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ABSTRACT

Graph-processing languages or packages usually represent

graphs under matrix or list form.

Although algorithms using lists are not in general the

most efficient, they are easy to write and to understand.

New algorithms could first be sketched in LISP and then
translated into another form, having in mind run time and core

storage minimization.

In this tutorial paper 2 simple LISP representation for

graphs in presented together with a number of basic functions.

All programs were tested on an IBM — 1620 of the <Centro

Brasileiro de Pesquisas Fisicas.



1. FUNDAMENTAL ELEMENTS FROM LISP 1.5

This section is only included for the sake of completeness.
The functions and expressions given below are those referenced from

section 2.

a). Primitive Funetions

cons [2; b] - builds a list consisting of its arguments.

car [a] - gives the first part of its composite
argument.

¢dr [ﬁ] - gives the second part of its composite
argument.

eq [}; E] - a predicate, to test for the equality of
two atomic symbols.

atom [}{] - a predicate, to test if its argument 1is
' an atomic symbol.

b). Conditional Expressions

A conditional expression has the form:

I:Pl Ty Py T8 et b Py +en:l

where each P; is an expression whose value may be truth
or falsity, and each e is any expression. The value of

the conditional expression is the first (from left to

right) ei‘ whose cerresponding P is true,
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¢). Usual Auxiliary Functions

null [x] - anf_x; HIL] + T,

T + F]

equal [x; 7] = [atom [x] + [atom{y] + eq x vls
T+ F;
equal [car[x] ; cary]] +
equal [edr [x]3 cdr [y]1;

T ~ FJ

subst [x;y;z] = [equal ;2] » xjatom[z] * 2z
T + cons [subst [x;y;car =113

subst [x;y;cdr [z]]11]

append[x;y] = [null [x] +¥;
T - cons [ear [x] ; append ]:cdt [x] ;7]]]

member[x;.y__] = [null[};] + F;
equal Ec;car[y]] + T;

T - member [x; cdr ry]]]

pairlis[x;y;a] = [mulilx] ~ a;
T > cons ]:cons_[ca.r [x]; car [;v-_l],
pairlisfedrx]; edr ¥]; alll



assoc[x;a] = {equal [caar[a];x} = carlaj;

T + assoc [x;cdr[a]]]

sublis[a;y] = [atomfy] + sub 2[asy];

T + cons [sublis[a;car [7]];

sublis[a;edr B]]]]

sub 2 [ajz] = [null[a] + z;
eqlcaar[a];z] + edar [a];
T + sub 2[cdr[a];z:]]

add 1 [x] =x+1
sb1 [x] =x-1
caar [x] = car[car[x]]
catr [x] = carfeer]
cdar [x] = edr[car[x]]
cagr [x] = cdr[ear x]]

list ]::w:1 IR ;xn__[ = cons l:xl;cons I:xz; +» - CODS [xn;NIL] - I]



d)o

Additional auxiliary functions

reverse [ x| = [null[é:__] + NIL;
T + append [reverse[cdr[x]];

list [ear {x]]]1]

differ[x;y] = Lnull[x] + NIL;

membex; [:car ]:x] H y:] -

differ [cdr [x-_l H YJ H

T ~ cons [car El:] ; differ [cdr [xJ 53] ]:l
union[x;y] = [mullix] > y;

member [car [x];y] + union[cdr[x];y];

T + cons [car (x]; union[edr{x] sy]1]

inter[x,y] = [mull [x] - NIL,
member [car [x];y] + cons[car[x];
inter I:cdr ix]; y]] ;
T -+ inter [cdr [x] : YII

inel [s ;x] = equal [differ [s;inter {s3x]] ; NIL]

eqset [x;y] = [nclix;y] + inel [y;x];
T + F]

count[x:l = [null x] ~ 0;

T + add lE_:ount E_‘.dr [::I]]]



e).

Functionals

maplist{x;€] = [null[x] + NIL;

T + cons [£[x]; maplist [edr[x];£1]]

map [x;£] = prog([m];

100? [null[m] + return [wiL]]);
£[n];
m: = cdr [m] ;
go [LOOP]]

mapear [x;f] = [rull[x] -+ NIL;

T + cons [£[car [x]] ; mapcar [edr[x];£]1]

mape [x;£] = prog [fm]s
LOOP [null[m] + return[NIL]];
£ [car [m:]] H
m; = cdr [m] H
go [Loor]]



2. GRAPH REPRESENTATION AND PROCESSING

A graph G with =n vertices is represented as a list
with n sub-lists, The first element of each sub~list is the
label of one of the n vertices; the remaining elements of a

sub-list are the labels of the vertices adjacent to the given

vertex.

Consider the representation of a directed graph.

/@\@Q\
®\® 0/®

G = ((124)(235)(336) 55 6)(6))

L}

An undirected graph may also be represented.

® O
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6w ((124(2143)03 248123



Although this representation is easy to specify and vizual
jze, some algorithms become simpler when applied to an expanded form
In the expanded form all lines are isolated as ordered pairs, the

sinks being kept.
Por the first example we have:

G' = ({1 2)(1 4)(2 3)(2 5)(3 3)(3 6).L4 5)(5 6)(6))

For the second example:
G' = ((L 2)(1 4)(2 1)(2 £)(2 3)(3 2)(3 4)(4 1) 2)(4 3))

A function to expand a graph, given in $-expression nota-

tiom, is:

expand [g] = [null [g] + NIL;
T + append [expand 1[caar(g];cdar(g]];

expand [cdr [g]]]]

expand 1[x;£] = [pull[] + cons[list{x] ; NIL];
null[edr [£]] + list[cons[x;£]1;
T + cons[list{x;car {£]];
expand 1{x;ecdr[2]]]]



After applying an algorithm having as input a graph in

expanded form , it is convenient to reduce its output to the usual

representation.

shrink[g__] = [null [g] + NIL;

" mullfedr (g]] + &5

T + ghrink 1Ecar [g:[; shrink [cdr [g]]]]

shrink 1{x;g] = [:ﬁull [e] + List[x]:
equal I:car [xj jcaar [gj +

shrink [gons Eappend [x;cdar Te]] ,edr TIF

T + cons l_car L;J ,shrink 1 f_x,cdr_ [E]]]]

Tt is also convenient to represent a path {or chain) as a

list, by simply giving the sequence of its vertices., In our example of

a directed graph, one of the paths between vertices 1 and 6 is:

P=(1256)

By a natural extension we may consider a set of paths under

1jst form. In the same example, the set of elementary paths between

1 and 6 is

LP = ((L 236)(1L256)( 456}
To invert a path we may use:

invpath [p] = reverse [p]



and to invert all paths in a list of paths:

invipath[£] = [null[£] + NIL;
T ~+ cons Ereverse E:ar [1],

invlpath{cdr (411 1]

The set of vertices may also be presented as a list, In

our example:
ve=(23458)

This set is obtained from the representation of the graph
by

vert(g] = [null[g] > NIL;

T + cons [caar[g];vert [ear [g]1]]

For an application to be described later, we shall need V

in a slightly different form:

Ve (D) (2 3 (&) (B (&)

which can be directly obtaimed from the graph representation by:

vertl[g__] = [null [g] + NIL;.

T + cons[list[caar[g];vertlicdr 1318



The application we have in mind is the inversion of a
directed graph., It should be noted how the function performing this

application utilizes previously defined functions.

invgraph [g] = ghrink [append {vertl [g] ;invlpath

[expand [g]]]

1o its turn, inverting a graph makes it easier to  apply
other algorithms. For instance, to obtain the set of vertices adja-

cent to a given vertex x , we use!

adjlisex;g] = [null[g] + NIL;
equal [x; caar [g]] -+ cdar [g] H

T + adjlist [x;cdr(g]]]

1 case we are dealing with directed graphs, the result
may be looked at as the list of successors of x, Now, the 1ist of

predecessors of x may be obtained by the same function, applied to

the inverse graph:
predec[x;g__] - adjlist[x;invgrsph[g]]
Set theoretic operatioms are quite useful in graph proces—

ging. As a first example, we may obtain the set of vertices adjacent

to a subset § of the vertices of a graph G:

adjsets;g] = [null[s] > NIL;
T+ union[adjlist[car [slsels

adjset[cdr [s] ,g]]]]
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Using another set theoretic operator we obtain the set of

the lines of a graph:

1ine[g] = differ [expand [g] jvertl [g]]
Now it is easy to count the elements of a graph:
nvert [g] = count [g]

nline [g] = gcount [1ine [ﬂ]

Note that to count the vertices we took advantage of the

representation that has been used for graphs.

Coming back to the application of set theoretic operatoers,
we shall show how these operators are extended so as to have graphs

as operands!

diffg[gl;g?] = diffg 1[differ [expand[gl] ;append
[expand [g2 ];verel [g2] 1]

diffg 1[g] = shrink[union[vertl[invlpathigl]; s]]

uniong [g1;82] = shrink [union [expand 1] ; expand (g2]]]

interg I__gl;gZ] = diffg[gl;diffg[gl ;32:[_]



Tests for checking for graph equality and whether a graph
is contained in another, either as a sub-graph, partial graph, or

partial sub —-graph, are also needed.
eqg[gl;g2] = eqset [expand[gl];expand [g.ﬂ]

testsub |:s; g] - [incl I:vert [8] jvert [BI] *
testsu‘bl[s;g;vert [sI];

T + F]

testsubl[s;g;v] = [null [s-_| + T3
eqset [adjlist [caar[s];s],inter [adjlist [caar [s];

B:l ;V]J =+ testsubl ]:cdr [sj g3

T + F]

t;estpar [p,g] - Eeqset [vert [p] jvert [5]] *
inel[line [p]; line[&]];

T + F]

testpsub E:s H a = eqg I::'.nterg E:s;il ;st'

As it should happen, the two graphs below will be taken as

equal:

GL = ({abe) (b e} (c))
G2 = ((b ¢) (ach) ())

.12 .



On the other hand, the tests for sub-graph, partial graph,
and partial sub-graph do not exclude their being equal to the
supposedly larger graph, For the same reason the test for a partial

sub~graph does not exclude the case of a sub~graph or partial graph.

Two unary operations will be shown: undirected graph com-
plementation (with respect to the complete graph) and rotatiom

(eyelic permutation of the labels of the vertices).
complg [g] = complgl[g;vert [g]]

complgl[g;v] = [null[g] -+ NIL;

T + cons E:ons [caar [g:] ;jcomplg2

[ear [g];v]];
complgl [cdr [g]3v]]]

complg2 [a;vJ = [null [v] + NIL;
member I:car [-v-_l;a:l - compng[a;cdr ]:v]];

T + cons E':ar [v:l ;complg2 [8; edr [V]]]]

rot ]:g:l = sublis[pairlis [vert{g];append [cdr [vert[g]];

c@r [vert [g]]] H NILI:&]

Taking as an example the graph:
G=({abec) (bcd (cd) (d))

then:
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complg[6] = ((a d)(b a)(c & b)(d a b c})

rot[C] = ((b e d) (e d a){d a)(a))

A graph may be modified by insertiom or deletion of ver—

tices or lines.
inserti[g;i] - append[g;list[list[i]]]
deli[g;i] = shrink@elil[expand[g];i]]

deli [e;i] = [pull[e] + NIL;
member [1;carfe]] + deli 1[edr [e];11;

T + cons [ear [e] ;delil{cdr [e];i11]
inserti] [g; ij] = shrink [append [expand [g];list (351]]
delijfg;ij] = shrink[delij 1 fexpand [g];1ist [15]1]]

delij 1[e;£] = [oull[e] - NIL;
member [car [e] ;2] + delij 1 [cdre]; £];
T + cons [car[e];delij 1 [edr [el5£]]]
Another modification is changing the label of a vertex.

It may also be necessary to collapse two vertices (x and y) into

one and to assign a label (z) to it.



renam{y;x;g] = subst[y;x;g]

fuse[z;x;y;gj - su‘blisE:ons[cons[x;z:I;
list[cons yszll];
deli[g;cons [x;y]]]

Since a graph may have been modified, in certain moments
it will be necessary to check for the presence of a given vertex ot

line in the graph,
testi[g;i] = member|i;vertig]]

testij [g;i;j] = member [cons lisil, 1ine[g]]

Let us now consider a number of elements to be obtained

from a graph as:
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sinks = {6, 7, 8, 10}
sources = {1, 2, 3, 10}
isolated vertices = {10}
vertices above and including the cut defiped by 5 = {4,5,6,7,8,9}
vertices below and including the cut = {4,5,1,2,3}
for S = {4,5}
a path from 5 to an element of the sink = (5,9,8)

These elements are respectively obtained by the functiens:

sink [_-g—_| = [null[g] + NIL;
null [cdar [5]] -+ cons [caar [g] raink [edr [g]]1];
T + sink[edr{g]]]

source l_-g] = gink[invgraph [g_ﬂ
isol[g] = inter[source[g];sink 1]
pset{s;g| = pset 1[s;differ{s;sink [gji;g]

pset lts;d;é] = [null[d] + 33

T~ unionl}.;pset[adjs_et]}s;g-_l;g]]]
mset[s;g] = pset [s;invgraph [gl]
sinkp [i;g] = Enember[i;sink[g]] ~ list[il;

T + couns [i;sinkp [car Eadj list [i;g] ;BID



So far we have restricted ourselves to the more elementary
features of the LISP language. It is clear that others, as the PROG

feature are also useful.

Very specially the use of functionals as map, mape, maplist,
and mapcar , making it possible to traverse lists,applying to  each
element a given process, corresponds to the effect of statements such
as DO (FORTRAN , PL/1) or for (ALGOL).

To apply a certain function f to each vertex of a graph ,

we might use!
mapc [vert. [g] ;f:|

We shall present a realization of Warshall's algorithm, to
determine all elementary paths between vertices x and y of a

directed graph.

kEysd] = [ealis0) » ilxvls
eq[x;z[i] + k[z[il;y;sub 1[il]s
eq[y;z[i] » klx;z[il;sub 1[L]];
T + append [k[x;y;sub 1[i]]s

concat [k [x;z[f];sub 1 1.
k[z[i]sy;sup 1 [1T1])

] [a;b] - @ember [cons E;;b:[ ; expand [gj] -+ cons [a;b];

T + NIL]



z{f] = zL[& 1; gl

21[m;e;] = [eqim;e] » caar[g);
T + z1[m;add 1[c];edr [g]]]

concat[p;q] " Enull[p] + NIL;

nulllq] + NIL;
T + append [concat 1[carpl; 4],

concat [cdr [p] ;q]T_[

concat 1lr;s] = [pu1l [e]l » =il

T + cous [append[r;cdar[s]] ;concat 1[r;cdr [sj]_.l]

The funetion %k should be called with:
k[x » ¥ s nvert[g]]
is "global" to the program.

In order ro treat valued gTaphs we consider two solutions.,

The simplest one requires the definition of a list (V)

structurally similar to G, in such a way that elements from € and

V correspend to each other with respect to their position in these

lists. G and V may be gathered in one list.



7 7L
Je -®
9
9
G = ((1245)(23){36)(436)(5 6)(6)
Ve ((0379)(35)(151)(7 84)(9 2)(1 6))
GV = (6 V)

To search a value it is sufficient to traverse ¢ and V in

parallel.

val [x; gv] = val 1[xjcar[gv];cadr fav]]

val 1[x;g;v] = [mullfg] ~ ¥
equal[x;car [g]] + car [v];
T + val 1[x;cdr[g];cdr v11]

The other solution uses am acteibute — value list (F) and
is more flexible in the sense that it allows to associate more than

one attribute - value pair to an element of the graph.

The list ¥ is composed of ordered pairs, the second mem

ber of the pair being itself a list of ordered pairs: {graph element-
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1igt of attribute - values belonging to slement}. Thus, if we call
a an attribute of element x whose corresponding value is desired,

we have:

val 2[a,x] = cadr [assoc[a;cadr [assoc [x:F]1]]

If x is the line (i i) then F is supposed to contain,

among others, the pair:
Fa(...00GHNC... (ava) « - - M. o o)
and the result of applying the function will b; va.
It should be remarked that val 2 does not ipciude g is

jts argument list. This is related to the fact that F can be sharel

by several graphs.

The student is urged to use these materials as a starting

point. He could, for example:
a. extend the package by adding other functions;
b. recode certain functions in a more efficient way;

. describe and test non—trivial algorithms, using the

original or an extended package.



Since LISP - like list — processing has been enbedded
in several high level languages (CPL , FORMULA ALGOL, several
FORTRAN , ALGOL, and PL/I implementations, etec.), this package
could equally well be added to them.
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{DEFINE

(EQUAL(LAMBDA{X Y)(COND .
{{ATOM X){EQ X Y)})({ATOM Y}{OR))
§(INULL X)INULL Y)IXUOENULL YI(OR))
{ LTEQUAL(CAR X){CAR Y)) (EQUAL {CDR X}(CDR Y)))
(CAND Y (OR Y)Y 1))

(SUBST(LAMBDA(X ¥ Z}{COND
((NULL Z)ILIST))
((EQUAL Y Z) X}
{{ATOM 2) Z)
(CANDY(CONS (SUBST X Y (CAR Z))
{SUBST X Y (CDR Z))} )) 1))

{APPEND (LAMBDAIX Y)U1F {NULL X}
Y
(CONS (CAR X) {APPEND (CDR X) Y}} 1))

{MEMBER (LAMBDA(X Y}{COND
C{NULL Y] {OR})
({EQUAL X {CAR Y1) {(AND})
{(AND) (MEMBER X (CDR Y}) } 1)}

(PAIRLISILAMBDA(X ¥ AM{IF (NULL Y}
A
(CONS (CONS (CAR X)MLISTICAR YI))
(PAIRLIS (COR X}{COR Y} A) ) )})

{ASSOC {LAMBDA(X A)UIF (EQUAL {CAAR A} X)
(CAR A}
fASSOC X (CDR A}) )}

{SUBLIS({LAMBDA(A Y)}(COND
CINULL Y){LIST))
{{ATOM Y)(SUBZ A Y]}
({AND){CONS (SUBLIS A (CAR Y)})
{SUBLIS A (COR Y}) ) )3) )

{SUBZ2{LAMBDA(A Z)(COND
((NULL &) Z)
{{EQ (CAAR A} Z) (CADAR A

})
{(AND}(SUBZ (CDR A) Z2)) M)

(ADDICLAMBDA(X}(ADD X 1}1})

{SUBLIILAMBDAIX)I(SUB X 1))}

{MAPLIST{LAMBODA(X FI{IF {NULL X)
(LIST}
(CONS {F X) (MAPLISTICDR X} Fl}} 1))

(MAP{LAMBDA(X FJ(LIF {NULL X)

{LIST)
(AND (F X} (MAP{CDR X) F)) I}



