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Abstract. Different criteria for criticality in very small systems are discussed
in the context of percolation and nucleation approaches to nuclear fragmentation.
It is shown that the probability threshold in percolation and interaction radius
threshold in nucleation are very strongly dependent upon the adopted criterion.
By using Monte Carlo method, similarities and dissimilarities between nucleation
and percolation pictures are also appointed out.
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Hot nuclear systems, resulting from nucleus-nucleus collisions at intermediate bom-
barding energies, are unstable against the breakup into many pieces [1,2,3]. The
main features of the experimental data seem to be satisfactorily described by simple
statistical models, which rely on probabilistic laws, such as percolation and nucle-
ation models. Also, it has been seen even that the ALADIN data [3] are better
reproduced by lattice percolation model than by more sophisticated models, like
the statistical multifragmentation model [4] and the sequential evaporation model
[5]. Generally speaking, site [6], bond [7] or site-bond percolations [8] and the
so-called nucleation model [9] have been successful in reproducing, at least qual-
itatively, the fragment mass distribution, the intermediate mass fragment (IMF)
multiplicity and the fragment kinetic energy spectra. It is believed that the impor-
tance of such models can not be underestimated, in spite of its simplicity.

More than a decade ago, it was found that the fragment mass distribution
obtained from very high energetic proton-induced reactions follows a power law
[10], in the same way than the cluster size distribution in both the Fisher’s gas
condensation model and in percolation theory at the respective critical points. This
behavior has been interpreted as a possible signature of a critical phenomenon (a
liquid-gas-type phase transition [10] or a percolation-type transition [7]), reinforcing
the expectation that one should be able to extract important information about the
nuclear equation of state from nuclear fragmentation events. After the report of the
Purdue’s group data, several other data have been published, involving also nucleus-
nucleus collisions at intermediate energies, whose charge distributions have been
observed to obey also a power law. Based on the above mentioned interpretation,
many works on nuclear liquid-gas phase transition have been performed by assuming
a van der Waals-type equation of state [11]. On the other hand, the hypothesis of a
percolation transition has been boosted by Campi [12], which introduced the event-
by-event analyses, through the study of the cluster moment correlations. This brief
report addresses only this latter hypotesis.

In percolation theory, where infinite lattices are assumed, the critical probabil-
ities are not a universal parameter but depend upon the lattice type, the dimension
of the space and the percolation type, i.e., site or bond percolation. Except for few
cases, there is no exact manner to calculate these critical probabilities. So, there
are standard approximations in order to compute them, namely, series expansion,
renormalization group and Monte Carlo methods [13]. On the other hand, the erit-
ical phenomena are usually characterized by a small number of critical exponents,
which do not depend upon the specific type of lattice, but only upon the dimension
of the space, and they have the same value in both site and bond percolations.
However, this universality feature of the critical exponents might not be obeyed in
the case of finite systems, like nuclear systems.

Actually, nuclear systems have necessarily very small number of constituents
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(usually less than few hundreds). This introduces serious difficulties, such as finite
gize effects which are expected to be far from negligible. As a matter of fact, there
is no unique way to define the percolation threshold in finite systems which is to be
the analogous of the critical concentration in infinite lattices. And, what is more
embarassing, different definitions give different values for the percolation threshold,
sometimes even very apart one from another, such as shown below.

Furthermore, similarities have been appointed out between percolation and
nucleation approaches. The most striking one is that the physics of the whole pro-
cess is assumed by both models to be effectively described by a unique parameter,
namely, the concentration probability (in percolation) or the interaction radius (in
nucleation). In fact, it has been even suggested in Ref.[14] that nucleation may
be regarded simply as percolation without lattice, i.e., a type of percolation in the
continuum, since nucleation picture shares many qualitatively features with lattice
percolation, such as, e.g., the ability to take into account critical phenomena and
the same definition for clusters.

The main goal of this report is the following: By using Monte Carlo method, we
compare the results for three different criteria for criticality in very small systems
and we compare lattice percolation and nucleation calculations in the context of
nuclear fragmentation events. In particular, critical exponents are extracted in both
models. Although the close paralelism between percolation and nucleation models,
we find important dissimilarities, as it will be shown below.

If the nuclear fragmentation is indeed a critical phenomenon, then the problem
is how to estimate the “critical” probability and the “critical” interaction radius in
very small systems. Let us consider in the following only the percolation case, since
the nucleation case can be obtained by analogy. The threshold probability (the
analogous to the critical probability of infinite systems) has been suggested as 1)
the position of the maximum of the second moment of the cluster distribution [12],
2) the position of the minimum of the critical exponent of the cluster distribution
[7], both regarded as function of the concentration probability or 3) by assuming the
definition of percolating cluster in finite systems as the cluster with size equal to or
greater than half of total of constituents, the probability threshold is regarded as the
value of the probability in which the percolating cluster appears first [8). However,
it was appointed out in Ref.[13] that the multiplicity of clusters with size equal to
or greater than 4 is correlated with the second moment and the critical exponent of
the cluster distribution. As a matter of fact, this multiplicity, which we hereafter
denote by My, is nothing but the cluster multiplicity My = }_, n, excluded the
number of cluster with A = 1,2 and 3, and it is shown also in Ref. [13] that similar
exclusion leads to better agreement with the scaling law. Furthermore M is equal
to zero in the limit of very small concentration (in this case, the system is build
up only by isolated constituents), and equal to 1 in the opposite limit of very high
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concentration. In between, M, assumes a maximum value, which occurs in almost
the same position than the maximum of the second moment or the minimum of the
critical exponent, when plotted against the concentration. Hence, the probability
threshold may be given by the criterion 4), i.e., the position of the maximum of
M. In fact, this criterion has been adopted in previous simulations of nuclear
fragmentation events giving encouraging results [15]. Of course, the extraction of
the critical exponents in very small systems depends heavily upon the percolation

threshold.

Before going on, we summarize few fundamental results from percolation theory
(thermodynamical limit), concerning to the description of the critical phenomena,
which are assumed to hold also in very small systems [12,16]. The cluster size
distribution obeys a scaling law, i.e.,

n(s,e) xs”"fles®] € — 0, s - (1)

where s is the number of cluster constituents, ¢ = p — p, the distance from the
critical point, and f[es?] the scaling function, restrained to f(0) = 1. 7 e o are
critical exponents. For p — p., the scaling law yields the potential law,

nyx 8 . (2)

The critical exponents can be evaluated by means of the moments of the distribution
ns, defined by [13]:
Mk = Z 3kns (3)
L}
where the prime means that the percolating cluster is excluded from the sum. In
finite systems, the percolating cluster is assumed to be the greatest cluster [12]. It

should be noted, such as mentioned above, that for ¥ = 0, M, is the total cluster
multiplicity.

As a matter of fact, for p — p. and Ag — o0, the singular part of the first
morments behaves as:

My |p —Jii’e:lz-e:Il (4)

My < (p—pc)” (5)

and

M; x |p—pl|™" (6)



5 CBPF-NF-069/94

where a, § and v are critical exponents and M; and M; are the percolating cluster
strength and the mean cluster size, respectively.

I  and 8 are known, then & and 7 can be calculated by [13]

. Kol

and

(8)

Hence, it is enough to extract independently the two critical exponents  and .

In what follows, we first discuss how the probability threshold depends upon
the criterion of criticality and the system size. We have performed calculations
for systems with Ay = 81 (full triangles), 203 (open circles) and 350 (full squares)
sites, with a statistics of 3000 runs. In Fig.1, we display M, /M, (instead M;, such
as suggested by Campi [6]), 7 and M, against site occupation probability P (left
panels), bonding probability P, (central panels) and effective interaction radius
Rin¢ (right panels). It is clearly seen that M,;/M; and M, follow a bell-shaped
behavior, with broader width for smaller systems, and  is described by an inverted
bell-shaped curve, also with broader width for smaller systems. It is seen from
the curves of 7 that the apparent exponent rapidly estabilizes its value as function
of the system size. In our case, for instance, 7 is almost the same for Ay = 203
and 350. In table 1, we display the probability thresholds and interaction radius
threshold, taken from Fig.1, by using the criteria 1), 2) and 4), such as mentioned
above, From table 1, it is clear that the three criteria give different values for the
probability and interaction radius thresholds. Furthermore, it is seen also that the
finite size effects in the case of criterion 4) are significantly different from the case
of criteria 1) and 2). In what very small systems are concerned the probability
threshold calculated by using criterion 4) decreases from above p. - the critical
probability in infinite lattices - (p, ~ 0.25 for bond percolation and p, = 0.31 for
site percolation) to bellow p. when Ay is increased from 81 to 350, while it is always
above p. if the criteria 1) and 2) are used.

Different thresholds are expected to cause strong effects on the size distribution,
fragment multiplicity and energy spectra. To show these effects explicitly in the
case of size distribution, we display in Fig.2 the fragment size distribution for three
values of Ay, by using the three above-mentioned criteria in the context of the bond
percolation (full squares for criterion 1), open circles for 2) and full triangles for 4)).
The experimental data from Ref.[1,2] are also displayed {crosses). It is apparent
that the criterion 4), given by the position of the maximum of M,, reproduces
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better the experimental power law. It was checked that the qualitative results are
the same also in the case of site percolation and nucleation.

Table 1. Probability thresholds and the “critical” interaction
radius by using the criteria 1), 2) and 4).

(1) ) (4)

Ao M2/M1 T M,
(max)  (min)  (max)
site 0.50 0.44 0.40
81 bond 0.37 0.32 0.25
aucl 1.66 1.57 1.32
gite 0.41 0.35 0.32
203 bond 0.31 0.28 0.22
nucl 1.54 1.45 1.26
site 0.40 0.32 0.30
350 bond 0.30 0.26 0.21
nucl 1.52 1.39 1.24

In order to see how the critical exponents depend upon the criticality condi-
tion, we display in table 2 the exponents 8 and 7, along with Az — the slope of
In M; versus In M; — which is shown, in Ref. [12], to be A32 = 1+ a%, The
critical exponent 7 is obtained directly from the charge (mass) distribution and
B is calculated by looking for the slope of the plot of In Spar versus In|p — p.|,
instead of using Eq.(5), following procedure suggested by Elliot et al. [16]. Snaz
denotes the size of the largest cluster. With the estimated values of 7 and &, then
the exponents ¢ and 7 can be calculated, by using the scaling equations (7-8).

In table 2, the figures result from calculations by using site percolation, bond
percolation and nucleation and adopting each one of the three above-mentioned
criteria. The system considered is Ay = 203. For comparison, the values extracted
from Au fragmentation experiments [2,17] are also shown. It is seen that the cri-
terion given by M, yields critical exponents with closer values to the experimental
ones, except in the bond calculation of 7, in which case it is overestimated in the
My criterion. Hence, since the M, criterion allows better agreement with the ex-
perimental charge (mass) distribution and which other critical exponents, it seems
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that the M, criterion is more appropriate if simulation in very small systems is
concerned.

Table 2. Critical exponents by using the criteria 1), 2) and 4).

(1) (2) (4) Au

Exponent M, /M,y T M, fragmentation
(max)  (min) (max) (exp)
site 1.78 1.70 1.82
T bond 2.25 2.13 2.39 2.144-0.06
nucl 1.89 1.85 2.20
site 0.17 0.23 0.27
B bond 0.21 0.29 0.29 0.294-0.02
nucl 0.10 0.14 0.16 :
gite 1.68 1.72 2.00 .
Az2 bond 1.93 2.01 2.23 2.224 0.10
nucl 1.85 1.96 2.32

Now, let us address the question of similarities and dissimilarities between
percolation and nucleation pictures.

In Fig.3, it is plotted the second largest fragment against the largest fragment,
both normalized to 1. This correlation gives information about the impact param-
eter and/or the violence of the collision since the cluster sizes are very dependent
upon these two initial conditions. It is clear that the bond percolation is much
closer to nucleation than the site percolation. For comparison, we display also the
experimental data of Ref.[2], whose polinomial fitting (solid curve) follows closely
to the bond percolation and nucleation curves. In spite of the great similarity be-
tween bond percolation and nucleation (Fig.1 and Fig.3), it is found also important
dissimilarity. This is better shown in Fig.4, where it is displayed the rms cluster
radius < Rp > against the fragment size Ap, for Ag = 350. It is seen that the
nucleation (full squares) gives sistematically smaller values, when compared with
bond percolation (crosses) and site percolation (full triangles). This can be easily
understood, since in the nucleation calculation the interaction spheres associated
with the nucleons are allowed to interpenetrate, i.e., the interdistance between two
closest neighbors may be lesser or equal to 2 R;n;, while in percolation calculations,
this interdistance is constant and equal to the lattice size. As consequence of this
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interpenetration, the clusters are more compact in the nucleation model than in
the percolation models. It is seen that the bond percolation results almost coincide
with the curve arg A},./ 3, which represents the spherical cluster radii in the case of
expanded system. It is also seen that for Ag > 10, the site percolation begins to
deviate more and more from the bond percolation points. This means that for large
fragments, the site percolation produces very ramified and/or noncompact (swiss
cheese-type) clusters. For completeness, it is also displayed the curve rgA}! 3 , which
represents the normal density cluster radii.

Finally, it is worthwhile to clarify somewhat better how close the nucleation is
to the bond percolation. In order to do that, let us consider the mentioned fixed
points, such as the maximum M3 /M, the minimum 7 and the maximum M, for few
different system sizes (¢f table 1). Hence, we are able to obtain useful correlations,
by plotting in Fig.5 the site occupation probability P (panel (a)) and the bonding
probability P, (panel (b)) as function of Rins. It is clearly seen that P is linearly
correlated to R;n¢. This behavior is not well followed by P, which presents some
points quite deviated from the straight line. This result stresses the isomorphism
between the nucleation and the bond percolation, meaning that one approach is
essentially the same than another.

In summary, we have shown that for very small systems the criticality crite-
rion is not unique and the percolation and interaction radius thresholds depend
significantly upon the adopted criterion, i.e. the percolation and interation radius
threshold are located at different positions for different criteria. As a matter of fact,
we have performed Monte Carlo simulations and shown that the so-called maximum
M, criterion is more appropriate for nuclear fragmentation events. Furthermore, it
is seen that the nucleation approach is linearly correlated to the bond percolation.
This and other results suggest an isomorphic relationship between nucleation and
bond percolation approaches.
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FIGURE CAPTIONS

Figure 1. The ratio M3 /M, the apparent exponent 7 and the multiplicity
M, against concentration probabilities and interaction radius for 4g = 81 (full
triangles), 203 (open circles) and 350 (full squares).

Figure 2. The cluster size distribution (normalized at Ap = 1 for Ay = 81,
and the charge distribution (normalized at Zr = 2) for A = 203 and 350.
The full squares, open circles, full triangles denote M, /M, T and M, criteria,
respectively and the crosses, the experimental data taken from Ref.[1,2,10].

Figure 3. The second largest fragment versus the largest fragment both nor-
malized to 1, in site (full triangles) and bond (crosses) percolation and in nucle-
ation (full squares) calculations. The full curve is a fitting of the experimental
results of Ref.[2].

Figure 4. The rms cluster radius < Ry > versus the fragment size Ar in site
(full triangles) and bond (crosses) percolation and in nucleation (full squares)
calculations. The full (broken) curve denotes the corresponding spherical clus-
ter radius in normal (expanded) nuclear density.

Figure 5. The site occupation probability P (panel (a)) and the bonding prob-
ability P, {panel (b)) versus the interaction radius R;ns. The linear regression
is also displayed.
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Figure 3.
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Figure 4.
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Figure 5.
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