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An analytical theory of the nonlocal magnetorotational instability �MRI� is developed for the
simplest astrophysical plasma model. It is assumed that the rotation frequency profile has a steplike
character, so that there are two regions in which it has constant different values, separated by a
narrow transition layer. The surface wave approach is employed to investigate the MRI in this
configuration. It is shown that the main regularities of the nonlocal MRI are similar to those of the
local instability and that driving the nonaxisymmetric MRI is less effective than the axisymmetric
one, also for the case of the nonlocal instability. The existence of nonlocal instabilities in
nonmagnetized plasma is predicted. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2913613�

I. INTRODUCTION

The magnetorotational instability1,2 �MRI� was treated in
Ref. 3 within the local approximation. Actually, the local
approach applied both for the MRI and for many types of
instabilities in an inhomogeneous plasma4–6 is valuable, in
particular for understanding the physics of the phenomenon
considered, since it leads to rather simple analytical results.
Therefore, it is reasonable that the local approach to the MRI
started in Ref. 3 has been adopted in numerous later works
�see, e.g., Refs. 7–15�. Furthermore, according to the general
theory of plasma instabilities, there is a class of problems in
which nonlocal perturbations can be investigated analytically
without making the local assumption. We have in mind the
scenario of steplike profiles of equilibrium parameters solved
by the so-called method of surface waves. This approach
goes back, in particular, to the paper by Kruskal and
Schwartzschild16 addressed to the flute �interchange� insta-
bility in a plasma with a sharp boundary in the gravitation
field �see also Ref. 4 generalizing the results of Ref. 16 by
allowing for the ion drift effects�. In Sec. 1.7 of Ref. 17, this
approach has been used for studying the electrostatic insta-
bility in an electron flow with steplike velocity profile �a
variety of the electrostatic Kelvin-Helmholtz instability�. By
the same approach, in Sec. 10.5 of Ref. 6 the classical
Kelvin-Helmholtz instability in a magnetized plasma has
been considered. Therefore, it seems reasonable to consider a
steplike profile of plasma rotation frequency and to study its
stability using surface waves. This is the scheme adopted in
the present paper to investigate the nonlocal MRI.

Evidently, the above-noted program for analyzing non-
local perturbations should be preceded by a derivation of
appropriate equations for such perturbations. We recall that
recently, a general scheme for describing them has been

elaborated in Ref. 15, based upon the Frieman–Rotenberg
approach.18–21 In order to facilitate understanding the es-
sence of these equations, in the present paper we derive them
from first principles, starting with the simplest situation and
moving on to more complex ones in the sequel.

In Sec. II the theory of nonlocal axisymmetric MRI in an
incompressible plasma is developed having in mind a high-�
plasma, where � is the ratio of the plasma pressure to the
magnetic field pressure. In contrast to this, Sec. III is ad-
dressed to nonlocal axisymmetric MRI in a cold plasma; i.e.,
in a low-� plasma. Thereby, in these sections we arrive at the
simplest results of the above theory. A more complicated
version of the theory of axisymmetric MRI is given in Sec.
IV, where an arbitrary-� plasma is analyzed. In contrast to
Secs. II–IV, in Secs. V and VI the nonlocal nonaxisymmetric
MRI is treated. Section V addresses the description of such a
MRI, while its analysis is performed in Sec. VI. Discussions
of the results are given in Sec. VII. In addition, the paper
contains Appendix A explaining regularities of the local non-
axisymmetric MRI and Appendix B treating the nonlocal
modes in nonmagnetized plasma.

II. AXISYMMETRIC MRI IN AN INCOMPRESSIBLE
PLASMA

A. The problem statement and basic equations

We consider a cylindrical plasma placed in a magnetic
field B0 and rotating in azimuthal direction with the angular
frequency �=��r�, where r is the radial coordinate. Both
the equilibrium magnetic field B0 and gravitation accelera-
tion g are assumed uniform, with the former in the longitu-
dinal and the latter in the radial directions, i.e., B0=B0ẑ and
g=gr̂. The equilibrium equation is then given by
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r�0�2 = p0� − �0g , �1�

where p0 and �0 are the equilibrium plasma pressure and
mass density, respectively, and the prime stands for the radial
derivative. Hence, we can see that the plasma rotation can be
balanced by gravitation, provided that g�0, or, if g=0, by a
pressure gradient p0��0. Therefore, two limiting cases can
be distinguished; the one that we refer to as the simplest
astrophysical equilibrium, described by the equation

r�0�2 + �0g = 0, �2�

and the laboratory plasma equilibrium, given by

r�0�2 − p0� = 0. �3�

In the sequel, we consider only the simplest astrophysical
equilibrium case. The perturbations are taken to be depen-
dent on time t and longitudinal coordinate z as
exp�−i�t+ ikzz� and axisymmetric; i.e., independent of the
azimuthal coordinate �. The plasma is supposed to be incom-
pressible, so that the �z ,r� components of the perturbed

plasma velocity, i.e., Ṽz and Ṽr, are interrelated by

ikzṼz +
1

r

�

�r
�rṼr� = 0. �4�

Similarly, for the Maxwell equation � · B̃=0, where B̃ is the

perturbed magnetic field, its parallel �B̃z� and radial �B̃r�
components are related by

ikzB̃z +
1

r

�

�r
�rB̃r� = 0. �5�

The perturbed plasma motion equation has the following
�r ,� ,z� components:

− i�Ṽr − 2�Ṽ� −
ivA

2 kz

B0
B̃r +

1

�0

�p̃

�r
+

vA
2

B0

�B̃z

�r
= 0, �6�

− i�Ṽ� +
�2

2�
Ṽr −

ivA
2 kz

B0
B̃� = 0, �7�

− i�Ṽz +
1

�0
ikzp̃ = 0. �8�

Here, vA
2 =B0

2 / �4��0� is the squared Alfvén velocity, �0 is the
equilibrium plasma mass density assumed to be uniform,

�2= �2� /r�d�r2�� /dr, Ṽ� and B̃� are the azimuthal compo-
nents of the perturbed plasma velocity and the perturbed
magnetic field, respectively, and p̃ is the perturbed plasma
pressure.

We note that there appear in Eq. �6� two other terms with
the perturbed density, one of which is proportional to the
gravitation force and the second to the Coriolis force. How-
ever, these terms cancel each other.

The standard freezing condition �the induction
equation�1,12 yields

− i�B̃r − ikzB0Ṽr = 0, �9�

− i�B̃� −
d�

d ln r
B̃r − ikzB0Ṽ� = 0. �10�

Using Eqs. �4�, �5�, and �7�–�10�, all the variables are

expressed in terms of B̃r:

Ṽr = − �B̃r/�kzB0� , �11�

Ṽz = −
i�

kzB0

1

r

�

�r
�rB̃r� , �12�

B̃z =
i

kz

1

r

�

�r
�rB̃r� , �13�

p̃ = − i
�0�2

kz
3B0

1

r

�

�r
�rB̃r� , �14�

B̃� = − i
2��

�2 − kz
2vA

2 B̃r, �15�

Ṽ� = i
�2�2/�2�� − kz

2vA
2 d�/d ln r

kzB0��2 − kz
2vA

2 �
B̃r. �16�

Substituting Eqs. �11�–�16� into Eq. �6� leads to the fol-
lowing second-order differential equation:

�

�r
�1

r

�

�r
�rB̃r�� − 	�r�B̃r = 0. �17�

Here,

	�r� = kz
2��
2 + kz

2vA
2 �2 + 
2�2 + kz

2vA
2 d�2/d ln r�/�
2 + kz

2vA
2 �2

�18�

and 
2�−�2.
Let us digress briefly to discuss the validity of the ideal

model that we are considering. It is well known that resistiv-
ity and viscosity establish two different dissipative scales in
magnetohydrodynamic �MHD� turbulence, so that if the
value of their ratio, the magnetic Prandtl number Pm, is much
larger than 1, dynamic stresses are relevant in the dissipation
process of the magnetic field at the small resistive scale, as in
the case of laboratory experiments with liquid metals.22 In
the astrophysical case, the value of Pm is usually small in
standard models of accretion disks. However, in a recent
paper it has been shown the this value can be larger than 1 at
distances smaller than approximately 50 Schwarzschild radii
of the central object.23 Therefore, the question of the rel-
evance of the two dissipation mechanisms is still under in-
vestigation. Nonetheless, these dissipative effects are not rel-
evant for describing the MRI in its linear phase, which is the
subject of this work, as the instability is not driven by sin-
gular dissipation. Therefore, the ideal MHD assumption is
justified within the scope of this work.

052109-2 Mikhailovskii et al. Phys. Plasmas 15, 052109 �2008�

Downloaded 30 May 2008 to 144.206.192.11. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



B. Solution of differential equation and derivation
of dispersion relation

Let us assume that the rotation frequency profile is such
that �=�1=const, in the inside region “1,” corresponding to
r�r0, and that �=�2=const, in the outside region “2,” r
�r0, the width of the transition layer between these regions
being a�r0. In addition, we take for simplicity kzr0
1.
Equation �17� then reduces to the quasislab form

�2B̃r

�r2 − 	�r�B̃r = 0. �19�

Far from the transition layer, the function 	�r� can by
approximated by a constant. The solution of Eq. �19� de-
creasing with increasing �r−r0� is then given by

�B̃r�1,2 = B̃r
�0� exp�− �1,2�r − r0�� , �20�

where B̃r
�0� is a constant,

�1,2 = 	1,2
1/2 = �kz��1 + 4�1,2

2 
2/�
2 + kz
2vA

2 �2�1/2. �21�

Now we integrate Eq. �19� over a region of width of
order �, including the transition layer assuming a��

�1 /�1,2 and take that B̃r is continuous. We then obtain

	 �B̃r

�r



r0−�

r0+�

− B̃r
�0�I = 0, �22�

where

I = �
r0−�

r0+�

	�r�dr . �23�

Substituting here B̃r from Eq. �20�, we arrive at the disper-
sion relation

�2 + �1 + I = 0. �24�

For 	�r� given by Eq. �18�, the integral �23� yields

I =
kz

2r0


2 + kz
2vA

2 ��2
2 − �1

2� . �25�

Substituting Eqs. �21� and �25� into Eq. �24�, we obtain

�	1 +

2

kz
2vA

2 
2

+
4�2

2
2

kz
4vA

4 �1/2

+ �	1 +

2

kz
2vA

2 
2

+
4�1

2
2

kz
4vA

4 �1/2

+
r0��2

2 − �1
2�

�kz�vA
2 = 0. �26�

This is the explicit form of the dispersion relation for axi-
symmetric perturbations in incompressible plasma; i.e., in
the case of high-� plasma. We note that the local theory of
axisymmetric MRI in incompressible plasma, which takes
the radial dependence of the perturbation proportional to
exp�ikzr�, leads to the dispersion relation


4 + 
2	2kz
2vA

2 +
kz

2

k2�2
 + kz
4vA

4 	1 +
1

k2vA
2

d�2

d ln r

 = 0, �27�

where k2=kr
2+kz

2, kr is the radial projection of the wave vec-
tor �see details in Refs. 3 and 12�.

C. Analysis of the dispersion relation

One can see that, since the two first terms of the right-
hand side of Eq. �26� are positive, this equation can be sat-
isfied only if

�1
2 � �2

2. �28�

This condition agrees with the general result that the MRI is
possible only for a decreasing profile of the rotation fre-
quency, i.e., for d�2 /d ln r�0, as obtained in Refs. 1–3 and
verifiable from Eq. �27�.

One can consider two limiting cases: 
� �kz�vA �the case
of magnetized plasma� and 
� �kz�vA �the case of nonmag-
netized plasma�. Here we deal with the first case, while the
nonmagnetized plasma is studied in Appendix B.

In order to obtain the instability boundary, we take 

=0 in Eq. �26�. We then find that the perturbations are mar-
ginally stable for kz=kz0, satisfying the condition

�kz0� = r0��1
2 − �2

2�/�2vA
2 � . �29�

Turning to Eq. �27�, one can see that, instead of Eq. �29�,
the local theory yields

�kz
2 + kr

2�loc = − �d�2/d ln r�/vA
2 , �30�

indicating that the two conditions are indeed in qualitative
agreement.

Near the instability boundary it is reasonable to take

2�kz

2vA
2 . Equation �26� then reduces to


2 =
1

2
�kz0�r0

�1
2 − �2

2

1 + ��1
2 + �2

2�/�kz0vA�2	1 −
�kz�
�kz0�
 . �31�

At the same time, the expression for the squared growth rate
near the instability boundary following from the local disper-
sion relation �27� is

�
2�loc = − kz
2vA

2 k2vA
2 + d�2/d ln r

2k2vA
2 + �2 , �32�

again indicating qualitative agreement between the two ap-
proaches.

The instability condition following from Eq. �31� takes
the form

�kz� � �kz0� , �33�

or, in explicit form,

�1
2 − �2

2 � 2vA
2 �kz�/r0. �34�

One can see that, as in the case of local perturbations,3 it is
necessary for the nonlocal MRI that the wave number should
be sufficiently small. This is in correspondence with the gen-
eral results of Refs. 2 and 3.
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III. AXISYMMETRIC MRI IN A COLD PLASMA

In the case of cold plasma, Eq. �6� is substituted by

− i�Ṽr − 2�Ṽ� −
ivA

2 kz

B0
B̃r +

vA
2

B0

�B̃z

�r
= 0. �35�

The expressions for Ṽr, B̃z, and Ṽ� in terms of B̃r represented
in Sec. II remain in force and are given by Eqs. �11�, �13�,
and �16�. Substituting them into Eq. �35�, we arrive at Eq.
�17� with the function 	�r� given by

	�r� = kz
2 +

1

vA
2 �
2	1 +

4�2


2 + kz
2vA

2 
 +
d�2

d ln r
� . �36�

As in Sec. II, we approximate Eq. �17�, with 	�r� of
form �36�, by the quasislab Eq. �19�. Repeating the proce-
dure of Sec. II, we then arrive at the dispersion relation given
by Eq. �24� with

�1,2 = �kz��1 +

2

kz
2vA

2 	1 +
4�1,2

2


2 + kz
2vA

2 
�1/2

, �37�

I = r0��2
2 − �1

2�/vA
2 . �38�

Substituting Eqs. �37� and �38� into Eq. �24� yields

�1 +

2

kz
2vA

2 	1 +
4�2

2


2 + kz
2vA

2 
�1/2

+ �1 +

2

kz
2vA

2 	1 +
4�1

2


2 + kz
2vA

2 
�1/2

+
r0��2

2 − �1
2�

�kz�vA
2 = 0.

�39�

We note that, in accordance with Refs. 7 and 12, the local
theory yields the dispersion relation

�
2 + kz
2vA

2 ��
2 + k2vA
2 � + 
2�2 + kz

2vA
2 d�2/d ln r = 0. �40�

By means of Eqs. �39� and �40�, one can compare the
results of the nonlocal and local theories of the axisymmetric
MRI in the low-� plasma. For 
2=0, Eq. �39� reduces to Eq.
�29�. Thereby, the necessary condition for axisymmetric MRI
obtained for �→� remains in force for �→0. At the same
time, for 
2=0, the local dispersion relation �40� coincides
with the respective version of Eq. �27�. In other words, Eq.
�30� is valid not only for �→� but also for �→0. There-
fore, interrelation between the nonlocal and local instability
boundaries for �→0 is the same as for �→�.

Near the instability boundary the growth rate of nonlocal
perturbations in a low-� plasma proves to be the following:


2 =
r0�kz���1

2 − �2
2�

1 + 2��2
2 + �1

2�/�kz0vA�2	1 −
�kz�
�kz0�
 . �41�

Similarly, it follows from Eq. �40� that the squared growth
rate of the local perturbations near the instability boundary is
given by

�
2�loc = − kz
2vA

2 k2vA
2 + d�2/d ln r

�k2 + kz
2�vA

2 + �2 . �42�

A comparison of Eqs. �41� and �42� with Eqs. �31� and �32�
shows that there is a difference between the growth rates in
high-� and low-� cases, both for the nonlocal and local per-
turbations.

IV. AXISYMMETRIC MRI IN A FINITE-� PLASMA

In the case of finite-� plasma, Eq. �6� remains in force,
but the contribution of the perturbed pressure p̃ into this
equation should be calculated by a manner different from
that of Sec. II. We then use the adiabatic condition

d

dt
	 p

��
 = 0, �43�

where � is the adiabatic exponent, p and � are, respectively,
the total plasma pressure and plasma mass density deter-
mined by p= p0+ p̃, �=�0+ �̃, where p0 and �0 and the equi-
librium parts of these functions, and �̃ is the perturbed mass
density. For calculation of p̃, we turn to the plasma continu-
ity equation

�

�t
�̃ + �0 � · Ṽ = 0. �44�

It then follows from Eqs. �43� and �44� that

p̃ =
cs

2�0

�
�−

i

r

�

�r
�rṼr� + kzṼz� , �45�

where cs
2=�p0 /�0 is the squared sound velocity.

The perturbed parallel velocity Ṽz is related to p̃ by Eq.
�8�. Substituting Eq. �45� into Eq. �8� and using Eq. �11�, we
find

Ṽz =
ics

2

�sB0�

1

r

�

�r
�rB̃r� , �46�

where �s=1−kz
2cs

2 /�2. By means of Eqs. �46� and �11�, Eq.
�45� takes the form

p̃ =
ics

2�0

�skzB0

1

r

�

�r
�rB̃r� . �47�

Expressions for B̃z and Ṽ� are the same as in Sec. II and
given by Eqs. �13� and �16�. Substituting Eqs. �11�, �13�,
�16�, and �47� into Eq. �6�, we arrive at Eq. �17� with 	�r�
given by

	�r� =
�
2 + kz

2vA
2 �2 + 
2�2 + kz

2vA
2 d�2/d ln r

vA
2 �
2 + kz

2vA
2 ��1 + �/�s�

, �48�

where �=cs
2 /vA

2 .
One can see that the problem considered leads to the

dispersion relation �24� with
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�1,2 = � �
2 + kz
2vA

2 �2 + 4�1,2
2 
2

vA
2 �
2 + kz

2vA
2 ��1 + �/�s�

�1/2

, �49�

I =
r0��2

2 − �1
2�

vA
2 �1 + �/�s�

. �50�

Thus, according to Eqs. �24�, �49�, and �50�, the explicit form
of the dispersion relation of the nonlocal axisymmetric MRI
for arbitrary � is the following:

��
2 + kz
2vA

2 �2 + 4�2
2
2�1/2 + ��
2 + kz

2vA
2 �2 + 4�1

2
2�1/2

+ �
2 + kz
2vA

2 �1/2 r0��2
2 − �1

2�
vA�1 + �/�s�1/2 = 0. �51�

The respective local dispersion relation is given by7,12

�
2 + kz
2vA

2 ��
4 + 
2k2�vA
2 + cs

2� + kz
2k2cs

2vA
2 �

+ �
2 + kz
2cs

2��
2�2 + kz
2vA

2 d�2/d ln r� = 0. �52�

It follows from Eq. �51� that the necessary instability
condition �28� remains in force. For 
2=0, Eq. �51� reduces
to Eq. �29�, so that the instability boundary is the same as in
Sec. II. The instability boundary of the local perturbations,
according to Eq. �52�, is also the same as in Sec. II. The
expression for the growth rate of the local perturbations near
the instability boundary in the case of not too small � proves
to be the same as in Sec. II and is given by Eq. �31�. The
same concerns also the local perturbations. As for the case of
low-� plasma, one should transit in Eqs. �51� and �52� to the
region

kz
2vA

2 
 
2 � kz
2cs

2. �53�

Equation �51� is then transformed to

1 +
r0

2�kz�vA
2 ��2

2 − �1
2� +


2

kz
2vA

2 �1 +
�2

2 + �1
2

kz
2vA

2

+
r0��2

2 − �1
2�

4�kz�vA
2 	1 −

�

2


2


2 + kz
2cs

2
� = 0. �54�

Respectively, one has from Eq. �52�


2�kz
2vA

2 	1 +
1

k2vA
2

d�2

d ln r

 + 
2	1 +

kz
2

k2 +
�2

k2vA
2 
�

+ kz
2cs

2�kz
2vA

2 	1 +
1

k2vA
2

d�2

d ln r

 + 
2	2 +

�2

k2vA
2 
� = 0.

�55�

Keeping in these equations the terms of order �
2 / �
2

+kz
2cs

2� allows one to obtain results relevant to arbitrary-�
plasma.

V. DESCRIPTION OF NONAXISYMMETRIC MRI

A. Derivation of the mode equation

In contrast to Secs. II–IV, now we assume that the per-
turbations depend not only r and z but also on �. Their �
dependence is taken in the form exp�im��.

Appealing to Ref. 15, dealing with the local nonaxisym-
metric perturbations, we arrive at the following generaliza-
tion of the plasma equations of motion �6�–�8� for the case of
nonlocal modes

− i�̃Ṽr − 2�Ṽ� −
ivA

2 kz

B0
B̃r +

1

�0

�p̃

�r
+

vA
2

B0

�B̃z

�r
= 0, �56�

− i�̃Ṽ� +
�2

2�
Ṽr −

ivA
2 kz

B0
B̃� +

iky

�0
p̃ +

ivA
2

B0
kyB̃z = 0, �57�

− i�̃Ṽz = − ikzp̃/�0. �58�

Here, ky =m /r, and �̃ is the Doppler-shifted oscillation fre-
quency defined by

�̃ = � − m� . �59�

Physically, the presence of the Doppler shift of the oscilla-
tion frequency means that we deal with the drifting modes.

The freezing conditions �9� and �10� are modified by the
redefinition �→ �̃, so that now we have

Ṽr = −
�̃

kzB0
B̃r, �60�

Ṽ� = −
1

kzB0
	�̃B̃� − i

d�

d ln r
B̃r
 . �61�

The adiabatic condition �43� yields in the case m�0:

− i�̃p̃ + cs
2�0�1

r

�

�r
�rṼr� + ikyṼ� + ikzṼz� = 0. �62�

Substituting Eq. �58� into Eq. �62�, we find

p̃ = −
ics

2

�̃�̃s
�1

r

�

�r
�rṼr� + ikyṼ�� , �63�

where

�̃s = 1 − kz
2cs

2/�̃2. �64�

Using Eqs. �60� and �61�, Eq. �60� is transformed to �cf. Eq.
�47��

p̃ =
ics

2�0

kzB0�̃s
�1

r

�

�r
�rB̃r� + ikyB̃�� . �65�

Equation �5� is also modified for m�0, leading to �cf. Eq.
�13��

B̃z =
i

kz

1

r

�

�r
�rB̃r� −

ky

kz
B̃�. �66�

Substituting Eqs. �60�, �61�, �65�, and �66� into Eqs. �56� and

�57�, we arrive at the following equation system for B̃r and

B̃�:
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	�̃2 − kz
2vA

2 −
d�2

d ln r

B̃r − i2��̃B̃�

+
�

�r

	vA

2 +
cs

2

�̃s

�1

r

�

�r
�rB̃r� + ikyB̃��� = 0, �67�

D�B̃� + i2��̃B̃r + iky	vA
2 +

cs
2

�̃s

1

r

�

�r
�rB̃r� = 0, �68�

where

D� = �̃2 − �kz
2 + ky

2�vA
2 − ky

2cs
2/�̃s. �69�

It follows from Eq. �68� that

B̃� = −
i

D�
�2��̃B̃r + ky	vA

2 +
cs

2

�̃s

1

r

�

�r
�rB̃r�� . �70�

Substituting Eqs. �70� into Eq. �68� yields

�

�r
�G

1

r

�

�r
�rB̃r�� − HB̃r = 0, �71�

where

G = 	vA
2 +

cs
2

�̃s

 �̃2 − kz

2vA
2

D�

, �72�

H = − �̃2	1 −
4�2

D�

 + kz

2vA
2 +

d�2

d ln r

− 2
d

d ln r
���̃

D�

ky

r
	vA

2 +
cs

2

�̃s

� . �73�

One can see that, since the Doppler-shifted oscillation fre-
quency �̃ depends on the radial coordinate r �see Eq. �59��,
the structure of Eq. �71� differs from that of the mode equa-
tions considered in Secs. II–IV.

B. Derivation of dispersion relation

Similarly to Eq. �19�, we turn to the quasislab version of
Eq. �71�:

�

�r
	G

�B̃r

�r

 − HB̃r = 0. �74�

Considering this equation far from the transition layer, we
arrive at the solutions of the form of Eq. �20�, where

�1,2 = �H1,2/G1,2�1/2. �75�

Now we integrate Eq. �71� over the transition layer, obtain-
ing the dispersion relation

G2�2 + G1�1 + I = 0, �76�

where

G2,1 = 
	vA
2 +

cs
2

�̃s

 �̃2 − kz

2vA
2

D�
�

2,1

, �77�

I = r0
�2
2 − �1

2 − 2
m

r0
2���̃

D�
	vA

2 +
cs

2

�̃s

�

1

2� . �78�

Substituting Eq. �75� into Eq. �76� leads to

�GH�2
1/2 + �GH�1

1/2 + I = 0. �79�

where

�GH�2,1
1/2

= 
	vA
2 +

cs
2

�̃s

 �̃2 − kz

2vA
2

D�
�kz

2vA
2 − �̃2	1 −

4�2

D�

��

2,1

1/2

.

�80�

VI. ANALYSIS OF NONAXISYMMETRIC MRI

A. Nonaxisymmetric MRI in incompressible plasma

For cs
2→�, Eqs. �78� and �80� yield

I =
r0

ky
2 + kz

2���2
2 − �1

2��kz
2 − ky

2� +
2m

r0
2 ���2 − �1�� , �81�

�GH�1,2
1/2 =

1

�kz
2 + ky

2�1/2��kz
2vA

2 − �̃2�2 − 4�2�̃2 kz
2

kz
2 + ky

2�
1,2

1/2

.

�82�

We restrict ourselves to the case of weak rotation fre-
quency jump, so that

�1
2 − �2

2 � �1
2. �83�

One can then introduce the auxiliary Doppler-shifted oscilla-
tion frequency �̂, defined by

�̂ = � − m�̄ , �84�

where

�̄ = ��1 + �2�/2. �85�

In terms of �̂, Eq. �81� takes the form

I =
r0

ky
2 + kz

2�kz
2��2

2 − �1
2� +

2m

r0
2 �̂��2 − �1�� . �86�

We assume �̂ to be a small parameter and find it by the
method of successive approximations. At the same time, in
Eqs. �82� we take for simplicity that �̂
m��1−�2� /2. Equa-
tions �82� and �86� then yield

�GH�2
1/2 = �GH�1

1/2

=
kz

2vA
2

�kz + ky
2�1/2
1 −

�̂2

kz
2vA

2 �1 +
2�̄2

vA
2 �kz

2 + ky
2�
�� , �87�

I = −
2r0��

ky
2 + kz

2	kz
2�̄ +

m�̂

r0
2 
 , �88�

where ��=�1−�2.
Using Eqs. �87� and �88�, dispersion relation �79� re-

duces to

�̂2�1 +
2�̄2

vA
2 �kz

2 + ky
2�
� +

m

r0�kz
2 + ky

2�1/2���̂ + f = 0, �89�

where
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f = kz
2� r0��1

2 − �2
2�

2�kz
2 + ky

2�1/2 − vA
2� . �90�

The term with �̂ describes the overstable effect �cf. Appen-
dix A�. Neglecting this term, we find from Eq. �89� that the
perturbations are unstable for

f � 0. �91�

For ky =0, this instability condition reduces to Eq. �34�.
Comparing Eq. �91� with Eq. �34�, one can see that driving
the nonaxisymmetric modes is hampered compared with that
of the axisymmetric modes �cf. Appendix A�. Allowing for
the overstable effect, Eq. �89� leads to the instability condi-
tion

f −
m2��

2

4r0
2�kz

2 + ky
2 + 2�2/vA

2 �
� 0. �92�

Comparing Eq. �91� with Eq. �A12�, we see that, as in case
of local modes, the overstable effect results in additional
stabilization of nonlocal nonaxisymmetric modes.

B. Nonaxisymmetric MRI in low-� plasma

For cs
2→0, we obtain from Eqs. �78� and �80�, instead of

Eqs. �81� and �82�:

I = 
r0��2
2 − �1

2 − 2
mvA

2

r0
2 �� ��̃

�̃2 − �kz
2 + ky

2�vA
2 ��

1

2�� ,

�93�

�GH�2,1
1/2 = vA
 kz

2vA
2 − �̃2

�kz
2 + ky

2�vA
2 − �̃2

��kz
2vA

2 − �̃2 −
4�2�̃2

�kz
2 + ky

2�vA
2 − �̃2��

2,1

1/2

. �94�

As in subsection A, we consider the weak rotation fre-
quency jump assuming �̂ to be a small parameter. Equations
�93� and �94� then reduce to Eqs. �87� and �88�, respectively.
As a result, dispersion relation �89� remains in force. There-
fore, the instability conditions �91� and �92� are valid also for
�→0.

VII. DISCUSSION

We have shown that the nonlocal axisymmetric pertur-
bations of an incompressible �a high-�� rotating plasma are
described by the mode equation �17�. In the case of steplike
rotation frequency profile, this mode equation leads to the
dispersion relation �26�. This dispersion relation shows that
the nonlocal axisymmetric MRI, as the local one, is possible
only for decreasing rotation frequency profile �see Eq. �28��.

The instability boundary is given by Eq. �29�, revealing
that, as in the local case, only the perturbations with suffi-
ciently small kz can be unstable. The growth rate of the non-
local MRI near the instability boundary is given by Eq. �31�.

A comparison of the results of nonlocal and local theories
shows that both varieties of the axisymmetric MRI have the
same qualitative behavior. Our analysis of the nonlocal axi-
symmetric MRI in the opposite case of low-� plasma has
shown that this variety of MRI behaves similarly to the case
�→�. The same concerns also the case of arbitrary-�
plasma �see in detail Secs. III and IV�. In addition, in Ap-
pendix B we show existence of nonlocal instabilities in a
nonmagnetized plasma.

A more complicated picture is revealed in analyzing the
nonlocal nonaxisymmetric MRI. The main circumstance
leading to such a complication is the radial dependence of
the Doppler-shifted oscillation frequency �̃.

The dispersion relation of nonlocal nonaxisymmetric
MRI is given by Eq. �79�, complemented by Eqs. �77�, �78�,
and �69�. Its instability condition is given by Eqs. �91� and
�92�. According to these equations, driving the nonlocal non-
axisymmetric MRI is more difficult than that of the axisym-
metric one. There are two effects resulting in weakening of
this drive: enhancement of the magnetoacoustic stabilization,
expressed in terms of the substitution kz

2→kz
2+ky

2, and over-
stable effect.

Numerical calculations of nonlocal nonaxisymmetric
MRI have been performed in Refs. 24–28. One can suggest
that the analytical results obtained is the present paper will
be useful for understanding these calculations and for per-
forming additional numerical calculations on both the non-
axisymmetric and axisymmetric MRI aiming at elucidating
physical regularities of these instabilities.
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APPENDIX A: LOCAL NONAXISYMMETRIC MRI

For comparing the consequences of Eq. �79� with those
of the local theory of nonaxisymmetric MRI, let us represent
the local dispersion relation following from the mode equa-

tion �74�. Taking B̃r�exp�ikrr�, we obtain from �74�

kr
2G + H = 0. �A1�
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1. High-� plasma

For �→� and small �̃, one has from Eqs. �72� and �73�,

G = −
�̃2 − kz

2vA
2

kz
2 + ky

2 , �A2�

H = − �̃2�1
NA + kz

2vA
2 +

kz
2

kz
2 + ky

2

d�2

d ln r
+

ky
2

m�kz
2 + ky

2�
�̃

d�

d ln r
,

�A3�

where

�1
NA = 1 +

4�2

vA
2 �kz

2 + k�
2 �

. �A4�

Equation �A1� then reduces to

�̃2�1
NA −

2�̃

m

d�

d ln r

ky
2

kz
2 + k�

2 + kz
2vA

2 �NA = 0, �A5�

where

�NA = − �1 +
1

�kz
2 + k�

2 �vA
2

d�2

d ln r
� . �A6�

a. The approximation �̃ /m\0

Without the term with �̃ /m, Eq. �A5� reduces to


2 = kz
2vA

2 �NA/�1
NA, �A7�

where 
� Im �̃. The instability boundary is then given by

�NA = 0, �A8�

while the nonaxisymmetric instability region corresponds to

�NA � 0. �A9�

Comparing Eq. �A7� with Eq. �32�, we conclude that the
nonaxisymmetric perturbations are less dangerous than the
axisymmetric ones.

b. Nonaxisymmetric overstabilities

Equation �A5�, with �̃ /m, shows that the nonaxisymme-
try leads to transition of the aperiodic instabilities to the
overstabilities �oscillatory instabilities�, Re �̃�0, Im �̃=0.
In this case, one has

�̃ = �̂ + i
 , �A10�

where

�̂ � �̃ +
1

m�1
NA

d�

d ln r

ky
2

kz
2 + k�

2 , �A11�


2 = kz
2vA

2 �NA

�1
NA − 	 1

m�1
NA

d�

d ln r

ky
2

kz
2 + k�

2 
2

. �A12�

One can see that the overstable effect leads to additional
stabilization of the nonaxisymmetric modes.

2. Low-� plasma

It follows from Eqs. �72� and �73� for �→0 and small �̃
that Eqs. �A2� and �A3� for G and H remain in force. One
then again arrives at Eqs. �A11� and �A12�.

APPENDIX B: NONLOCAL AXISYMMETRIC
INSTABILITIES IN A NONMAGNETIZED PLASMA

Taking vA
2 →0 in Eq. �26�, we arrive at the nonlocal

dispersion relation for the nonmagnetized plasma


��
2 + 4�2
2�1/2 + �
2 + 4�1

2�1/2� + r0�kz���2
2 − �1

2� = 0. �B1�

For the condition �28�, we then have


 = −
r0�kz�

2���2� + ��1��
��2

2 − �1
2� . �B2�

This dispersion relation describes nonlocal axisymmetric in-
stabilities in a nonmagnetized plasma.
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