROP (QUOTE G)) = (L M)
{PROP (QUOTE P)) =
(PROP(PROP(QUOTE G)}) w (M)

THEN -

IN THIS EXAMPLE, THE MACHINE WILL EVALUATE THE INTERNAL PROP
AND THE RESULT WILL BE (L M), THEN, THE EXTERNAL ONE IS EVALUATED WITH THE AR -
GUMENT (L M), WHEN THE ARGUMENT EVALUATES TO A LISTy THEN THE RESULT OF PROP 1S
THE COR OF THIS LISTe THUS, THE RESULT QF THE LAST EXAMPLE IS YHE LIST (M},

2)
IF WE EXECUTE
(SETPROP (A (Q R T U)}
(@ (S B)))
THEN -
(PROP (QUOTE A)}) = (QR T U)
(PROP(QUOTE Q)) = (§ B)
(PROP-(PROP (QUOTE AJ)) = (R T U)
(PROP{PROP(PROP(QUOTE Q))})) & { }

* 114 3 LETPROP =%
35 St e e 40090 o RO

THI'S FUNCTION HAS TWO ARGUMENTS AND HAS THE FORM -
(LETPROP X &)

- IT EVALUATES BOTH ARGUMENTS AND THE VALUE OF A WILL BE TME
PROPERTY OF THE VALUE OF X. FOR INSTANCE, I[F WE EXECUTE
(SETPROP (A (L M N))
- (B K))
AND THEN =~
{LETPROP ({QUOTE A}{QUOTE X1}
THEN THE OLD PROPERTY OF Ay (L M N) IS REPLACE BY THE -NEW ONE, Xe

{LETPROP (QUOTE B) (PROP{QUOTE A)})
IN THIS EXAMPLE THE NEW PROPERTY OF B IS (PROP{QUOTE A}), THAT IS X

(LETPROPIQUAOTE A)(LIST(PROP{QUOTE A))(PROP{QUOTE B)}))
THE NEW PROPERTY OF A WILL BE THE LIST (X X).

IT MUST BE NOTED THAT WE CANNOT EVALUATE THE CARs CDR ETC OF
PROPERTIESs THIS IS BECAUSE THEY ARE DEFINED AS PROPERTIES, NOT AS VALUES,
BUT, WE CAN EXECUTE =
{SETPROP (A (L M))}
{DEFINE (A (X YI))
AND THEN =
{PROP (QUOTE A)) = (L M)
{VAL (QUOTE A}} = (X Y

® EXAMPLES =
1) SUPPASE WE HAVE
(SETPROP

AND, IF WE DEFINE -

(DEFINE (M

FUNCTION WILL BE
IF IT IS THE AIOM
THE ATOM COMPLEX,
MESSAGE (MAGNITUDE

2) SUPPOSE IT WAS

{ SETPRGP

AND THE LIST -

PAG. 43

"DEFINED -THE FOLLOWING -

(M VECTOR)

(VECTOR {5 CM, FROM LEFT TB RIGMT)})
{N NUMBER)

{NUMBER 45)

{1 COMPLEX)

(COMPLEX {A + IB)})

AGNITUDE (LAMBDA (L} {CODND

({EQ L {PROP(QUOTE HM))})tPROP{PROP{QUOTE M}}})
{{EQ L (PROP{QUOTE N}})(PROP(PROP{QUOTE N)1})
(EQ L (PROP{QUOTE 1)})(PROP(PROP{QUOTE I)))}
{[AND) (QUOTE(MAGNITUDE NOT DEFINED)})))1})

IF THE ARGUMENT L IS THE ATOM _VECTOR, THE RESULT OF THE
THE PROPERTY OF VECTOR, THAT IS, (5 CM, FROM LEFT TO RIGHT).
NUMBER, THE RESULT IS THE PROPERTY OF NUMBER, 4K, IF IT IS
THE RESULT IS THE EXPRESSION (A + IB). IF ANYTHING ELSE, THE
NOT DEFINED) IS TYPED,

DEFINED THE FOLLOWING PROPERTIES -

(A 24)
{8 153)
{C 258)
(b 1)}

{DEFINE (L (A B C D}}))

ITS PROPERTIES,

[DEF INE

WRITE A PROGRAM THAT PUT THE LIST L IN DESCENDING ORDER OF

(COLOCA{LAMBDA(X M} (COND
({NULL M) {CONS X M)}

({56

{PROP X) (PROP(CAR M))){CONS X M))

{{AND} (CONS{CAR M}{COLOCA X (CDR M}))) }))

{COL* (LAMBDA(L M)(IF INULL L} M
{COL* (CDR L)({COLOCA {(CAR L} M})) 1))

(ORDENACAO (LAMBDA(M) (LET (QUODTE L) (COL® L (LIST})))})

PAG. 44

* ERRORS 'IN THE USE OF LETPROP =
e e e 9 0 4 08 AR e e N R S BN A X R R N

(LETPRDP A B)
ERROR... VARIABLE MNAME HAS NO VALUE

(LETPROP 1 2)
ERROR... NUMERICAL ARGUMENT FOR LET/LETPROP

(LETPROP {(QUOTE A) {B})
ERROR... UNDEFINED ARGUMENT FOR FUNCTION DEFINITION

RN R e s R
R R SRk
ey ek

* *

PAG. 45

ek AR AR AT R o o e o e Wodee e s e

* 12. APPLICATIONS OF FUNCTIONS %
####**#;##*z***t:*#*:#**#***#***

10 COMPLETE THE ENTIRE MECHANISM OF LISP WE NEED SOME FUNCTIONS
FOR THE EXECUTION GF OTHER FUNCTIONS. THESE FUNCTIONS ARE -~

EVAL
APPLY

A DEFINITION USING THE FUNCTION DEF

INE MAY BE APPLIED TQ va
LUES OF ITS ARGUMENTS BY MEANS OF THESE FUNCTIONS.,

THEY HAVE THE FORM -

LAPPLY F Al A2 AN)
(EVAL F Al A2 AN

1HE DIFFERENCE BETWEEN THEH 1S THAT APPLY TAKES THE NAMES
Aly, A2 .u... AN AS ITS ARGUMENTS, THAT IS, IT QUOTES THEM, AND GIVES THEM To THE
"FUNCTION F 10 CARRY QUT, WHILE EVAL ODOES

NOT GQUOTE THEM BUT EVALUATES THE AR-
GUMENTS, HENCE, THE FOLLOWING IDENTITY IS TRUE -

(APPLY F Al A2 .., aN) = {EVAL F (QUOTE A1){QUDTE A2) ees {QUOTE AN))

: FOR INSTANCE, LETS USE THE FUNCTION REVERSE, EARLIER BEFINED
AND LETS APPLY THIS FUNCTION USING AS ARGUMENTS THE LISTS A AND 8 DEFIMED AS
FOLLOWS -~

{DEFINE (A (1 2345 6))
(B {8 10 12 14 16 18)))

WE CAN USE THE FUNCTION EVAL AS FOLLOWS -

(EVAL REVERSE A}
THE ANSWER WILL.BE (654 32 1}

{EVAL REVERSE B))
THE ANSWER WILL BE {18 16 1% 12 10 B)

THE FUNCTION APPLY PERFORMS THE SAME OPERATION BUT THE ARGU -
MENTS NEED NOT BE DEFINED PREVIOUSLY, FOR INSTANCE -

{APPLY REVERSE (9 7 6 5 8))

BOTH FUNCTIONS CAN BE USED AS A PROPOSITION IN A FUNCTION DES
CRIPTION. FOR INSTANCE.

(DEFINE (X [LAMBDA (V) V})
(TEST (LAMBDA (4 B} (IF (EQ A B)

(APPLY X EQUALS) .
{APPLY X DIFFERENTS)))))

THE PURPOSE OF THESE DEFINITIONS IS TO PRINT OUT THE MESSAGE-
EQUALS, IF TWO ATOMS ARE EQUALS OTHERWISE, THE MESSAGE IS DIFFERENTS. THE

FUNCTION X ONLY PRINTS THE VALUE OF ITS ARGUMENT. THE FURCTION APPLY IS USED
TG ALLOW THE EXECUTIOM OF THE FUNCTION X

PAG. 46

#. EXAMPLES *

IF_NE'DEEINE THE FUNCTIONS MEMBER, EQUAL AND REVERSE (PAGE 36}y WE CAN
EXECUTE THEM BY WRITING - :

(APPLY EQUAL (A B){A B))
(APPLY REVERSE (A 8 (})
{APPLY MEMBER X (A B X})

OR,y IF WE EXECUTE ~-

(DEFINE (L (A C))
(M (A D)}
{x A))

AND THEM -

(EVAL MEMBER X M)
(EVAL REVERSE L)
(EVAL EQUAL L M)

* ERRORS IN THE APPLICATION OF APPLY/EVAL *
FAR TR R R R CR R R RN TR AR RN RAEKE

1)

LAPPLY 1 A)
{EVAL 1 A)

ERROR ... NUMERICAL ARGUMENT FOR APPLY/EVAL

2)
(APPLY) A)
(EVAL () A} _
ERROR... EMPTY LIST ARGUMENT FOR APPLY/EVAL

3}
{APPLY A B)
(EVAL A 8}
ERROR... UNDEFINED ARGUMENT FOR FUNCTION DEFINITION

R R AR ARG R o R A K
#* 13+ SPECIAL FUNCTIONS *
S0 R AR A AR A A A A A A R

TO COMPLETE THE LIST OF FUNCTIONS AVAILABLE IN LISP FOR THE
IBM 1620 WE WILL: PRESENT THREE MORE. THEY ARE -

PUT

PUTR
ITER

¥ 13.1 PUT =
REBEFHEARER

THES FUNCTION HAS THE FORM -

{pUT X F A B c L O B B B B]

WHERE F IS5 A FUNCTION AND A B 'C ,... ITS ARGUMENTS. THE FUNCTION AND THE
ARGUMENTS ARE EVALUATED bUT X, IS NOT EVALUATED. THE FUNCTION PUT ENABLES THE
EVALUATION OF THE FUNCTION F APPLIED WITH ITS. ARGUMENTS A B C ... AND THE
RESULT OF THIS EVALUATION WILL BE STORED AS THE VALUE OF X. '

THE FOLLOWING IDENTITY IS TRUE ~

(PUT X F A B see)l = (LET (QUOTE X) {EVAL F A B saa })
* EXAMPLES =
i} IF WE EXELUTE -

(DEFINE (A (9 8))
{8 (7T 6))]

AND THEN -
{PUT A CAR B)
THE NEW VALUE OF A WILL BE THE ATOM 7, AND THE OLD VALUE 1S LOST. NOTE THAT

THE FIRST ARGUMENT DG NOT NEED TO BE QUOTED AS IT IS NOT EVALUATED. IN THIS CA-
SEy THE FUNCTION IS CAR AND ITS ARGUMENT IS THE LIST B, PREVIDUSLY DEFINED.

2} (PUT CD LIST A B}

HERE, WE ARE DEFINING A NEW LIST NAMED CD WITH THE VALUE ((9 81{7 6}).

* 13.2 PUTQ 2
AR RA IR T

THIS FUNCTION HAS THE FORM -

(PUTQ X F A B € esue)

IT IS SIMILAR T0 THE FUNCTION PUT. THE ONLY DIFFERENCE 1S THAT THE ARGUMENTS
OF THE FUNCTION F ARE COUNSIDERED AS QUOTED, :

THE FOLLOWING IDENTITY IS TRUE -

(PUTY X F A B ... } = (LET_IOUOTFE ¥) f{apPiv E A o

PAG. 48

*x EXAMPLES =

1)
{PUTG A CAR (£ O EI)

COMMENTS. = THE ARGUMENTS A AND (C D E) ARE NOT EVALUATED. THE FUNC

TION CAR 1S APPLIED TGO THE LIST (C D E) AND THE RESULT IS THE ATOM C. THIS WILL
BE THE VALUE OF A.

2) {PUTQ CD LISTA B CDEF 6)

RESULT | - CD = (ABCDEFG®G)

* 13.3 ITER =
P 2E 2

THIS FUNCTION HAS TWO ARGUMENTS. IT HAS THE FORM -
(ITER P A)

WHERE P 15 A PREDICATE. IT EVALUATES A, THEN EVALUATES P. IF P EVALUATES TO
TRUE, IT RETURNS THE VALUE TRUE. OTHERWISE, IT RECYCLES TO THE EVALUATIONS OF

A THEN P AND SO ON, UNTIL P EVALUATES TO TRUE.
THE PREDICATE P MUST SOMETIMES EVALUATES TO TRUE AS OTHERWISE
THE PROGRAM WILL GET INTO A NON—ENDING CYCLE. THE USEFULLNESS OF ITER IS IN THE

SIDE EFFECTS OF THE EVALUATION OF A, THESE SIDE EFFECTS CAMN BE ANY SETTING oF
VALUE OR PROPERTIES.

* EXAMPLES =
THE PROGRAM WRITTEN BELOW CONSTRUCTS A LIST V WITH THE
OCURRENCES OF THE DIGITS O UNTIL 9 GIVEN BY THE FUNCTION RANDOM.
{DEFINE
(V{COOOOO0O0OO 0))
(TESTE{LAMBDA() | ORDEM(DIV({RANDOM)1000)1))
(DRDEM{ LAMBDA (N} {LET{QUOTE V}{ORD* O V)) }}

{ORD* {LAMBDAIK L)(IF (EQ N K)
{CONS {(ADD 1 (CAR L}}ICDR L))
(CONS (CAR L){ORD®= (ADD I K)(CDR L))) })}

PAG. 49

FIRST WE DEFINE THE LIST V WITH 10 ELEMENTS TO ACUMU-
LATE THE OCURRENCES OF THE RANDOM NUMBERS (RESPECTIVELY FROM ZERO TO NINE)}. THEM
WE HAVE THREE FUNCTIONS - TESTE,ORDEM AMD ORD®. TESTE APPLIES ORDEM WITH ONE AR
GUMENT. THIS ARGUMENT 1S THE RANDOM NUMBER DIVIDED 8Y 1000. 50, THIS ARGUMENT
WILL BE AN INTEGER DIGIT, ORDER LETS THE LIST ¥V BE THE VALUE GIVEN BY THE
FUNCTION ORD¥, THIS FUNCTION PUTS THE OCURRENCE OF THE RANDOM NUMBER IN ITS
RESPECTIVE PLACE ON THE LIST. IT MUST BE NOTED THAT WE ADD 1 TO THE VALUE OF
EACH ELEMENT ON THE LIST, SO AS NOT TO LOSE THE EARLIER EVENTS. :

NOW WE CAN APPLY THE FUNCYTION ITER. SUPPOSE WE WISH TO APPLY
THE FUNCTION TESTE 10 TIMES,..

(DEFINE (P 0O))

(ITER (AND(LET(QUOTE P){ADD P 11){EQ P 10)}Y(TESTE))

THE PREDICATE IS THE FUNCTION (ANDILET ess))} USES THE ATOM
P TO COUNT THE NUMEER OF APPLICATIONS OF THE FUNCTION (TESTE). THE PROCESS WILL
STGP WHEN THE PREDICATE BECOMES TRUE, THAT IS, WHEN P EQUALS 10. THE ANSWER WILL

BE TYPED AS BELUW, THAT IS, IT WILL BE THE LIST V THAT WILL CONTAIN THE MUMBER
OF OCURRENCES GIVEN BY TESTE.

(101112021 1)

* ERRORS IN THE APPLICATION OF PUT/PUTQ =*
R A AR RN AT R N AN RO RN AN

1)

(PUT A Z (QUOTE 2})

(PUTQ A Z {(QUOTE Z})
ERROR. .. UNDEFINED ARGUMENT FOR FUNCTION DEFINITION

2}
(PUT (QUOTE X) Z (QUOGTE A)}
(tPUTQ (QUOTE X} 2Z {QUOTE &)
ERROR«eo FULL LIST ARGUMENT FOR PUT/PUTQ

3)

{PUT 1 2 3)
APUTQ 1 2 3) :
ERROR... NUMERICAL ARGUMENT FOR PUT/PUTQ

4) |

(PUT () A B)

(PUTQ () A B)

(PUT A () B}

(PUTQ A {) B)

(PUT AB (})

(PUTQ A B (1} _
ERROR... EMPIY LIST ARGUMENT FOR PUT/PUTQ

51

(PUTO A 2 T}
ERROR ... NUMERICAL ARGUMENT FDR APPLY/EVAL

PAG. 50

RFTHE R RRERTRE RN R RERERF R RE

* 14, A COMPLETE LISP PROGRAM *
3 M 3500 X A R A RO T N N R e R Atk R e

TO ILUSTRATE THE APPLICATION OF LISP LANGUAGE LET US PRESENT
A COMPLETE PROGRAM, WE ARE CONCERNED WITH THE ALGEBRAIC DIFFERENTIATION. THUS,
QUR FUNCTION MUST GIVE THE ALGEBRAIC DERIVATIVE OF A GIVEN ALGEBRAIC EXPRESSION.
THE FUNCTION WILL HAVE TWO ARGUMENTS.

1) THE EXPRESSION
2) THE VARIABLE OF DERIVATION

THE SIMPLEST CASES ARE THE DERIVATIVE OF A VARIABLE WITH RES-
PECT TO ITSELF AND OF A VARIABLE WITH RESPECT TO ANOTHER VARIABLE THAT IS A
CONSTANT. THUS,

IF F
IF G

X THEN DF{X)
A THEN DG{X)

1
0

non

THE MAIN PROGRAN OF DPERIVATIVES IS CALLED DIF AND IS SUB
DIVIDED INTO TWO SUB PROGRAMS -

DIFZ - OPERATIONS WITH ONE ARGUMENT
DIF3 ~ OPEKATIONS WITH TWO ARGUMENTS

THE MAIN FUNCTION DIF WILL BE A FUNCTION WITH TWD ARGUMENTS -

{EXPRESSION VARIABLE OF DERIVATION)

THE SUB PROGRAM DIF2 WILL PROCESS THE FOLLOWING FUNCTIONS

+ X SQRT X

- X COSEC X
SIN X ARCSIN X
cos Xx ARCCOS X
TAN X ARCTAN X
coT X ARCCOT X
SEC X ARCSEC X
EXP X ARCCOSC X
LN X

IN THE LISP PROGRAM THESE FUNCTIONS, THAT 1S THE EXPRESSION,
wiLL APPEAR AS A LIST WITH TWO ELEMENTS -

{OPERATION EXPRESSION)
FOR INSTANCE,

(SIN X)
(ARLCCOS X}

THE SUB PROGRAM DIF3 WILL PROCESS THE FOLLOWING OPERATIONS ~

ADDITION . +
SUBTRACTION -
MULTIPLICATION *
DIVISION /
EXPONENTIATION ¥

PAG. 51

IN THE LISP PROGRAM THESE OPERATIONS WILL APPEAR AS A LIS
WITH THREE ELEMENTS -

{(EXPRESSION OPERATION EXPRESSION)

IT MUST BE POINTED THAT THE EXPRESSION COULD BE A SIMPLE VA
RIABLE, THAT IS AN ATOM, OR A LIST WITH OTHER OPERATIONS. ANOTHER POINT IS THA
THE ANSWER GIVED BY MACHINE MUST BE IN ACCORDING WITH THESE RULES, THAT 1S, TH
EXPRESSION DIFFRENTIATED COULD BE COMPOSED BY ATOMS, REPRESENTING SINGLE VARIA -
BLES OR BY LISTS WITH TWO OR THREE ELEMENTS DEPENDING ON THE RESULT OF THE OPER
TION EMPLOYED.

' FOR INSTANCE, THE DERIVATIVE OF SIN X * C0Ss X CauLp B
WRITTEN IN THE FORM -

(ISIN X} % (CQS X))

THAT 15§,
ESIN X) - EXPRESSION
¥ - OPERATION
(COS X) - EXPRESSION

AS THE WHOLE EXPRESSION HAS THREE ELEMENTS, DIF3 IS APPLIEL
AND THE FINAL RESULT IS - :

(LCICos X1 * 1) = (COS X); + ((- {SIN a) *= 11} * {SIN X)))

THIS IS A LI1ST WITH THREE ELEMENTS. THE EXPRESSION -
{EICDS X) = 1) = (COS X))

THE OPERATION SIGN +
AND BY LAST ANOTHER EXPRESSION -~

{{~ (SIN X) = 1)) %= (SIN X}}

IT MUST BE NDTED THAT THIS RESULT IS STILL IN A VERY PRIMITI
VE, THAT IS, MANY SIMPLIFICATIONS CAN BE DONE IN THIS RESULT. FOR THIS, A FUNC-
-TION NAMED SIMP 15 INTRODUCED AND IT FOLLOWS THE. SAME LOGIC OF BIF, THAT 18,
CONSTRUCTING TWO SUB PRUGRAMS SIMPZ AND SIMP3 FOR SIMPLIFICATIONS OF EXPRESS) -
ONS WITH TWO ELEMENTS AND THREE ELEMENTS RESPECTIVELY. :

: _ THUS THE DERIVATIVE OF {{SIN X) * (COS X)) WITH RESPECT
TO X WILL BE -

HELCOS X)) #% 2) - ({SIN X) #x 2))

FOR SIMPLICITY WE CONSTRUCT TWO MORE PROGRAMS -~ THE FUNCTION
DERIV, WITH TWOD ARGUMENTS, THE SAME AS THAT DIF WHICH APPLIES THE FUNCTIONS SIMP
AND DIF, AND THE FUNCTIOM DERN FOR THE APPLICATION OF DERIVATIVES OF FUNCTIDNS
OF ANY ORDER, THIS FUNCTION HAS THREE ARGUMENTS, THE FIRST TWO, THE SAME AS
THAT DIF AND THE THIRD THE ORDER OF THE DERIVATIVE. FOR INSTANCE, IF WE WISH TO
FIND THE DERIVATIVE OF ORDER 3 OF SIN X WE MAY WRITE - '

(APPLY DERN (SIN X) X 3}

PAG. 352

{DEFINE

(DERN{LAMBDAIE X N){DRN(SIMP E) N})}

(DRN{LAMBDA(E N){IF (EQ O N) E (DRN (DERIV € X)(SUB N 1)))}
{DERIV {LAMBDA (E X) (SIMP (DIF E X))})

{DIF {(LAMBDA (E X) (COND ((EQ E X) 1)
{{ATOM E} O) _
{{NULL “E) {QUOTE NULLIST}}
{ (NULL (COR E)}) (DIF (CAR E} X))
({NULL (CDDR E}) (DIF2 (CAR E)}) {CADR E})}
{(NULL (CDR (CDDR E)}) (DIF3 (CAR E) (CADR E)
' (CAR {CDBR E}1Y)
((AND} (QUOTE INACCEPTABLE)1})}

(DiIF2 (LAMBDA (0P F}) (COND
{((EQ OP {QUOTE +)} (DIF E X 1))
{(EQ OP {(QUOTE =)} (LIST-OP (DIF E X))
((EQ OP {(QUOTE SIN)}) {LIST (LIST (QUOTE CUS) E)
(QUOTE *}
{DIF E. X))
{(EQ OP (QUOTE COS)) {LIST {QUOTE =)
' ' (LIST (LIST (QUOTE SIN) -E)
(QUOTE #*)
(DIF E X)))
{{EQ OP (QUOTE TAN))(LIST{CONS{LIST(QUOTE SEC) EJ(QUOTE (** 2}
N
{QUOTE %}
{DIF E X))}
[(EO 0P (QUOTE COT)) (LIST (QUOBTE. ~)
(LIST{CONS{LIST{QUOTE COSEC) E) (QUOTE (%% 2})]}
{QUDTE *} .
: (DIF E X))¥))
{{EQ OP {QUOTE SEC)) {LIST {LIST (LIST QP E)-
{QUOTE =)
{LIST {QUOTE TAN) E})
(QUOTE %)
(DIF E X))
((EQ OP (QUOINE COSEC)) LIST (QUOTE -)
(LIST (LIST {(LIST OP E)
{QUOTE #*)
{LIST (QUOTE COT) E})
{QUOTE *)
(DIF E X 1)) 1}
{{EQ OP {(QUDTE SQRT}) " {LIST (DIF E X)
{QUOTE /)
{LIST 2 (QUOTE *I {LIST (QUOTE SQRT)
E1)))
({EQ OP (QUOTE EXP}) (LIST {LIST OP E) [QUOTE *) (DIF E X)))
{(EQ OP {(QUOTE LN}) (LIST{DIF E X}IQUOTE /) E 1)

({EQ BP (QUOTE ARCSIN}) (LIST (DIF E_X)
“tQUOTE 77
(LIST {QUOTE-SQRT)
© {LIST.L.AQUOTE.-)
{CONS E {QUBTElgTT'zll)

({EQ OP (QUOTE ARCCOS)) (LIST (QUOTE -)
{LIST (DIF E X)
{QUOTE /)
(LIST (QUOTE SQRT)
" {LIST 1 (QUOTE =)

{(LIST E
{QUOTE =2=x)
_ 213y
{(EQ OP (QUOTE ARCTAN)) (LIST (DIF £ X3 :
' TQUBTE /) _
TLIST 1 {QUOTE +)
(LIST E
TQUOTE #**)

| 2)1))
({EQ OP (QUOTE ARCCOT)) (LIST (QUOTE —y
(LIST.(DIF. E X)
© (QUOTE /),
(LIST 1 (QUOTE +)
{LIST ETQUDTE *%¥)2)))))
(1EQ OP (QUOTE ARCSEC)) (LIST (DIF € X)
(QUOTE /)
(LIST E
{QUOTE *)
(LIST {QUOTE SQRT)
(LIST(CONS E {QUOTE(#* 2))
) .

: (QUOTE -)
N : : 1)1) 1))
((EQ 0P (QUOTE ARCCOSEC)}) (LIST. {QUOTE —)
' (LIST (DIF E X)
(QUOTE ./}
{LIST E
{(QUOTE *)

(LIST {QUOTE SQRT)

: (LISTICONS E{QUDTEI(
¥* 211)
(QUOTE =)

1M1
({AND) (QUOTE BADOP}}) })

{(DIF3 {LAMBDA (A OP B) (COND
(tOR (EQ OP (QUOTE +})
(EQ OP (QUOTE -))) (LIST (DIF A X) 0P (DIF B X)))
{{EQ OP (QUOTE =*}) (LIST (LIST (DIF A X) OP B}
{ QUOTE +) -
(LIST A OP (DIF B X))})

PAG.

53

PAG~ 54

{{EQ OP (QUOTE 7)) (LIST (LIST {LIST (DIF A X)} {QUOTE'¥) B)

(QUOTE =)
(LIST A (QUOTE *) (DIF B X))
opP

| (LIST B (QUOTE **¥) 2)})
((EQ OP (QUOTE #*#)} (LISTILIST(LIST B (QUOTE *)
(LIST A OP (CONS B (QUOTE (= 1 1) 1))
 {QUDTE *) (DIF A X)) |
{QUOTE +)
(LIST(LIST(LIST A Op B) |
{QUOTE *) (LIST (QUOTE LN} A))

{QUOTE *) (DIF B X) 1)))
{{AND} (QUOTE BADODP})})) : :

{SIMP (LAMBDA (E} {COND
(LATOM E) E) :
((NULL (CDR E)) (SIMP {CAR E)}}
{(NULL (CDDR €)} (SIMP2 {CAR E) (SIMP (CADR E}))) .
{{NULL (CDR (CDDR E}}) {SIMP3 {(SIMP {CAR E)) (CADR E}
_ . {SIMP (CAR (CDDR E))} 1)}
{(AND) EJ)})) '

(SIMP2 (LAMBDA (A B) (COND
({(EQ A {QUOTE +)} B) _ :
L{EQ A (QUOTE =-)) (IF{NUM B) {SUB O B) (LIST A B}}]}
{{AND (EQ B 0) '
{OR (EQ A (QUOTE EXP)}
{EQ A (QUOTE COS))

- (EQ A (QUOTE SEC)))) 1)
{(AND (£EQ B 0} '
(DR (EQ A {QUOTE SIN}}
{EQ A (QUOTE TAN))
(EQ@ A (QUOTE COSEC}H)
(EQ A (QUOTE ARCSIN)) .
{EQ A (QUOTE ARCTAN))
(EQ A (QUBTE SQRT))) ¥ o)
{{AND (EQ B 1)
{EQ A {QUOTE SQRTI}}} 1)

((AND (EQ B 1)
[OR (EQ A (QUOTE LN}) |
(EQ A {QUOTE ARCCOS)II)) 0)
{tAND) (LIST A B})) })

(SIMP3 (LAMBDA (A B C} (COND

((EQ B (QUOTE +)) [COND ({AND (NUM A} (NUM C)) (ADD A C))
({EQ A 0) C)
{({EQ C 0) A)
({EQUAL A C} I[LIST 2 (QUOTE #*) A})
{{AND) (LIST A B C})))

({EQ B (QUOTE ~-)) (COND ({AND (NUM A} {NUM C)) {SUB A C))

' (LEQ A 0) (LIST (QUOTE =) C)}

{{EQ C 0) A)
((EQUAL A C) 0)
({AND} (LIST A B C))))

t{EQ B (QUOTE =})
{(EQ
({EQ
{{EQ .
{{EQ
{{EQ
(LEQ

npnhnp

PAG.-

(COND: £{AND. {NUM A) (NUM C})(HMULT %A: C})

“0) 0)
o) 0)
1) C)
1) Ay
=1} (LIST
-1)

(QUOTE =} C))
(LIST (QUOTE -} A})

{{EQUAL A C) (LIST A (QUOTE *%) 2))

{ CAND)
((EQ A
{(EQ C
({EQ C

({€EQ B (QUOTE /)) (COND

{LIST ABC)}

0) 0}

1} A)

=LY (LIST (QUOTE ~) A))

{(EQUAL A. €) 1)

((AND)

-({EQ C
((EQ C
{(tEQ C

((EQ:B..{QUOTE *%)) (COND

(LEQ A

((EQ A

({AND)

{(AND) {LIST. A BC 1))))

(EQUAL (LAMBDA (X Y)
{LATOM X}
{(ATOM Y)
{{NULL X)

~{{NULL Y)

') (COND
(B X Y))

(OR))

(NULL Y))

(OR})

((EQUAL {(CAR X) (CAR Y)) IEQUAL (COR. X)

{(AND) (OR}1})))

)

(LIST A B C))))

0) 1
1) A)
-1) (LIST 1 (QUOTE /) A})
0) 0) - |

1) 1)

(LIST A B C})}))

(CDR Y)))

55

PAG. 56

_ BELOW THERE ARE SOME APPUTCATIONS OF THE FUNCTIONS DERIV AND
DERN. EACH INQUIRY TO THE MACHINE IS FOLLOWED BY THE ANSWER.

[APPLY DERIV {- Y) X)
0

{APPLY DERIV (LN X} X)
{L 7 X)

{APPLY DERIV {SIN X) X)
(C0s X}

{APPLY DERIV COS X} X)
(= {SIN X)) -

{APPLY DERIV (TAN X) X)
ti{SEC X} =x 2}

(APPLY DERIV (COT X} X)
(- ((COSEC X) *x 2))

{APPLY DERIV (SEC X) XV
({SEC X) = (TAN X))

{APPLY DERIV {COSEC X) X!
{— ((COSEC X) = (COT X))}

{APPLY DERIV. (SQRT X) X}
{L 7 {2 #* {SQRT X))
{APPLY DERIV {EXP X)-XY)
{EXP X) -

(APPLY DERIV (ARCSIN X) X}
L/ (SQRT (1 = (X #*% 2})]))

(APPLY DERIV (ARCCOS X)X)
(= (1 7/ {SQRT (1 = (X *% 2}))))

(APPLY DERIV (ARCCOT X) X)
(= (1 /7 {1 + (X ** 2])))

{APPLY DERIV (ARCTAN X) X)
(L 7 (1 + (X %% 2))]

(APPLY DERIV (ARCCOSEC X) X)
[~ (1 7 {X * (SQRT ((X #= 2} ~ 1)))))

(APPLY DERIV ((SIN X} * {LN X)) X)
(I(CBS X) *= (LN X)) + ((SEN X) * (1 / X}})

{APPLY DERIV {(EXP {(SIN X)) X)
({EXP (SIN X))} * (CDS X1})

(APPLY DERIV {SQRT (SIN {2 = X})) X} _
({LCOS (2 * X)) * 2) /7 {2 * (SQRT (SIN (2 * X)1}))}

CAPPLY DERIV (X * (COS X))} X)
t{COS X) + (X = (= {SIN X}})})

X

{APPLY DERIV (LN (SQRT (CDS (2 = X3J)}
(2 = (SQRT {

{{i{— CISIN (2 ® X}) = 2)} /

}
COS (2 * X)))1) /7 (SQRT (COS (2
* X)))) ' '

(APPLY DERIV. (SEC (4 % X)X}
LCGSEC 4 % X)) % (TAN (4 % X1)} % 4)

{APPLY-DERIV (LN (A % (X =% N)}) X) :
LCA % (N x (X *%x (N - 1}))) / (A = (X =% N))J

{APPLY DERIV (X % (LN X)) X}
CILN XD + (X % (1 / X)))

LAPPLY DERIV {2 / LEXP X)) X)
l= {2 = (EXP X})) / (LEXP X} »x 2))

(APPLY DERIV {IN (X #*= 3)} X}
{13 = (X *%x 2)) / (X =x 3})

{APPLY DERIV {LN (X %% 5)) X)
(3 & (X *¥% 4)) / (X »= 5))

(APPLY DERIV ((SIN (2 * X)) * {COS X)) X)
({4(COS (2 * X))} *.2) = (COS X)) + ((SIN (2 * X)) % (= (SIN X))}

{APPLY DERIV (({EXP (A % X))} % (SIN (B # X)) X)
{{{{EXP (A * X)) = A) * (SIN (B * X))} + {{EXP {4 * X)) * ({CO5 (B * X}
*8))) '

{APPLY DERIV {ARCSIN (SQRT X)) X)
(11 ./ t2 *= (SQRT X))) / (SQRT {1 = ((SQRT.X} *x 231))

(APPLY DERIV ((X = 2)%*{ARCCOS X)) X} .
({2 * (ARCCOS X1) + ((X * 2) = (= {1 / (SQRT (1 = (X #*=* 'ARBRRR N

(APPLY DERN ISQRT((A #% 2) + (V %% 2)}) V 2)

P’AG -

({12 * (2 * (SQRT ({A %% 2) + (V.5 2)}))) = ({2 & V) % (2 % {(2 % V) /

{2 = (SQRT ((a #% 2) + (V %% 2))11)))} / {42 = {SQRT ((A %% 2) + {v &
1)) wx 2))

. (APPLY DERN (TAN X) X 2) .
(L2 = (SEC X)) % [{SEC X) =* (TAN X))}

{APPLY DERN {(SIN X)} / X) X 2}
COOELOC— (SIN X)) %= X) + (COS X)) =~ (COS X}) = (X *= 2)) ~ H{({COS X) =*
X} = ASIN X)) % (2 = X)}) / ({X %% 2) #x 2})

(APPLY DERN L(EXP T J} * (COS T)3 T 2)

(CLLEXP T = (COS 7)) + (LEXP T) % (= {SIN T)))) + {{{EXP T) * (= (SIN
PY) + ({EXP 1) %= (= (COS T})}))

57

PAG. 58

033 34 3E 00 R IR 390 00 e e e e Rk e R e e

* 15. DEBUGGING IN LISP *
WA AR R R R F A

THE MOST FREQUENT ERROR IN A LISP PROGRAM IS AN UNBALANCED-
PARENTHESIS. THE FIRST. STEP IN DEBUGGING A SET OF FUNCTIONS SHOULD THEREFORE BE
A CAREFUL CHECK OF ALL PARENTHESES. THE ERROR ROUTINE WILL DETECT AN UNPAIRED
PARENTHESIS, BUT WILL NOT DETECT AN. IMPROPERLY PLACED ONE.

AS A SECOND STEP,s PARTICULARLY IF SOME OF THE FUNCTIONS ARE
COMPLEX IN LOGICAL STRUCTURE, IT IS RECOMMENDED 7O TRY QUT EACH FUNCTIONS INDIVI
DUALLY. FIRST THOSE WHICH REQUIRE NO AUXILIARY FUNCTIONS IN THEIR DEFINITIONS
SHOULD BE TESTED, AND IF THEY INVOLVE CONDS OR IFS, ALL POSSIBLE PATHS THROUGH
THE FUNCTIONS SHOULD RECEIVE A TRY-CUT, BUILDING UP FROM TESTED FUNLCTIONS STEP
BY STEP, ONE FINALLY ARRIVE AT THE TESTS FOR THE COMPLETE SET.

¥ 15.1 THE SPECIAL FUNCTION PRINT =
e 0600 20 e e R e X6 46 300 T 0 R R R R e e o e e e

SOMETIMES IT IS HELPFUL TO BE INFORMED OF INTERMEDIATE
VALUES y FOR INSTANCE, IN A COMPLICATED RECURSION. THIS MAY BE ACHIEVED WITH A
SPECIAL FUNCTIOM WITH THE FORM - '

(PRINT X)

_ IT HAS ONE ARGUMENT AND THE VALUE OF X 'IS PRINTED OUT BY THE

OUTPUT ROUTINE. THIS MEANS THAT {PRINT X) HAS ITS VALUE THE VALUE DF X. A

USEFUL TRICK IN DEBUGGING IS TO PLACE VARIABLES OF FUNCTIONS WHOSE VALUE MIGHT

BE OF INTEREST AT INTERMEDIATE PRINTS ON SEPARATE CARDS, PLACED BETWEEN ONE CARD

IN WHICH {(PRINT IS PUNCHED AND ANOTHER WITH ONLY }« THESE TWO CARDS
CAN BE REMOVED LATER ON.

CARE MUST BE TAKEN IN THE USE OF PRINT SINCE TOO FREE A USE

OF IT WILL GIVE RISE TO VERY LARGE QUANTITIES OF OUTPUT WHOSE UTILITY IS

DOUBTFUL., USUALLY NOT MORE THAN ONE PRINT PER FUNCTION SHOULD BE USED. '

* EXAMPLES *

(DEFINE (A (X .Y)))

(PRINT A}
. (X vy 2)
. (X 7 7

(PRINT (QUOTE A}}
. A
- A

PAG. 59

* 15,2 ERROR MESSAGES =
BRR R TR RARIARA R

ALMOST ALL THE ERROR MESSAGES O0OF THE LISP INTERPRETER HAVE

BEEN MENTIONED IN THE PRECEEDING CHAPTERS. BELOW IS A LIST OF THESE MESSAGES
AND OTHERS NOT YET MENTIONED,.

ERROR... VARIABLE NAME HAS NO VALUE

ERROR«.s MULIIPLY OVERFLOW

ERROR ... ADD/SUBTRACT OVERFLOW

ERROR+.. DIVISION BY ZERD

ERROR..., NUMBER AS FUNCTION DEFINITION

ERROR .+ EMPIY LIST AS FUNCTION DEFINITION
ERROR.»+« NO FUNCTION GIVEN IN PUT/PUTQ
ERROR. s UNPAIRED ARGUMENT IN DEFINE/SETPROP
ERROR..." NO TRUE_PREDICATE IN COND

ERROR... UNPAIRED ARGUMENT OR. VARIABLE IN LAMEDA
ERROR.+. PUSH DOWN LIST EXHAUSTED

ERROR... NO MORE VACUUM

OTHER MESSAGES ARE GIVEN WHEN SOME ERROR OCCURS IN THE USE OF
FUNCTIONS SUCH CAR, CDRy CONS, CDND, PUT/PUTQs LET/LETPROP, DEFINE/SETFROP, AND
APPLY/EVAL. THE DESCRIPTION 'OF THIS MESSAGES 1S GIVEN IN EACH CHAPTER WHERE
THESE FUNCTIONS WaAS MENTIONED.

THE MESSAGE -

ERROR<.. PUSH DOWN LIST EXHAUSTED

INDICATES THAT THE PUSH DOWN LIST IS FULL. THIS IS USUALLY CAUSED BY A RECURSION
WHICH IS INFINITE. HOWEVER IT IS PGSSIBLE TO WRITE A PERFECTLY VALID FUNCTION
WITH AN EXCESSIVE RECURSION DEPTH, SUCH A FUNCTION SHOULD BE .REWRITTEN SO AS TO
USE LESS PUSH-DOWN DEPTH.

' THE MESSAGE -

ERROR ... NO MORE VACUUM

REFERS TO THE GARBAGE COLLECTOR MWHICH IS A ROUTINE TO FIND SUFFICIENT FREE
STORAGE TO ALLOW THE PROGRAM ~TD:CARRY ON. AGAIN, WHEN THIS MESSAGE IS GIVEN,
ITS CAUSE IS USUALLY A SIGN OF AN INFINITE RECURSION WHOSE TERMINAL CONDITION
CANNOT BE REACHED, BUT MAY 'BE DUE TO A CORRECT FUNCTION WHICH REQUIRES TOO MANY
ELEMENTS OFF THE VACUUM., THE REMEDY IS TO REWRITE THE FUNCTION.

THE PROCESSOR ENTERS AND LEAVES THE GARBAGE COLLECTOR AUTOMA-
TICALLY AS REQUIRED. IT IS, HOWEVER, SOMETIMES USEFUL TO KNOW HOW MANY GARBAGE
COLLECTIONS HAVE TAKEN PLACE. IF THIS IS DESIRED, TURN CONSOLE SWITCH 3 ON.
FOR EACH GARBAGE COLLECTIOM THE LETTERS GC WILL BE TYPED.

PAG. 60

gt o e R o 0 R RN e R R e e R R e

* 16, OPERATING INSTRUCTIONS *
e e ok = st o e 30 ARk R e R e oAe e e e e 6 ok

* 16.1 THE PROGRAMME =
e e 9 R0 RN AR R

INPUT IN LISP MAY BE ON CARDS, PAPER TAPE OR TYPEWRITER.
WE ‘MUST NOTE THAT EACH INPUT LINE IN CARDS HAS 72 'CHARACTERS IN COLS. } TO T72.
COLS. 73 — 80 MAY BE USED FOR IDENTIFICATION. THERE IS5 NO PARTICULAR FORMAT TO
BE OBSERVED, SINCE THE PARENTHESES WILL INDICATE EVERYTHING THAT IS NEEDED TO
THE PROCESSOR. HENCE, A PROGRAMME MAY BE PUNCHED+WITH AS MANY DR AS FEW SYMBOLS
PER INPUT LINE 'AS DESIRED - INDENTING SUCESSIVE LINES IN ACCORD WITH THE
LOGICAL STRUCTURE, AS HAS BEEN DONE IN MANY OF THE EXAMPLES GIVEN IN EARLIER
CHAPTERS, HELPS TOWARDS UNDERSTANDING A PROGRAM. BLANK CARDS MAY BE INTERS-
PESED TO MAKE A READABLE LISTING.
S FOR DEBUGGING PURPOSES IT IS IN GENERAL USEFUL TD PUNCH THE
FUNCTIONS WITH FEW SYMBOLS PER CARD, INDENTED SO AS TO MAKE A READABLE LISTING.
- ONCE THEY WORK, THEY MAY BE CONDENSED INTO A MINIMUM OF CARD
SPACE BY PLACING THEM WITHIN A SINGLE DEFINE STATEMENT AND GIVING THIS AS ARGU -
MENT TO A FUNCTION. :

{DEFINE
{CONDENSE (LAMBOA (X} X))}
)

WHICH WILL ELIMINATE ALL SUPERFLUOUS BLANK COLUMNS AN RE-NUMBER THE CARDS IN SE-
QUENCE.

x 16.2 LOADING THE PROCESSOR *
B MR RN R IR K A

THE LISP INTERPRETER IS COMPOSED OF TWO DECKS. THE FIRST ONE

IS THE MAIN PROGRAM CALLED LISP WHOSE OBJECT CARDS MUST BE LOADED ON DISKS USING
THE FOLLOWING CARDS =

*DLOADLISP 1000010090C1

THIS PROGRAM WILL BE LDADED IN ANY AVAILABLE SECTDR OF DISK
STORAGE.

THE SECOND PART OF THE DECK ARE THE LISP SUBROUTINES. THESE
SUBROUTINES MUST BE +.0OADED IN SECTOR 15200 TO 15381 OF DISK UNIT 0. THIS IS CI-

LINDER 76 AND MUST BE AVAILABLE FOR TQO LOAD THE SUBROUTINES WHOSE NAME 1S
LISPSR,

THE FOLLOWING CARDS ARE USED TO LOAD THEM =

*DLOADL ISP SR 115200 . ci

PAG. 6L

* 16,3 CALLING THE LISP INTERPRETER *
RO e AR AR e R RN R R

- 7O EXECUTE A LISP PROGRAM WE MUST TO LOAD THE LISP INTERPRE -
TER FROM DISCS, WITH THE FOLLOWING CONTROL CARDS -

THE COHPUTER WILL PUT THE LISP INTERPRETER ON THE CDRE STORA-
GE AND BEGINS THE EXECUTION WRITING THE FOLLOWING MESSAGES -

LISP INTERPRETER

READ FROM
FIvES THE CONSOLE TYPEWRITER WILL WAIT ONE OF THE FOLLOWING ALTERNA
CODE MEANING
TY CONSOLE TYPEWRITER
TY+ CONSOLE TYPEWRITER WITH PRINTING
Co PUNCHED CARDS
CD+ PUNCHED CARDS WITH PRINTING
PT PAPER TAPE
EX EXIT
IN INICIALIZATION OF LISP

AFTER ONE OF THEM IS TYPED WE ONLY CAN CHANGE THE INPUT DEVI-
CE ?Y SETTING SWITCH 1 ON. THEN, THE MESSAGE -

READ FROM

IS TYPED AGAIN AMC THE TYPEWRI TER ‘WAETS FOR ANOTHER INPUT DEVICE. IF ONE OF
THOSE INPUT CODES ARE INCORRECTLY TYPED THE MESSAGE -

TRY AGAIN

IS TYPED AND THE MACHINE WAITS FOR ANOTHER CODE.

_ AFTER THE EVALUATION OF A LISP PROGRAM, THE MACHINE WILL ASK
FOR THE OUTPUT DEVICE WRITTING THE MESSAGE

OUTPUT ON

ONE OF THE ALTERNATIVES EARLIER DEFINED CAN BE CHOOSEN AND ANOTHER ONE, TO ALLOY
THE OUTPUT BE TYPED ON THE PRINTER, THE CODE FOR PRINTER IS PR.

PAG. 62

_ DURING THE INPUT BY TYPEWRITER, IF SOME.STATEMENT IS INCORRECT
WE CAN SET SWITCH 4 ON BEFORE R/S. THAT STATEMENT WILL BE REJECTED AND THE
MESSAGE =~

SW4 ON. REPEAT READ 1IN.

IS TYPED.

THE INPUT ROUTINE OF THE LISP INTERPRETER WILL IGNORE THE
SLANK SPACES IN THE PROGRAM WHEN THE RIGHT PARENTHESES CORRESPONDING TO THE
FIRST LEFT PARENTHESES IS FOUND THE EXECUTION WILL START AND WHAT COMES AFTER
THAT PARENTHESES 1S IGNORED. '

WHEN A READ CHECK OCCURS, THE MACHINE SEND THE MESSAGE =
READ CHECK. PRESS START TO RE-READ

PRESSING START THE MACHINE DELETES THE "LAST STATEMENT AND TRY
A NEW READ. ' '

AT TIME OF EXECUTION OF A LISP PROGRAM IF SWITCH 3 1S ON, THE
INTERPRETER WILL NO1 SEND ANY ERROR MESSAGE AND THE EXECUTION IS FASTER. IT IS

CONVENIENT TO LEAVE SWITCH 3 OFF WHEN THE PROGRAM STILL HAVE ERRORS BUT, WHEN
ALL IS CORRECT, SWITCH 3 MAY BE DON. -

EA R R Aok
R AAACK xRk
%% L33

-3 »®

PAG. 63

EXIFHERR FERH R RN ARH

¥ 17+ LISP EXERCICES #*
30 AR e X AT A o AR AN RN A A

- IN THIS CHAPTER WE WILL PRESENT SOME SIMPLE PROBLEMS AND. A
WAY TO SOLVE THEM. OF COURSE, THE ANSWER GIVEN IS ONLY ONE OF THE WAYS TO SOBLVE
THAT SPECIFIC PROBLEM AND YOU PRDBABLY MAY FIND A BETTER SOLUTION.

1) |
(LST X)

ARGUMENT - X AN ATOM OR A LIST.
3.3 0K

THIS 1S A PREDICATE THAT WILL BE TRUE IF THE ARGUMENT X IS
A LIST AND FALSE OTHERWISE,

(LSTC(LAMBDA{X} (NOT (ATOM X})))

APPLICATIUNS
RN A RS

(APPLY LST A)

e F
{APPLY -LST (A B))
. T
{APPLY LST (1)
. T
2)
{ONELEM L}

ARGUMENT - L AN ATOM. OR A LIST.
SRR R A K

THIS I5 A PREDICATE THAT WILL BE TRUE IF A GIVEN LIST HAS AT
LEAST ONE ELEMENT. OTHERWISE IT WILL BE FALSE.

{ONELEM(LAMBDA(L)
(NDT (OR (ATOM L)ICNULL LI}))}

APPLICATIDNS
e 50 0 40 40 30 30 0 o AR

(APPLY ONELEM (A B})}
(APPLY ONELEM A)
(APPLY ONELEM (1)
(APPLY DNELEM (A))

PAG. &4

3)
{TWOLEM L)

ARGUMENT ~ L AN ATOM GR A LIST.
AR

THIS IS A PREDICATE THAT WILL BE TRUE IF A GIVEN ARGUMENT IS
A LIST AND HAS AT LEAST TWO ELEMENTS. ' OTHERWISE THE PREDICATE WILL BE FALSE.

(TWOLEM (LAMBOA(L)
(NOT (DR (ATOM. L}
(NULL L)
{NULL {CDR L)) ¥ 1)

APL ICAT IONS

0 0 e e 3 e e e K

(APPLY TWOLEM ())

. F

{APPLY TWOLEM A)

. F

{APPLY TWOLEM (A B))
. T

(APPLY TWOLEM (A))

. F

(APPLY TWOLEM (A B C D))
- T

4)
{SINGLE L)

ARGUMENT =~ L A LIST OR AN ATOM.
F A AR IR

THIS IS A PREDICATE THAT WILL BE TRUE IF THE GIVEN ARGUMENT
IS A LIST AND HAS EXACTLY ONE ELEMENT, OTHERWISE IT WILL BE FALSE. SINGLE USES

THE PREDICATE ONELEM.

{SINGLE (LAMBOA(L)
(AND (ONELEM -L)
(NULL (CDR LI}) 1))

APLICATIONS
o200 A AW

(APPLY SINGLE A)
. F
{APPLY SINGLE ())

. F
(APPLY SINGLE (A})
. T

{APPLY SINGLE (A B) }
. F

3)
{GbD L)

ARGUMENT -~ L A LIST.
A et

THIS 1S A PREDICATE THAT WILL BE TRUE
HAS AN ODD NUMBER OF ELEMENTS AND FALSE OTHERWISE.

(ODD (LAMBDA(L) |
(NOT {OR (NULL L} |
(ODD {CDR L) } 1))

APLICATIONS
Y e T

{APPLY 0ODD (A B C))}
. T

"tAPPLY ODD (A B))
F

LAPPLY ODD (({A}) B C) D' E))
. T -

6)
(MEMBERG A L)

ARGUMENTS = A AN ATOM OR A LIST.
s e e RN R L A LIST.

PAG. &5

IF THE GIVEN LIST (L

THIS IS A PREDICATE THAT WILL TAKE THE VALUE TRUE IF THE
ELEHENT A IS MEMBER OF -THE LIST L. OTHERWISE THE PREDICATE RETURNS THE VALUE

FALSE. MEMBERG USES THE PREDICATE EQUAL.

(MEMBERG(LAMBDA(A L) (COND
({NULL L) (DR})}

{{EQUAL A ({CAR L}) {AND})
{(AND) (MEMBERG A (CDR L)))) RRR

APLICATIONS
T R R A

{APPLY MEMBERG F ((A (D RJIF G))

1APPLY MEMBERG (F) ((A (D R)) F G))
TAPPLY MEMBERG () ((A)()) .}

1APPLY ME;BERG (A 8] (ABC)

1APPLY MEMBERG (A) ¢{C (A}) D))

. F
{APPLY MEMBERG (1} ({)))
. T

T}

{ SAMELEM Ll L2}
ARGUMENTS = L1,L2 LISTS.
TR N o N

THIS IS A PREDICATE THAT WILL BE TRUE IF ALL THE ELEMENTS OF
THE LIST L1 ARE ELEMENTS OF THE LIST L2, OTHERWISE THE PREDICATE WILL RETURNS A
VALUE FALSE. SAMELEM USES THE PREDICATE MEMBERG » '

(SAMELEM(LAMBDA(LL L2){COND
LONULL LL) (AND))

{{MEMBERG (CAR L1} L2) (SAMELEM {CDR L1} L2))
((AND} (UR}) R D)

APLICATIONS
KA TN FRE

LAPPLY SAMELEM (A B C) {B C A))

?APPLY SAMELEM (X ¥ (Z K)) (4 X (Z K} Y))
1APPLY SA;ELEH (A B) C} (B C A))

TAPPLY S AMEL EM (A A A A (A))

1apPpLY SAEELEM (F) (A B (F) C))

8}
{FORALL P L)

ARGUMENTS ~ | A LIST.
A R AR AL P A PREDICATE.

THIS 15 A PREDICATE THAT WILL BE TRUE IF THE GIVEN PREDICATE
P IS TRUE FOR ALL THE ELEMENTS OF A GIVEN LIST AND FALSE OTHERWISE,

) (OR
AND {P (CAR L) } _
{FORALL P {CDR L)) .}) })

(FORALL {LAMBDAIP L
(MULL L) |

APLICATIONS
R A AR R

(APPLY FORALL ATOM (A B C) }
T

(APPLY FORALL NULL (() (1)))

. T -

(APPLY FORALL ATOM { {A 8 C) D))

. F _

(APPLY FORALL ODD ((A B C) (A) (AAAAA)))

» T
(APPLY FORALL ODD { (A) (B) (C D}))
. F

PAG. 67

9) |
(FORSOME P. L)

ARGUMENTS - P A PREDTCATE.
At o A A L g_EESI,

_THES IS A PREDICATE THAT WILL TAKE THE VAEUE TRUE TF A GIVEN
PREDICATE P IS TRUE FOR ANY ELEMENT OF THE GIVEN LIST L, OTHERWISE IT WILL BE
FALSE.

{FORSOME {LAMBODA (P L) (AND
(NOT (NULL L))
{DR. {P (CAR L) ¥
{FORSOME P (CDR LY¥) 1)))Y¥

APLICATIONS
| REEERRARRRIEE

(APPLY FORSOME NULL (A B ())
T

{APPLY FORSOME ATOM ((A)(}) A})

(APPLY FD;SDME ATOM { ¢)))

1APPLY FOZSUHE.BBD—('(A)-II B) }. 1}
1aPPLY FD;SDME ODO (A BY (C.D E}) }
tappLY FDESOME ODD () ¢F 1)

10}
{ORDER X Y L)

ARGUMENTS = X9¥sL ALISTS.
AR)

THIS 1S A PREDICATE THAT WILL BE TRUE IF THE ELEMENT X IS ON
THE LIST L AND THE ELEMENT Y IS NOT = OR IF 80TH ARE ON THE LIST L AND X COMES
BEFORE Y, FALSE OTHERWISE. '~ ORDER USES THE PREDICATE EQUAL.

{ORDER{LAMBDA(X Y LY{COND
((INULL L) -{OR))
({EQUAL X {(CAR L) } (AND) }
{(EQUAL ¥ (CAR L)) (OR) }
{{AND) (ORDER XY ({CDR L})))))

APLICATIONS
S e A AR A

{APPLY ORDER B A (A L E})

. F
{APPLY ORDER A B { A L E})

. T

(APPLY ORDER A B (B A L E) }

. F

(APPLY ORDER L I (HI J K L})

. F
{APPLY ORDER F G (E F G H))
- T

PAG., 68

11}
{EQUIV X Y L}

ARGUMENTS - X,Y,L - LISTS.
e ox e ek

THIS PREDICATE TAKES THE VALUE TRUE IF THE THO GIVEN ELEMENTS

X AND Y ARE CONTAIMED IN THE SAME SUB=LIST OF THE GIVEN LIST L, OTHERWISE FALSE.
EQUIV USES THE PREDICATE MEMBERG. -

{EQUIV(LAMBDA{X Y LJ(COND
({NULL L) {OR})
((MEMBERG X (CAR L))} [MEMBERG Y (CAR L)))
(UAND) (EQUIV X Y (COR L)}))))

APLICATIONS
AT R A A

(APPLY EQUIV {AX(B}{(A C)(B D)}{B C){A B)))
F

{APPLY EQUIV A B t (F G) (A B}})
- ' T

{APPLY EQUIV A B {(A G}{A B)})

. F

{APPLY EQUIV A B (tA B}))

- T '

12}
{(MAPCAR F L}

ARGUMENTS - F A FUNCTION
e L A LIST

THIS FUNCTION APPLIES A GIVEN FUNCTION F TO EVERY ELEMENT OF
A LIST L AND LISTS THE RESULTS.

(MAPCAR({LAMBDA(F L) (COND
{INULL L}ILIST))
{(AND) (CONS (F (CAR LJ)}(MAPCAR F (CDR L} })})})

APLICAT IONS
AR IR R R

{APPLY MAPCAR CAR ((A B)(B C){C D)(D E){E F)))
(ABCDE) _

(APPLY MAPCAR CDR ((A B)(B C)(C D){D E}(E F)}}
((BILCIIDILEI(F))

{APPLY MAPCAR CADR ({{A BJ(B CH(C DYID EYLE F)})

. (B CDEF)

{APPLY MAPCAR ATOM ({A} B X (V U L}I}}

. {FTTF)

PAG. 69

13}
(MAPCON F L)

ARGUMENTS. = F A FUNCTION
LS 2 3 2R Y i. A LIST

THIS FUNCTION AP?LIES A GIVEN FUNCTION F TO A WHOLE LIST THEN
TO COR OF THE LIST, AND SO ON. THE LISTS RESULTING ARE JOINED TOGETHER .

{MAPCON{LAMBDALF L) (COND
CINULL L)(LIST)) :
{(AND) LAPPEND (F LJ}(MAPCON F (CDR L))}} 1))

APLICAT IONS
BT N e N N

{APPLY MAPCON CDR tA B C Dy)

. (BCDCODOD).

(APPLY MAPCON LIST tA B C D})

. (LA B C DJ(B C D){C D)D)
14)

{MAPLIST F L)

ARGUMENTS - F A FLNCTION
EwpeERrkx Lo A LIST

THIS FUNCTION APPLIES A GIVEN FUNCTION F TO A LIST, THEN TD

CDR OF THE LIST, AND SO ON., THE RESULTS OF EACH APPLICATION FORM THE ELEMENTS OF
A NEW LIST,

(MAPLIST(LAMBDA(F L) (COND

((NULL L}({LIST)) o |
{(AND) (CONS(F L) (MAPLIST F (COR L)))} 1))

APLICATIONS
AR R

(APPLY MAPLIST AIOM (A B C D))
(F F F F)
(APPLY MAPLIST CAR (A B C D)
. (A B C D) |
(APPLY MAPLIST COR (A B C D))
. ({B C D){C D}(DIL))
(APPLY MAPLIST LIST (A B C D))
. (({A B C D}I({B C D)I{C DII((D}))

PAG. 70

15}
(FOREACH G X L)

ARGUMENYS - G A FUNCTIEN
WA R NN L A LIST
X AN ATOM OR A LIST

FOREACH APPLIES A FUNCTION 6 OF TWO ARGUMENTS TO THE ELEMENTS
OF A LIST L AND TO X AND LISTS THE RESULIS. '

{FOREACH ([LAMBDA (G L X){(COND
{{NULL L)(LIST))
{ LAND)} {CONS{G (CAR L} X}
“(FOREACH 6 (CDR L) X))})}

APLICATIONS

AR AR A AR A A

{APPLY FOREACH CONS {A B C) (D})
. ((A DI(B D)(C D))

lAPPLY FOREACH LIST (A B €) (D) }

(tAa (D))(B (D}I{C (D))}
(APPLY FOREACH MEMBERG (B R A ST L} (U S A))

. (FFTTFF)

16}
{NOTPOSS P L)

ARGUMENTS - P A PREDICATE
AR AR R AR L A LIST

THIS FUNCTION WRITES A LIST OF ALt THE ELEMENTS OF A GIVEN
LIST FOR WHICH A GIVEN PREDICATE IS FALSE.

(NDTPOSS{LAMBDA(P L) (COND
{INULL LI(LIST))
{{NOT (P (CAR L}}) (CONSICAR L)
. (NOTPOSS P (CDR L))))
((AND}(NOTPDSS P (CDR L)}) }))

APLICATIONS
et A e

{APPLY NOTPOSS NULL (A () B.C 1) D ¢)})
ta s CD)
{APPLY NOTPOSS ATOM tA B tC) () (D) E () F G)))
(iCHeplIed)
(ﬂPPLY NOTPOSS {(LAMBDA(X){NOT (ATOM (X))} (A B {C) (D) E F)))
. (A B E F}

17y
(REMOVE X ‘L)

ARGUMENTS = X AN ATOM OR A LIST
AR X XA A L' A LTSTS

THIS FUNCTION WRITES. A LIST OF aLL THE ELEMENTS ON A GIVEN.

LIST EXCEPT ALL THOSE EQUAL TO' A GIVEN ELEMENT.

{REMUVE {LAMBDA (X LY {COND
ANULL L)ALIST))
{(EQUAL ‘X' (CAR L)) {REMOVE X (COR L)JIY "
{ (AND){CONS {CAR. LICKEMCVE X (COR L))))))

APLICATIONS
2 3K RN 0 R IR

LAPPLY REMLUVE & (& 0 4))

{F U} .
aDPLY REALVS (A B CY tABCIICF (ADbLC)Y)
. ia bl (CFtaAECH))
{APPLY REMUVE (A B CItA (B. CHibrea B Gy
» TA D C}IDJI

15)
(REZLIER L H)

ARGUMENTS ~ M AN ATOM OR A LIST
FREERELEL L A LIST

PAG.

71

THIS FUNCTION PLACES: THE GIVEN LIST ELEMENT 3 AFTER EACH ELE-

MENT OF A GIVEN LIST L.

(REALTER { LAMBDA (L. M)-{COND
CINGLL. LICLIST))
((NULL (CDR L))L}

{ LCAND) (COMSECAR L) (CONS. MIREALTER (CBR LJHM)I)))

APLICATIONS

s 30 355 3 52 50 0% O o S

CAPPLY REALTER (C-R VN) A)

s (C AK AV AN AS)

{APPLY REALTER (B B S) 0)
{60 B U K)

iAPPLY REALTER {1' 4) 5)
. (L 5 &)

PAG., T2

19)
(SUBS X Y L)

ARGUMENTS — XsY AN ATOM OR A LIST.
a0 o R SRR L A LIST.

THIS FUNCTION REPLACES EVERY OCURRENCE OF ONE GIVEN ELEMENT Y
ON A GIVEN LIST L BY A SECOND GIVEN ELEMENT X.

{SUBS(LAMBDA(X Y L){COND
{(NULL L) (LIST}).
{{EQUAL Y (CAR L}} (CONS X (SUBS X Y (CDR L))} }
{{AND}{CONS (CAR L){SUBS X Y (CDR L}))} M)}

APLICATIONS
A e AR R KA R

(APPLY SUBS A G (6 G NG NG S).)
(B ALNWA N A S)

291
(AMONG X L)

ARGUMENTS -~ X AN ATOM OR A LIST.
o 0 B A N R L A LIST

THIS FUNCTION ADDS THE GIVEN LIST ELEMENT X TO THE GIVEN LIST
L IF IT IS NOT ON THE LIST L.

{ AMONG { LAMBDA (X L) (COND
(INULL L)M(LIST X))
{ tEQUAL X (CAR L)L}
{LAND) (CONS{CAR L) (aMONG X (CDR L))))))}

APLICATIONS
AR A AR

{APPLY AMONG T (MUS))

. (M U ST

(APPLY AMONG € (C O M M})
. (C O MM

PAG. 73

21}
{INDEX X L)

ARGUMENTS =X AN ATOM OR A LIST
et s 232 LA LIST

THIS FUNCTION LISTS THE ELEMENTS OF THE GIVEN LIST L upP TO
THE FIRST OCURRENCE OF THE GIVEN: LLST ELEMENT Xo o :

{INDEX (LAMBDA{X L} {COND
CINULL L)(LIST))
((EQUAL X (CAR L)}(LIST))

LUAND) (CONS{CAR L) {INDEX X (COR- LFEY) 1))

APLICATIONS
AR A R

(APPLY INDEX A (X Y Z A T))
(XY Z)
{APPLY INDEX A (A 8B C) '}
() L
{APPLY INDEX A (S D A))
{S D)

22)
{UNION M N)

ARGUMENTS - M,N LISTS,
R HHR AR A

THIS FUNCTIUN WILL. PRODUCE A LIST GF ALL THE ATOMS WHICH ARE
IN EITHER OF TWO LISTS. UNION USES MEMBER.:

(UNION(LAMBDA(M N}(COND
({NULL MIN}
((MEMBER (CAR M) N){(UNION (CDR M) NJ))
{{AND) LCONS (CAR M) (UNION, (COR M) N))} 1))

APLICATIONS
e T T

(APPLY UNION (U VW) (W XYY)
U v W X Y}
{APPLY UMION (A B C}Y (B C D])
{4 8C D}
LAPPLY UNTON (ABCODEXY ZVYIBCGHWVY 2))
. (ADEXBCGHWVYY 7)

PAG., T4

23) |

CINTERSECTION M N)
ARGUMENTS — =_M,N LISTS.
RNy

THIS FUNCTION WILL PRODUCE A LIST OF ALL THE ATOMS THAT ARE
COMMON TO TWO LISTS. - INTERSECTION USES MEMBER.

LlNTERSEETIGNJLAHBﬂA{H,NI{CDND-
TINULL M) (LIST))
{ {MEMBER (CAR M) N) (CONS {(CAR M)

(INTERSECTION {CDR M) NJ))
(CAND) ({INTERSECTION (COR M} N}) }))

"APLICATIDNS
W AR R

{APPLY INTERSECTION (A B C) (8 C D))
. (8 CI

{APPLY INTERSECTION (A B C) (A B C))
. (A B C)

(APPLY INTERSECTION (A-B C}(D E F})
. ()

(APPLY INTERSECTION (U V WI{W X Y})
. (W)

(APPLY INTERSECTION (AB CDE XY Z)

(BCGHWVY2))
. (B C Y Z)

24) :
[SUPREVERSE M)

ARGUMENT - M A LIST.
o R R

THIS FUNCTION WILL REVERSE ALL THE LEVELS OF LIST. IT USES
THE FUNCTION APPEND. - -
{SUPREVER SE (LAMBDA { M} { COND
| {(ATOM M) M)
CINULL M) (LIST))
{{AND) (APPEND (SUPREVERSE {CDR M))
: (LIST(SUPREVERSE (CAR M)}) 1) })})

APLICAT IONS
e g e koK

{(APPLY SUPREVERSE (A 8 {(C 0)))
{iD C)} B A)
(APPLY SUPREVERSE ((U X)((X Z) ¥)))
(Y (Z X))ix U)) : ,
{nPPLY SUPREVERSE ({A B C (D (E ({FG) H) I) J) KI LMINOP)Q R})
. (RQ (PON)MLI(K I(JII (H{GF))E)YDICB A))

PAG. 75

25}
{LISTATOM 3)

ARGUMENT - S & LIST.
AR RR TR

THIS FUNCTION PRODUCES A LIST OF ALL DIFFERENT ATOMS OF A
GIVEN LIST S. LISTATOM USES UNION.

(LISTATOM(LAMBDA(S) {COND
{(NULL S)(LIST)).
((ATOM S)(LIST §))
{(AND} {UNION (LISTATOM(CAR S}). (LISTATOM(CDR S$)})})))

APLICATIONS
ERF R ROR T

(APPLY LISTATOM (A-(B C} .D})
. (ABC D)

tAPPLY LISTATOM ((A)(B CI{A B D}(F G .E)))
. "(C ABDFG E)
(APPLY LISTATOM ((({A))B)))

. (A B)

26}
(LENGTH X)

ARGUMENT -~ X AN ATOM OR A LIST.
AR R ek :

THIS FUNCTION. GIVES ‘AS RESULT THE NUMBER OF ELEMENTS OF THE
ARGUMENT X. 1IF X IS AN EMPTY LIST OR AN ATOM THE ANSWER WILL BE ZERQ.

(LENGTH(LAMBDA(X) {IF
(OR (NULL X} (ATOM X) ')
0

(ADD 1 (LENGTH(CDR X))) 1))

APLICATIONS
LEL B £ Y

{(APPLY LENGTH (})

. 0
(APPLY LENGTH A)

. 0
(APPLY LENGTH (A B C D})
. 4

LAPPLY LENGTH (A (B C)ID E}))
. 3

PAG. T6

27)
{REMAINDER Y X)

ARGUMENTS — Y, X NUMERICAL ATOMS.
&ﬁ*_*'*

THIS FUNCTION GIVES THE REMAINDER OF THE INTEGER DIVISION Of
Y BY X '

(REMAINDER { LAMBDA{Y X).(COND
{(LEQ Y X) 0)
1456 X Y) ¥) |
{ (AND) (REMAINDER (SUB Y X) X)) .)})

APLICATIONS
FERAOEFRUEER

{APPLY REMAINDER 2 2}

(APPLY ngarﬁbé§'3a4 14) .
?APPLY'RESAINDER 1523 10}
(APPLY REaAINDER-261 2)
(APPLY RE&;INOER 85 24)

28)
{GCD X Y]

ARGUMENTS - X,¥Y NUMERICAL ATOMS,
FEERERRER

THIS FUNCTIONS GIVES AS RESULT THE GREATEST COMMON DIVISOR
BETWEEN X AND Y., GCD USES REMAINDER.

(GCD{LAMBDA (X Y){COND

({SG X Y)(GCD Y X))
({EQ (REMAINDER Y X} 0) X}
((AND){GCD X (REMAINDER Y XI)) 1))

APLICATIONS
AR ARG RN

(APPLY GCD 4 12}

. 4
(APPLY GCD 243 19)
. 1

(APPLY GCD 39 9)

. 3
{(APPLY GCD 28 7}
. 7

PAG. 17
29)
{SMALL X Y)

ARGUMENTS = X,Y NUMERICAL ATOMS.
AR AR

THIS IS AN ARITHMETIC FUNCTION THAT COMPARES X AND Y GIVING
AS RESULT THE SMALLER NUMEER .

{SMALL(LAMBDAIX Y)(IF
{S6 X Y} Y X)

APLICATIONS
LT 23T Y 3

(APPLY SMALL .12'5)

. 5

{APPLY SMALL. 2 2)
2

{APPLY SMALL O 123)
. 0

30)
(BIN X}

ARGUMENT - X, A NUMERICAL ATOM.
ook e

THE-VALUE OF THIS FUNCTION IS THE BINARY EQUIVALENT OF THE

ATOMIC SYMBOL X WHICH. IS SUPPOSED TO BE A DECIMAL NUMBER QF NO MORE THAN FQUR
DIGITS.

(BIN{LAMBDA(X}(IF {EQ (DIV X 2} 1)
(LIST 1 (REMAINDER X 2))

LAPPEND (BIN- (DIV X 2})(LIST (REMAINDER X 2)))} N

APLICATIONS
0 0 2 o B o 0L K

(APPLY BIN 11)

. {1011}
(APPLY BIN 33)
. (LOOOGOC 1)

{APPLY BIN 158}

. {(1lO0O0O1111 01}
(APPLY BIN 386)

. (11000001 0)

PAG. T8
31}
(MIN X)

ARGUMENT = X A LIST WHOSE ELEMENTS ARE NUMBERS.
WA A A

THIS FUNCTION GIVES AS RESULT THE MINIMUM OF ALL THE ELEMENTS
OF A LIST. MIN USES THE FUNCTION SMALL.

{MIN(LAMBDA(X) (COND
((NULL X)(LIST))
(INULL (CDR X1)(CAR X))
CTAND) (SMALL(CAR X)UMIN(CODR X))In)f)

APLICATIONS
2090 0 o 2 e e e e

{APPLY MIN (12 11 3 5 & 1})
1

(APPLY MIN (12 258 0 145))
. 0
{APPLY MIN (135 24 15 12 65} }
. 12
32)
{OEC L)

ARGUMENT - X A LIST.
e

THE VALUE OF THIS FUNCTION IS THE DECIMAL EQUIVALENT OF THE
BINARY NUMBER CONTAINED IN THE LIST L. DEC USES POT AND LENGTH.

(DEC (LAMBDA(L}(IF (NULL L)
o

(ADD (MULT {CAR L}({POT 2 (SUB(LENGTH L) 1}}}
(DEC (CDR L)) 1))}

APLICATIONS
AR AN e ek o e

{APPLY DEC (1 1 1)}

- 7

(APPLY DEC (1 0 1 0 1)}

- 21

(APPLY DEC (1 11 1 1))

. 31 ‘

(APPLY DEC (1 01 1 1110 1)

. 381

(APPLY DEC {1 1100110111 1))
. 3695

{APPLY OEC {1 1 0 00 00 1 Q))
. 386

PAG. 79

AR AR A e o o A
¥ REFERENCES =
AR A TR A RN B X

Jo MCCARTHY

RECURSIVE FUNCTIDNS OF SYMBOLIC EXPRESSIONS AND THEIR COMPUTATION BY M
CHINE = COMM. ACM, 3 (1960), 184.

J» MCCARTHY
LISP 1.5, PROGRAMMERS MANUAL
MIT PRESS,1962.

MARTIN DAVIS :
COMPUTABILITY AND UNSOLVABILITY ~ MCGRAW=-HILL, NEW YORK, 1958.

ALLEN NEWELL
INFORMATION PROCESSING LANGUAGE-V MANUAL - PRENTICE HALL, N.J. 1961.

ALONZDO CHURCH

THE CALCULI OF LAMBDA CONVERSIGN / ANNALS OF MATHEMATICAL STUDIES NUM ¢
PRINCETON UNIV. PRESS, N.J.

T.A,BRODY |
SYMBOL MANIPULATION TECHNIQUES -FOR PHYSICS
GORDON AND BREACH,1967,

CLARK WEISSMAN
LISP 1.5 PRIMER
DICKENSON PUB. INC. 1967.

E.C.BERKELEY AND D.G.BOBROW

THE PROGRAMMING. LANGUAGE LISP
MIT PRESS

A.K.GRIFFITH
AN INTRODUCTION TO LISP -~ QUANTUM THEQRY PROJECTs UNIV. OF FLORIDA,

H.s. MCINTOSH
A HANDBOOK OF LISP FUNCTIONS —~ RIAS TECHNICAL REPORT 61-11 BALTIMORE.

L E-EE EEEEEREEEEEZEEREREEE I I I I I I I N S I B I NS I BRI BN

PAG. 80

B0 AT R 0 R T N0 e e
* INDEX =
fek R R AT A AR A
29 % ADD
50 * ALGEBRAIC DIFFERENTIATION
72 % AMONG
25 ® AND
39 % APPEND
45 % APPLY
35 % ARGUMENTS
29 % ARITHMETIC FUNCTIONS
2 % ASSEMBLER
39 % ASSOCIATION
18 = ATOM
4 % ATOMS. AND LISTS
*
77 % BIN
>
15 = CAAAR
15 % CAADR
15, ® CAAR
15 * CADAR
15 x CADDR
15 %= CADR
61 * CALLING THE LISP INTERPRETER
14 * CAR
15 * CDAAR
15 * CDADR
15 = CDAR
15 =* . CDDAR
15 * CODDR
15 * CDODR.
14 * (DR
2 * COMPILER
22 % COND.
21 * CONDITIONAL EXPRESSIONS
17 % CONS
*
58 * DEBUGGING
78 % DEC
10 = DEFINE ' _
34 = DEFINITION OF FUNCTIONS BY THE PROGRAMMER
40 * DELETE
50 * DIFFERENTIATION, AN EXAMPLE OF ALGEBRAIC
32 * DIV '
34 % DUMMY VARIABLES
F
35 * ELEM
5 % EMPTY LIST
18 % EgQ
37 * EQUAL
68 % EQUIV
»>

ERROR MESSAGES

O A A T A A A N EEREEEEE I NI B R NN BN NN B O

O3 H O3 dF 3 OH O 3 OH N Mg R H o 36 3 b 36 4F 33 3 3 3¢ 3 O W O 3 o4 ¢ ¥ O#

16
30
46
49
24
17
11
32
40
13

31
12
45

36

66
7
6

76

21
73

74
48

34

75
12
42

i9
75

60

25
63

68
&9
69
36
65

I R EE E R EEEE R E I R R R R B R IR 2 I A

Seagm o A A AR AR
INDEX *
R R AR AA KR

=

ERROR MESSAGES WITH CAR AND CPR
APPLICATION OF ADD/SUBTRACT
APPLICATION OF APPLY/EVAL
APPLICATION QOF PUT/PUTQ

ERRORS TN

ERRORS IN
ERRORS [N
ERRORS IN
ERRORS 1IN

ERRORS IN

ERRORS IN
ERRORS IN
ERRORS IN
ERRORS. IN
ERRORS 1IN
ERRORS IN
EVAL

FIRSTATOM
FORALL
*FOREACH
FOR SOME

THE
THE
THE

THE:

THE
THE
THE
THE
THE
THE
THE
THE

USE
USE
USE
YSE
USE
USE
USE
USE
USE

OF
OF

OF .

oF
OF
OF
OF
QfF

OF-

FUNCTION DEFINITION

GCD

IF
INDEX

INTERSECTION

ITER

LAMBDA
LAST
LENGTH
LET
LETPROP

LEVELS OF RECURSION

LIBRARY DEFI}

LIST
LISTATOM
LISTS
LITERAL

CONDITTONAL

CONS
DEFINE
DIV
LAMBDA
LET
LETPRQOP
MULT
VAL

NED FUNCTTION

LOADING THE PROCESSOR

LOGICAL FUNCTIONS

LST

MAPCAR
MAPCON
MAPLIST
MEMBER
MEMBERG

PAG.

S 3 b b s 3 3 3 3 WO %**-&'%* o 0 3 3F i 36 4F 36 3R 3B 3 W O3 3 3 H W O E 3 3 O 3 M

8l

R L E E E R E EE T TN E T I L IR 2 A I O S B 2 R 2K IR O IR

82

78
31

59
28
70
19
33

65
63
60
27
67
61

58
&1
41
59

47

32
62
61

71

76
T1
38

66
41
33
64

30
T2

14
62

61
64

73

11

O S G FE R R E E EE I R I I N B I U B I B N O

LS P E e Y

* INDEX =
AR AR ey e Ak e esle

MIN
MULT

NG MORE VACUUM
NOT

NOTPOSS

NULL

NUM

0oD

ONELEM

OPERATING INSTRUCTION
OR :

ORDER

OUTPUT ON

PREDICATE

PRINT

PROP

PROPERTIES OF LISTS

PUSH DOWN LIST EXHAUSTED
PUT
PUTQ

QUOTE

RANDOM

READ CHECK. PRESS START TO RE~READ

READ FROM

REALTER

RECURSIVE FUNCTIONS
REMAINDER

REMOVE

REVERSE

SAMEL EM

SETPROP

SG

SINGLE

SMALL

SuB

SuUBS

SUPREVERSE

SW4 ON. REPEAT READ IN

SYMBOL MANIPULATION LANGUAGES

TRY AGAIN
TWOLEM

UNION

VAL

-H-%**%-ﬂ-*ﬂ—ﬁ*****ﬂ-*ﬂ-*******%*#%**%*****ﬂ-* O A 3 %

