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Through Monte Carlo simulations of a standard ccllular automaton (Do-
many-Kinzel), we introduce a new type of external field » defined as the
frequency at which differ the randon numbers used in the updating of the
two replicas involved in the damage spread method. We show, for the first
time, that k is the ficld conjugate to the Hamming distance ¥ (chaotic order
paramelcr).

Key-words: Cellular automata; Hamming.distance; Chaos; : Conjugate
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Cellular automata (CA} are totally discrete dynamical systems (discrete
space, discrete lime and discrete number of states) which provide simple
models for a great number of problems in science. CA are frequently used
to model chemical reactions, crystal growih models, turbulence, neural net-
works, biological systemns and other nonlinear processcs far from thermal
equilibrium.!?

In the CA context, the discrete space is represented by a regular latlice
and with each site 7 of the lattice one associales a variable o; which can take
k different values 0; = 0, 1,---,k — 1. The CA time evolution is defined,
at each time step, by local rules where the value o; at time ¢ depends, in a
deterministic or probabilistic way, on the state of the system at time {—1. All
the sites are simultaneously updated at each time step. Since its dynamics
is not restricted to the usual Boltzmann weight and detailed balance, CA
do not necessarily evolve ( in the long time asymptotic {imit ) towards the
slandard thermal equilibrium. .

Although d-dimensional (probabilistic) CA describe processes that might
e far from equilibriuin, they can frequently be mapped onto (d+1)-dimensio-
nal statistical-mechanics models.® The corresponding spin model is, in gen-
eral, anisotropic and involves mullispin interactions and ficlds, with coupling
conslanis related to the parameters {conditional probabilities) which specify
the evolution rule of the CA. Therefore it is notl surprising thal even one-
dimensional CA exhibit continuous phase transitions with universal critical
exponents and scaling laws. In particular, critical frontiers between chaotic
and non-chaotic phascs do exist and are usually characterized by a vanishing
Hamming distance, which plays the role of an order parameter. its conjugate
field is, up Lo now, an open question which we focus herein.

One of the most studied one-dimensional probabilistic CA is ihat consid-
ered by Domany and Kinzel.* Ii consists of a linear chain of N latiice sites
(t=1,2,.--,N), with periodic boundary conditions. Each site has two pos-
sible states o; = 0,1. The siate of the system at time 1 is specified by the set
{o:}. At the next time step, the state of the i-th site is o;({ + 1) which equals
0 or 1 according to the conditional probabilities {p(o:-1(t), o:(f)/o:i(t + 1))}
J.e. p(00/1}, p(10/1), p(01/1) and p(11/1). ( For instance, p(00/1) denotes
the probability of the i-th site to be at state 1 once we know that its “parents”
were both at state 0.) Naturally p(ei_y,0:/0) =1 —p(oi_y,0;/1). A possible
application of this CA is to model catalysis in chemical reactions.® Also,
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the Domany-Kinzel CA contains, as special cases, the problem of directed
percolation and directed compact percolation®’ on the square lattice. For
stmplicity, we shall discuss here the isotropic case p(01/1) = p(10/1) = p,
p(11/1) = p; and p(00/1) = py. .

The complete phase diagram for the isotropic and “legal” (pp = 0) Domany-
Kinzel CA is depicted® in Fig.1. The order parameters characlerizing the
three phascs ( frozen, aclive and chaotic ) are the “magnelization” M, de-
fined as the fraction of sites with value 1, and the normalized Hamming
distance ¥ , defined as the fraction of siles that differ in two replicas that
staried whith different inilial configurations and evolve under the same noise
(i.e., the same random numbers sequence). In the chaotic phase, the avtoma-
ton is sensilive to the inijtial conditions and an “initial damage”, created by
flipping randomly a fraction p of the sites, spreads through the entire CA. In
the frozen phase we have M = 0 and ¥ = 0; in the active phase M # 0 and
¥ = 0; and in the chaotic phase M # 0 and ¥ #0.

On general thermodynamic grounds, an external field ¢an be the conjugate
of a given order parameter. In that case it satisfies: (i) if it is different from
zero, the long time asympiotic value of the order parameter cannot vanish
( hence the phase transition is destroyed); (ii) the vanishing field suscepti-
bility of the order parameter diverges at the {continuous) phase transition.
The question we address here is whether this structure is preserved even for
dynamical transitions such as those appearing in CA.

For example, if one considers py = p(00/1) # 0 and the system is at say
configuration zero (i.e., all the sites are at state 0) at time ¢, it will acquire a
nonvanishing fraction of sites with states different from zero ( My, # 0 ), at
all subsequent time steps. The probabilily py is, consequently, analog to an
external field in ferromagnets, which destroys the phase transition. So, if one
considers pg # 0, the frozen-active critical surface disappears but the active-
chaotic one remains.? as it is shown in Fig.2. We can define the associated
susceptibility

oM
XM= 5 - . D
po=0
It diverges at the frozen-active critical surface as shown® in Fig.3. Conse-
quently po can be legitimately considered as the conjugate parameter of M.

Let us now address the central aim of the present paper, namely the
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existence of a field conjugale to the active-chaotic order parameler ¥, This
exlernal field A must satisfy two standard properties: b must destroy the
active-chaotic phase transition, and the associated linear response function.

ov
X¥ = Zp - (2)

h=0
must diverges at the active-chaotic critical surface.

In order to propose the appropriale conjugate field 2 we are looking for,
let us observe that the chaotic phase is detected through the damage spread
method. In this method we make ( typically afier that the CA attains equi-
librium}) a replica of the system containing an initial damage (a fraction p
of the sites flipped al random) and study how this damage behaves as time
evolves using the same sequence of random numbers for the two systems. So,
the basic idea is simply that, say in the active phase (¥ o0, = litny_o ¥(¢) = 0)
where the CA normally annihilate the initial damage, if 'we use { from time
to time ) different random numbers to update the replica system, it will ac-
quire a nonvanishing fraction of sites which difler from their counterparts in
the original CA, at subsequent time steps. Therefore, we shall propose the
conjugate field & to be proportional to the frequency at which distinct random
numbers are used o updafe the replica system.

As it is shown in Fig.4, there are at least four ways to implement the
external field k. The first one ( random individual; Fig.4(a) ) is to apply (with
frequency h,) discrepant random numbers for the two replicas at any site at
any time. Another way ( regular individual, Fig.4(b)) is, at any time, to use
different random numbers (with frequency k) to update the same regularly
located sites. Similarly we define the rendom collective ( sec Fig.4{c) } and
the regular collective ( sec Fig.A{d) ) cases, respectively associated with h;
and h4. In our simulations we implement all four cases with N = 3200 and
N = 6400 sites. For each set of parameters defining the CA we take a quite
large number (typically up to 100) of random starting configurations where
all states were equally probable. In these simulations the transient time was
10000 time steps and the Hamining distance was averaged over another 30000
time steps. The corresponding Hamming distance as function of the external
field in the neighborhood of the active-chaotic critical point is illustrated in
Fig.5. The main fealures of the field dependence of ¥ are the same for A,

hz, h3 and h4.
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The results exhibited in Figs.5 (order parameter) and 6 (susceptibility)
clearly show, on one hand, that & destroys the active-chaotic phase transition
and, on the other, that the corresponding susceptibility tends to diverge at
the N — oo limit. Consequently the proposed definition of h (frequency at
which discrepant random numbers are applied to both replicas, herein imple-
mented through four slightly different manners ) can legitimatelly be consid-
ered as the conjugate parameter of the Hamming distance. The robusiness
of the present definition has been recently checked!® within a mean-field-like
approximation, and full confirmation has been obtained.
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FIGURE CAPTIONS

Figure 1. pp = p(00/1) = 0 and p(10/1) = p(01/1) (isotropic) phase diagram.
The data correspond to simulations with 3200 sites; transients of 10000 (3000)
time sleps were used for the frozen-active (active-chaotic) phase transilions.
The damage was averaged over another 30000 time steps.

Figure 2. Phase diagram for the isotropic case (p(10/1)} = p( 01/1)) and
arbitrary po = p(00/1).

Figure 3. Susceptibility xar = % po0 obtained numerically for p, = 0.1.

The data used to take the numerical derivative of M correspond to pg = 10~
(D) and pp ~ 1075 (). The system consists of 3200 sites.

Figure 4. Four different ways to implement the external field A = 1/2. The
black circles represent the sites updated in both replicas with discrepant ran-
dom numbers. 7 is the time 1 at which discrepancies are first introduced.
Random-individual: at every time step, we randomly choose a concentration
h, of sites and update them with discrepant random numbers. Regular-
individual: at every time step, we update with discrepant random numbers
a concentration ks of regularly spaced sites. Random-collective: at a con-
centration k3 of randomly chosen time steps, we updafe all the sites with
discrepant random numbers. Regular-collective: at a concentration hy of
regularly spaced time steps, we update all the sites with discrepant random
numbers.

Figure 5. Hamming distance ¥ as a function of the external field A, for
p = 0.85 and N = 6400. The data correspond to simulations with transients
of 10000 iime steps and ¥ was averaged over another 30000 time steps. For
p1 = 0.85 the active-chaotic critical point is p; ~ 0.154.

Figure 6. Dynamical susceptibility xo =~ ({¥)sz0 — (¥)s=0)/k as a function
of p, for (a) hy = 1/640 (*), 1/576 (x) and 1/512 (4); (b) hy = 1/320 (*),
1/256 (x) and 1/192 (+); (c) k3 = 1/640 (*), 1/576 (x) and 1/512 (4) and
(d) ke = 1/2500 (*), 1/2000 (x) and 1/1500 (+). The data correspond to
simulations with N = 6400 sites and fixed p; = 0.85 ; transients of 10000
time steps and ¥ was averaged over another 30000 time steps. For p; = 0.85
the active-chaotic critical point is p» ~ 0.154
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