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Abstract

We investigate the motion of a charged particle under the action of a time-dependent

oscillating magnetic field. For one and two magnetic pulses we obtain analytical

expressions for the free current decay and current echo, respectively, in agreement

with a recently proposed classical description of the electrical current in fields E

and B. In a continuous AC field the particle eigenstates are calculated. When the

resonance condition is achieved, the axis of quantization is turned over by 90o. The

results suggest a magnetic pulsed resonant method to separate charged particles in

a beam.
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The problem of an ensemble of paramagnetic moments in an oscillating magnetic field

gained a great deal of interest from the middle 40’s with the work of Bloch et al. [1]

and Hahn [2]. The latter discovered the existence of spin echoes and demonstrated that

they were solutions of the Bloch equations under pulsed magnetic fields. Spin echoes

can also be easily deduced from a quantum-mechanical approach [3]. Hahn’s discovery

founded pulsed Nuclear Magnetic Resonance (NMR), a technique which has spread over

many areas of scientific research and technical applications.

On the other hand, the quantum dynamics of a charged particle in an homogenous

static magnetic field is of considerable practical and academic interest, and has been

investigated by many authors [4, 5, 6]. The general problem is finding the solution for

the Schrödinger equation

− h̄

i

∂ψ

∂t
= Hψ =

1

2m
[P − qA]2ψ (1)

where q is the particle charge, m its mass and the magnetic field is obtained from B =

∇× A. If H is time-independent, the general solution of (1) will be given by:

ψ(t) = exp

(
− i

h̄
Ht

)
ψ(0) (2)

In this paper we shall consider the quantum dynamics of a charged particle under the

action of an oscillating magnetic field given by

B(t) = iB1cos(ωt) + jB1sin(ωt) + kBo (3)

In this case B can still be derived from a vector potential A(t) through the same

relation B = ∇ × A, but obviously solution (2) will no longer be valid. However, there

is still a way out to the problem, which is to consider the particle motion in a rotating

reference frame where B is stationary [3]. It has been shown recently that a similar

treatment for the classical equations of motion of the electrical current in the presence

of fields E and B leads to interesting resonance phenomena similar to the free induction

decay and spin echo in the magnetic case. These have been called free current decay and

current echo [8].
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The transformation of a magnetic field given by (3) to a rotating reference frame with

angular frequency ω is a well known procedure [3]. The result is the time-independent

effective field:

Be =

(
ω

γ
− Bo

)
k + B1i (4)

Where γ ≡ q/m is the analog of the gyromagnetic ratio in usual NMR. Writing ∆B =

ω/γ−Bo, the components of the corresponding vector potential in this system of coordi-

nates will be:

Ax = −1

2
(∆B)Y

Ay =
1

2
[(∆B)X − B1Z]

Az =
1

2
B1Y

We see from the above that the effective field is given by Be = ∇ × A. We also see

that A satisfies the Coulomb gauge: ∇ ·A = 0. Here we are not distinguishing operators

in the rotating and laboratory frames. Wherever necessary, a clear distinction will be

made.

Replacing the components of A in the hamiltonian one finds:

H =
P 2

x + P 2
y + P 2

z

2m
+

mγ2(∆B)2

8
(X2 + Y 2) +

mγ2B2
1

8
(Y 2 + Z2)+

+
γ(∆B)

2
Lz +

γB1

2
Lx − mγ2

4
B1(∆B)XZ (5)

Expression (2) and hamiltonian (5) allow the calculation of the expected value of an

observable Q̂ at any instant of time t. In this paper we will apply these expressions to

study the quantum dynamics of a charged particle in a magnetic field given by (3) in the

cases where the field is applied as a sequence of one and two pulses, respectively, each

one with the same duration τ . Then we briefly discuss the case when the field is applied

continuously.

In what follows, we will suppose that we are close to the resonance frequency, that

is, ω ≈ ωc. This means that when the pulse is “on”, B1 	 ∆B. We see that under

this assumption, the hamiltonian (5) is diagonalized. It is also interesting to note that
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when the pulse is “turned off” (B1 = 0) (5) is again diagonal. This is an important

consideration to be taken into account when investigating the application of more than

one pulse, as shown below.

Let us calculate < Ẏ > (τ), the expected value for the particle speed at t = τ . This

will be given by [9]:

ih̄ < Ẏ > (τ) =< [Y,H] > (τ) =
< Py > (τ)

m
+

+
∆ω

2
< X > (τ) − ω1

2
< Z > (τ) (6)

Since by hypothesis we are close to the resonance, the term in ∆ω can be neglected.

Now, according to (2), < Py > (τ) is given by:

< Py > (τ) =

∫
ψ∗(0)e(i/h̄)HτPye

−(i/h̄)Hτψ(0)d3r (7)

We will write H = H‖ + H⊥, where :

H‖ =
P 2

x

2m

H⊥ = Hyz +
ω1

2
Lx

with ω1 = γB1 and

Hyz =
P 2

y + P 2
z

2m
+

mω2
1

8
(Y 2 + Z2)

It is easy to verify that [H‖, Lx] = [H‖,Hyz] = [Lx,Hyz] = 0, so we can factorize

the exponential operator in (7) into a product of three terms which commute among

themselves [9].

We begin by calculating the operator

e(i/h̄)HyzτPye
−(i/h̄)Hyzτ

The hamiltonian Hyz is a complicated function of Y, Z, Py and Pz. Since the z com-

ponents commute with the y components, this operator can be further factorized, leaving

only:

e(i/2mh̄)τP 2
y +(imγ2B2

1/8h̄)τY 2

Pye
−(i/2mh̄)τP 2

y −(imγ2B2
1/8h̄)τY 2
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In order to find a closed form for this operator, consider the expression [10]:

eÔPye
−Ô = Py + [Ô, Py] +

1

2!
[Ô, [Ô, Py]] +

1

3!
[Ô, [Ô, [Ô, Py]]] + ...

Replacing Ô = (i/2mh̄)τP 2
y + (imγ2B2

1/8h̄)τY 2 in the above series and using the

expression [AB,C] = A[B,C] + [A,C]B, one finds:

eÔPye
−Ô =

[
1 − 1

2!

(ω1τ

2

)2

+
1

4!

(ω1τ

2

)4

− ...

]
Py−

− mω2
1τ

4

[
1 − 1

3!

(ω1τ

2

)2

+
1

5!

(ω1τ

2

)4

− ...

]
Y (8)

The terms between brackets are well known series [11]:

∞∑
n=0

(−1)n x2n

(2n)!
= cos(x)

∞∑
n=0

(−1)n x2n

(2n + 1)!
= x−1sin(x)

with x = ω1τ/2. The final result is:

eÔPye
−Ô = cos

(ω1τ

2

)
Py − mω1

2
sin

(ω1τ

2

)
Y

Then, the next operators to be calculated are:

e(iω1τ/2h̄)Lx

[
cos

(ω1τ

2

)
Py − mω1

2
sin

(ω1τ

2

)
Y

]
e(−iω1τ/2h̄)Lx

which represents a rotation of Y and Py about the x-axis by an angle ω1τ/2 = γB1τ/2.

Using the relations [9]:

e(i/h̄)φLxY e(−i/h̄)φLx = Y cosφ− Zsinφ

e(i/h̄)φLxPye
(−i/h̄)φLx = Pycosφ− Pzsinφ

one finds †:

< Py > (τ) = pyocos
2

(
γB1τ

2

)
− poz

2
sin(γB1τ)−

†Note that the last operator to be applied on (7), exp[(i/2mh̄)P 2
x ], does not act either on Y or Py.
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− mω1

2

[
yo

2
sin(γB1τ) − zosin

2

(
γB1τ

2

)]
(9)

where qo =
∫
ψ∗(0)Q̂ψ(0)d3r stands for the expected value of an observable Q̂ at t = 0.

Now it remains to calculate < Z > (τ). It is easy to verify that:

e(i/h̄)HyzτZe−(i/h̄)Hyzτ = cos
(ω1τ

2

)
Z +

2

mω1
sin

(ω1τ

2

)
Pz

From this, one finds:

< Z > (τ) = zocos
2

(
γB1τ

2

)
+

yo

2
sin(γB1τ)+

+
2

mω1

[
poz

2
sin(γB1τ) + poysin

2

(
γB1τ

2

)]
(10)

Gathering all the terms in equation (6), we finally have:

m < Ẏ > (τ) = poycos(γB1τ) − pozsin(γB1τ)−

− mγB1

2
[zocos(γB1τ) + yosin(γB1τ)] (11)

With simplifying initial conditions xo = yo = zo = 0; pxo = pyo = 0, and pzo = po, we

arrive at:

m < Ẏ > (τ) = −posin(γB1τ)

Repeating the above procedure for the x and z components one finds:

m < Ż > (τ) = +pocos(γB1τ)

m < Ẋ > (τ) = 0

Other quantities of interest can be calculated in the same way. For instance:

< Y > (τ) = −sin2

(
γB1τ

2

)
2po

mω1

We can correlate the above result for m < Ẏ > (τ) with the semiclassical expression

for the electrical current density:

Jy(τ) = −nq < Ẏ > (τ) = Josin(γB1τ) (12)
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where Jo = nqpo/m and n is the particle density. This is the same expression as that

obtained classically for the free current decay in reference [8]. Note that we could have

taken into account the initial direction of po by adding an arbitrary phase δ onto the

expression for m < Ẏ > (τ). For instance:

m < Ẏ > (τ) = −2posin

(
γB1τ

2
+ δ

)
×

×cos

(
γB1τ

2
+ δ

)
= −posin(γB1τ + 2δ)

where δ = 0 represents a particle initially moving on the direction +z, whereas if δ = π/2

we will simply have a change in the sign of m < Ẏ >, corresponding to an inversion in

the direction of po.

In order to calculate m < Ẏ > for a sequence of two pulses we must remember that

during the time the pulses are “on”, the dynamics of the particle will develop under the

hamiltonian:

H =
P 2

x + P 2
y + P 2

z

2m
+

mω2
1

8
(Y 2 + Z2) +

ω1

2
Lx

and during the intervals when they are “off”, B1 = 0, and H becomes:

H =
P 2

x + P 2
y + P 2

z

2m
+

m∆ω2

8
(X2 + Y 2) +

∆ω

2
Lz

The calculation is rather tedious because of the various terms appearing in the above

hamiltonians, but it can be carried out in a way similar to that of reference [3] for the

calculation of the spin echo in the magnetic case, and using the results of the previous

paragraphs. At the resonance (∆ω = 0), one finds for the current echo amplitude:

m < Ẏ > (2∆τ) = posin
2

(
γB1τ

2

)
sin(γB1τ) (13)

This expression agrees with the classical result [8]. Other two terms add to it in the

general result. They are associated to the free current decays after the first and second

pulses as shown by Bloom for the magnetic case [12].

At this point it may be worth reminding that the above results are valid for any

charged particle. The only difference will be on the “gyromagnetic factor”, γ = q/m, the
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ratio between the particle charge and mass. The sign of γ determines the sense of the

particle rotation in the field, whereas its magnitude defines its cyclotron frequency. For

the muon, for instance, whose mass is about 200 times bigger than the electron mass, the

resonance frequency will be correspondingly lower. The same is true for “heavy electrons”

in the intermetallic compounds known as heavy fermions, or still for ions in an ion-beam.

As an example, take a triply ionized atom of 157Gd which has q/m ≈ 0.18MHzkG−1.

In a field B1 = 1kG, the particle frequency on the rotating frame at the resonance will

be ν1 = ω1/2π ≈ 0.3MHz. If the initial energy of the particle is 1keV , the maximum

distance reached on the y-axis will be approximately 40cm.

Finally, we shall mention that hamiltonian (5) can also be easily diagonalized in the

situation where the AC field is applied continuously. All we have to do is to “rotate” the z-

axis by an angle θ = arctg(B1/∆B) to a new reference system where Be = (B2
1 +∆B2)1/2

is axial. The hamiltonian then becomes the standard one for an electron in a “static”

field, with cyclotron frequency ω′
c = γBe, and eigenvalues given by [9]:

E ′
n(p′z) =

(
n′ +

1

2

)
h̄ω′

c +
p′2z
2m

(14)

where ω′
c = qBe/m is the particle cyclotron frequency about the effective field in the

rotating frame .

The above result has some interesting consequences. We note that if ω is far from

the resonance frequency, that is, ∆ω 	 ω1 (or ∆B 	 B1 ), the Landau levels will be

quantized on the xy-plane [9]. But at the resonance, ∆ω = 0, these levels are turned over

and the quantization will take place on the zy-plane with energies given by:

En(px) =

(
n +

1

2

)
h̄ω1 +

p2
x

2m
(15)

Consequently, the quantization axis can be rotated continuously from z to x by sweeping

ω over the resonance frequency.

Summarizing, we have investigated the quantum-dynamical behavior of a charged

particle in an oscillating magnetic field. We analyzed two distinct cases: (i) the oscillating

field is applied as a sequence of pulses and (ii) it is applied continuously. In both cases

there exists an exact analytical solution, irrespective of the relative magnitudes of the
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static and oscillating fields. The main conclusions are: (i) expressions for the free current

decay and current echoes at the resonance can be derived; these expressions agree with

those obtained from a classical approach in reference [8]; (ii) on the second case, the

eigenstates of the particle are obtained. The so-called Landau tubes are turned over

the direction of the field as the resonance frequency is approached. This effect may be of

practical importance, for instance, in the de Haas-van Alphen effect, where the intersection

between the Landau tubes and the Fermi surface in metals gives rise to oscillations in

various physical properties with the field amplitude, such as the magnetic susceptibility,

etc [7]. We have not considered the particle spin on this paper, but its inclusion is

straightforward if spin-orbit coupling is neglected.

From the above it is clear that these effects are not restricted to systems where a

relaxation time exists, as discussed in reference [8]. They can in principle be observed

even in isolated free-particles in vacuum, as for instance, in an ion-beam. This may

be of relevance for the development of a magnetic pulse technique for charged particle

spectroscopy. In Solid State Physics it may find useful applications in the investigation

of transport properties in conducting media, through the study of the electron cyclotron

resonance, electron-electron and electron-lattice scattering rates.
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