ISSN 0029 - 3865

CBPF-NF-05%/91

NON-MINIMAL COUPLING AND QUANTUM COSMOLOGY

by

M. NOVELLO, V.M.C. PEREIRA and N. PINTO-NETO

Centro Brasileiro de Pesquisas Fisicas - CBPF/CNPg
Rua Dr. Xavier Sigaud, 150
22290 - Rio de Janeiro, RJ - Brasil



CBPF-NF-059/91

Abstract

We consider a minisuperspace cosmological model generated by coupling
non-minimally a vector field with the gravitational field. The classlecal
solutions are divided in three sets: singular solutions, eternal universes
with a expansion phase and flat spacetime. We apply quantum cosmological
arguments to investigate which of them 1s the most probable classical
solution. The semi-classical cosmelogical wave functions satisfy the
Correspondence Principle and examples are shown in which the three set 6f
classical solutlons can be predicted from different classes of WKB wave
functions. As a particular example, we have considered the no-boundary wave
function and shown that 1t predicts flat spacetime which 1is however
classically unstable. The unique expansion solutlon that arises from this

instability is an Eternal Unliverse.

Key-words: Minimal coupling; Quantum cosmology.
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I Introduction

‘One of the most fundamental problems of Cosmology concerns the existence
of singularities in cosmological solutions of Einstein's équation that may
describe the Universe we 1liven in. At .the singular point physical
quantities, such as the curvature of the Universe and the energy density of
matter, diverges and, consequently, no laws of physics can be there applied.
There has been some proposals to aveid such undesirable behaviour either
classically (through the effects of classically non-minimally coupled fields

1 2]

to gra.\.i'flt.y{1 ; viscous processes[ ; modifications of Einsteins’s equatlions

through spin dominance mechanismsts]

; and so on), or by quantum gravitational
effects[‘{

Concerning the coupling of classical flelds to the curvature of
spacetime, in the context of a theory of non-minimally interaction between the
electromagnetic field and gravityla&l, it has been shown that there exists
homogeneous and isotropic non-stationary classical solutions which are free
from singularities, having a very condensate epoch between a contracting and
an expansion phase, without any particle horizon, which may thus be fitted
with cosmological observations (e.g., they admit the existence of a cosmic
microwave back-ground radiation, a hot era). Many Iinteresting features of

these solutions have been studled elsewhererﬂa]

and the theory from which
they where obtained has been used to provide a possible mechanism for the

crigin of the primordial mangnetic field that pervades our
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universelg{

However, it is also possible to find classlcal solutions within
this theory which have singularities. Then, a natural question appears: what
is "the relative probabllity between singular and non-singular
solutlions? The aim of this paper is to try to answer\ this questlon by

(101 14 apply

recurring to the ideas recently developped in quantum cosmology
them to this model in order to select the most probable classical solutions.
In the next section we wlll summarize some of the classical aspects of
the theory with non-minimal c¢oupling between the electromagnetic and the
gravitational fields. We will deal with a reduced configuration space in
order to construct a minisuperspace model which contains both the singular
and the non-singular classical solutions we are interested in. The action and
the Hamiltonian in this minisuperspace model will be obtained in the standard
way. In section III the quantum minisuperspace model will be developped, the
semi-classical wave functions evaluated and predictions about which of the
classical solutions are the most probable will be made for some of these wave

functions 1including the no-boundary and tunneling ones. A summary and

comments about our results will be made on section IV.

IT1 The Classical Model

The minlsuperspace model we shall discuss in this paper was developed in

the context of a theory in which gravity 1s non-minimally coupled to
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[s,8] 1

electromagnetism , the Lagrangian belng given by[5 a combination of

Einstein's and Maxwell’s theory plus an interacting (non-minimal) term:

_ 21 v.l v ‘
2 =vg [ 3 FHVF“ +¢ R +_0RH“Nvg“ ]. " (2.1)
where g is the determinant of the space-time metric gﬂv, R is the respective
curvature (four-) scalar, k = 16aG (G 1is Newton’s constant), o 1is a
dimensionless coupling constant, wu is the electromagnetic flield and
F =8W ~-8W

uv g v v o

The field equations of this theory are:

(1+0¥2)6 = -E  + oo(W)g - cRW W - o(W) (2.2)
Hv (24 uv v VH3V
F* = -orW* (2.3)
_ MW v = - l
where W = g W“HV, g'¥ 1s the inverse of g“v. Gpv va > Rg“v (R“v is the

Ricci tensor), o is the covariant laplacian operator, the semi-colon denotes

covariant derivative with respect to the four-metric gpv, and
E :=F F* + 1 F F**. (We have put k = 1).
[T3% Ho v 4 pr ak

Cur minisuperspace model is characterized by the following ansatz:

ds® = - N%(t)at? + aa(t)dnz

(2.4)
Hu = (¢(¢),0,0,0)
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The four-metric is of Robertson-Walker form, where dni is the metric on the
spatial sections with constant positive or negative curvature € (e = + 1 or
€ = - 1 respectively). The topology of these sections 1s consldered to be
closed.

With these assumptions it follows that Fuv =0 = EFV and

we = g“"u“wv = - g% = - ¢° (2.5)
The field equations (2.2) and (2.3) reduce to:
(1-0¢°)R  + o(¢%) =0 (2.6a)
[r Ty
0(¢?) = 0 (2.6b)

From (2.6b} and taking the trace of (2.6a) it follows that the curvature

scalar R vanlshes.

Defining B := (1 - 0¢2), and substituting B,¢ and N into (2.6) we obtain:

r L) .ﬁ
ad +a + eN - aa N 0
B i_aN_AN _
4 §+3[;—Eﬁ BN]-O (2.7}

a3 + 2a2 + 2eN° - aa

= =

L
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We define the assoclated minisuperspace actlon substituting the
restrictions (2.4) directly into the Lagrangian (2.1), ylelding the

corresponding action:
S := I dt d’x £(a,B,N) (2.8)

The equations of motion obtained from the action (2.8) form a system
which is equivalent to (2.7). This result valldates the interpretation of our
model as a minisuperspace model.

The calculation of the Hamiltonlan from the action (2.8) ylelds:

nn n |
H=N[-—°£ﬁ+p—’3+pa] =: NH (2.9)
a a
where IIa and “8 are respectively the momenta associated to the variables a and
8 and N plays the role of a Lagrange multiplier {its variation yields the
super-Hamiltonian constraint which makes H » 0 in Dirac's notationlli]).
We can notice that, if we proceed through the Dirac quantization of our
model using variables (a,B8), the Hamiltonian (2.9) leads to factor-ordering
problems. In order, to circumvent this difficulty, we shall now introduce a

new equivalent set of coordinates (x,y} 1in terms of which the Hamiltonian

will present no ordering ambiguities. We set
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-6-
x := g°

o2 (2.10)
Y 7 2

This method 1s not specific of the pfesent problem but it appears in many
others situations. For 1instance, when dealing with a scalar field coupled
minimally to gravity one faces this factor ordering problem as it has been
noticed by many authors. One of the possible solutions for this 1s the

Laplacian factor ordering[12'13]

in the Wheeler-DeWitt equation. However,
when the coupling of the scalar field to gravity is non-minimal there is a
direct way to obtain a quantum verslon wlthout recurring to such arbitrainess.

Indeed, consider the model of a scalar flield ¢(x) interacting conformally

to gravity through the standard action
S = J' V=g d¢x[R + au¢av¢g’“' - -é- R¢° - v(¢)]
We consider the ansatz

ds? = at® - a"’(t)dnj

and limit ¢ to be spatially homogeneous ¢ = ¢(t).
We then make a change of variable for ¢ to ¢ = ¢a and consider not the
global time t but the conformal time % = I a(t)dt.

A direct calculation yields the Hamiltoenian:
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in which we have redefined new variables x,y by setting x.= ¥1Za and
and which is free from factor ordering problems.

The action (2.8) is then given by
1 « o«
S =+ I dt [eNx "X y]

The general solutions to the equations of motlon are:

2
. _ &t
Yy = 2+2
x =ct
which can be expressed as
<
y=—c—2+2
2c

where c and ¥ are lntegration constants.

y = V2y

(2.11)

(2.12a)

(2.12b)

(2.13)

As can be seen from (2.12a) we may have the following possible

clagssical solutions:
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a) For ¢ = 1.
If >0 there is a singularity on t = - ¥ when the Universe is
created, it expands till maximum size at t = 0 and then recolapse at t = vZ.

If £ s 0 there is no classical solution.

b) For ¢ = - 1

If £ > 0 the universe is flat at t » - », contracts to its minilmum size
at t = 0 and then expands to become flat again at t - w. No singularitles are
present: it is an eternal universe,

If £ =0 it is just the flat spacetime in Milne coordinates.

If T <.0 we may have a universe that contracts from flat spacetime till
singularity or an expanding universe coming from a singularity and going to
flat spacetime,

Thus, for ¢ = - 1, there is the possibility of having eternal or singular
universes depending on the value of the constant of integration X.

The Hamiltonlan of the system (2.11) is given by

H=-N(IND + ex} (2.14)
Xy

which yields the supper-Hamiltonian constraint

H:=- (IH + ex) =0 (2.15)
Xy
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where T = - Y and 1 = -
X N y

A

This super-Hamiltonian will be the starting point for the quantization of
the model.

IIT The Quantum Model

Wheeler-De Witt

Dirac’s method for the quantization of a parametrized theory[7]
"~ the

leads to
equation,

which governs the dynamlecs of the quantum

state Y{x,y). For our model this equation is gliven by:

(3.1)

where # is the operator version of (2.15).

The explicit form of (3.1) is:

0¥ -
3xBy + exyy =0 (3.2)
A solution of (3.2) is given by
2
Plx,y) = wo exp[\/-c[p - E]] (3.3)

where wo and p are arbitrary complex constants.

Note that ¢ is an elgenfunction of the momentum operator H& with



CBPF-NF-059/91
=-10-

eigenvalue -iv-¢ p. In order for this eigenvalue to be real, p must be real

for € = 1 and pure imaginary for € = - 1. Thus, we may write (3.3) as:
: . . 2 .
gix,y) = woexp[-i[cy - EE]] (3.4)

where ¢ is a real constant. This wave function 1s also a semi-classical wave

function because the argument in the exponential of (3.4)

= — X '
S:=-cy+e 5 (3.5)

is the complete solution of the Hamilton-Jacobi equation of the model

as as _ '
3% By +ex=0 (3.6)

The general solution of (3.2) constructed from (3.4} is:

2 2
wix,y) = I ch(c)exp[—i(cy - ¢ ;E]] = I ch(c}exp[-i[cy - £ %E + B(c)]] (3.7}

where G(c) = lG(c)[e"ﬁtc’ = F(c)e P

is an arbitrary complex function.
We are interested in the possiblility of the wave function of the unlverse
predicting a classical universe. In particular we want to known which of the

possibilities of having an eternal or singular classical universe is more

probable. In that case, the occurence of eternal or singular solutions of



CBPF-NF-059/91

eqs. {2.12) depends on the sign of the constant g, as dliscussed in Section
II. As it 1is impossible in the above model to obtain a classical eternal
universe with £ = 1 we will, from now on, limit our discussion to the case
N . .

The 1idea that a gquantum solution predicts a classical unlverse is
meaningful, of course, only in the semi-classical 1limit which will be
identified here with the behaviour of the wave function.ln the reglon where
the scale factor 1s very large. Both quantities x° and y are proportional to
a’ (a 1s the scale factor) and so is the term [cy + %;] in the phase of

(3.7). Hence, when a > ®, this phase varles rather rapidly, enabling us to

approximate y(x,y), in the semi-classical limit, employing the stationary

phase method. The stationary phase condition for (3.7} with e = -1 is
2
dg(c) x°
ac + Yy ; =0 (3.8)
c
Suppose {(3.8) have N solutions, Cn(x.y},n =1,...,N. In the

semi-classical limit y¢{x,y) can be written as

N
wsc(x,y) = z F[Cn(x.y}]exp[— isn[x.y}] (3.9)
n=1

with Sn defined by

2
- X
Sn(x,Y] 1= [B[Cn(x.yl] + ch(X.Y] + m] (3.10) .
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It is easy to show that the Sn{x,y) given by (3.10)}, are solutions of

(3.6) with e = - 1:
L% _v=-0 (3.11)

In the theory of the nonlinear partial differentlal equations of flrst

101
order[

they are called the general integral of (3.11). This type of
equation admits two other sets of solutions: the complete and the

singularintegral. The complete integral of (3.11) is given by:

2

= - - X
Sc[x.y) =-cy - 52 (3.12)
which is (3.5) for £ = - 1. There is no singular integral of (3.11).

The functions Sc(x,y) given by (3.12) can be used to construct another
set of semi-classical wave functions by the WKB approximation method. These
WKB wave functions are approximate solutions in first order of h of eq. (3.2)

(with £ = - 1) and have the form:

w"(x.y) = A(x,ylexpliS(x,y)] (3.13)

For the particular case of eq. (3.8), the functions A(x,y) and S(x,y)
must satisfy, besides the Hamilton-Jacobi equation (3.11), the following

equation
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8A 8S , 9A S _

Bx dy oy ax (3.14)
where we have assumed that
2
97s A 85 A 3s
|A 5;3;' <z By + 3y 35 (3.15)

Using Sc(x,y) given by (3.12), which satisfies (3.11) and (3.15)

2

because 8s _ 0, we obtain for (3.13}
axay

2
w"[x,y) = A(x,y)exp[—i[cy + %3]] (3.16)

Inserting Sc(x.y] into (3.14) and solving it by the separation of

varlables method (A(x,y) = X(x)Y(y)) we obtain for the pre-factor A(x,y)
%2
Alx,y) = B exp[w[-cy + EE]] (3.17)

where B and W are real constants.

Thus, we may obtain for (3.13):

2 2
_ - X_ Xx_
w“(x,y) =B exp[w( cy + ZC] + 4 {cy + ZC]] (3.18)



CBPF-NF-059/91
-14-

Note that each term of the semi-classical wave funtions ¢-c(st) given by
(3.9} satlsfies the WKB equations because the Sn(x,y) satisfy (3.11), the
pre-factors f[Cﬁ(x,y)] satisfy (3.14) (this can be shown by uslng the fact

that the Cn(x,y] are solutions of (3.8]}:and they satisfy‘(3.15) if f(e) 1is

2
assumed to be a rapidly varying function of C or if gi%? goes to as a goes to

infinity, which is the case of the examples that follow.
The wave functions wsc and w“ given by (3.9) and (3.16) respectively are

1= where S Is a

the most general forms of WKB solutions in the form ¢ ~ e
solution of the Hamilton-Jacobi. The w“(x,y) given by (3.18) is a particular
case of (3.16).

In order to make predictions from (3.9) and (3.16) we will use the fact

that these wave functions have a strong peak about the correlationslil]

p, = =— (3.19)

where the qi are the minisuperspace variables and the the P, the canonical

momenta.

The correlations (3.12) are in fact first integrals of the classical

(121 This implies that WKB wave functions of the form e'*

equations of motion
are peaked over an n-parameter subset of all classical trajectories. Besldes,
the pre-factors will provide a measure over the ensemble of classical
trajectories about which the wave function is peaked. If the WKB solutions

iziq)

are of the form ¥ = A{qle (which 1s the case of (3.9) and (3.16)) the

conserved probability measure will be:
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dp = J.d¢ (3.20)
where
3 = Mq@)Fs(@) (3.21)

and dé is the “area element" of a suitably chosen hyper-surface, so that all
the trajectories of the ensemble cross it only once.
In quantum cosmology, a peak in the wave function is usually interpreted

as a predictionlil]

and we will follow this idea here. The probability
measure (3.20) can be used to calculate conditional probabilities, a
prediction being made when the result is close to zero or one, We will aléo
assume that Iinterference between terms of a superposition of WKB wave
functions that describe ensembles of classical unlverses (which is the case of
(3.9}) can be neglectedtlsa

Let us now apply these concepts to the wave~functions (3.9) and (3.16).
We will begin by the wave functlon (3.18} which is a particular example of the
WKB function (3.16} and satisflies the WKB equations (3.11), (3.14) and (3.15).

Applying (3.19) to our model we get:

I = g—m= == (3.22)
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SSC '
Il'l'y=w=—c (3.23]
where Sc is given by (3.12).
In the gauge N=1, T = - y and mo= - x. Thus equations (3.22) and
(3.23) yields.
dy _ % xz
= = 3y = =+ X (3.24)
dx 2 2¢?
which is Jjust equation (2.13) for € = - 1.

The sign of the constant £ is still unknown. In order to determine this

sign we have to apply equations (3.20) and (3.21) to our model. We define

2
n=y-o (3.25)
2C
xz
E=-y-— (3.26)
2c?
We then obtain for J given in (3.21)
3 = exp(2Cwn) V(CE) (3.27)

In the plane (£,7n), the surfaces £ = const. {£ 1s essentially Sc glven in
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{3.12)) are orthogonal to the classical tfajectories (3.24) (by virtue of
(3.22) and (3.23)) which have 7 = £ = const. Thus J points largely in the £
direction. Choosing the surfaces ¢ in (3.20) to be the surfaces of constant £
it will be guaranteed that 3 crosses them only once. Thié choice ylelds for

(3.20) the following equation:

dP = 1.d¢ = exp(2CWn)dn

The conditional probability of having n = £ > 0 will then be given by:

exp(2CWnldn

P(p®E>0[-a<n<w)=— (3.28)

exp(2CWn)dn

-

If CW > 0 then P =1 and if CW < 0, P = 0. Thus, we can make a definite
prediction about the sign of & if we know the sign of CW. To known the sign
of CW we must have boundary conditlons that may select just one among the
many solutions of (3.2) or of (3.11), (3.14) and (3.15).

We will now turn to the semi-classical wave function of the type glven in
(3.9). Let us take some particular examples of f(c) and see what kind of

classical universes they may predict.
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In that case, equation (3.8) gives:

%) |x )
&

which, for Sn(x.y) glven by (3.10), yields

0
Il
-+
v
]
i+
x
)

~

The wave function (3.9) is

w.c(x.yl

The correlations

= F[ X ]exp[iS ) + F[— X ]exp(- 15 )
v2y ] v2y r

(3.19) applied to this case gives, for N = 1,

H
5
g

._as;:t=
Y = %

e
]
I
|
+

(3.29)
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which implies

2 x2
= _y > Y = — (3.30)
. X chz - .

&1<

This is equation (2.13) with Z = 0. We conclude that the wave-function
(3.29) predicts Minkowskl spacetime,.

ii) Blc) = - ac and Bl(c} = % , @ = const # O,

In these cases the wave functlon predicts an eternal universe for « > 0
and a singular universe for a < 0. It is not possible te obtaln Minkowski
spacetime.

Note that in both cases the knowledge of the form of S(x,y) was enough to
make exact predictions about the most probable classical selutlons. 1In fact,
the pre-factors Fn(Co(x.y]) wouldn't give much information about the singular
nature of the most probable classical solutions because, near the classlical
trajectories, the functions Co(x,y) would be almost equal to the constant C of
(2.13) and, if we apply a similar reasoning with the one used in (3.18), we
would only get information about the most probable values of C, whlch are
irrelevant to answer the question we are addressing.

To make definite predictions out of (3.9) we need the exact form of the
function B(c¢). Again, boundary conditions on the general wave function (3.7)
are 1important in order to find a particular sclutlon with a definite

B(c). Thus we will now see what predictions can be made if we use the

[16] (17

no-boundary and tunelling boundary conditions.
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The no-boundary semi-classical wave function can be calculated by

evaluating the Euclidean action that comes from (2.11) with e = ~ 1.

1%~Idr'[§—§’-Nx]

in the classical solutions of the Euclidean field equations

f+N=0
X _

T=0
éq—x:(}
N2

In order for the four-geometry to close-off in a regular way, a(r) must
be a pure imaglnary function of T (consequently, x(t) mut alsoc be a pure
imaginary function and y(T) negative definite) subjected to the boundary
condition that a(0) = y(0) = 0. Also x(0) = 0 in order to preserve regularity

of the solutions at T = 0. The solution is
Y = €xp(- 1) + exp (- 1) = cos (xv2y) (3.31)

which is a particular case of example 1) discussed before which predicts
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Minkowski spacetime.

For the € = + 1 case the solutlon is
v, = explxv2y) (3.22)

As it is not osecilatery, it cannot describe a classlcal universe {it can
be viewed as generating solutions with € = 0 in (2.12a) which are not allowed
for e = + 1],

We do not know how to obtain a unique solution using the tunneling
boundary conditions. Many solutions of the form of (3.9) may satisfy these

boundary conditions by setting appropriate choices of F(c) and B8(c).

IV Conclusion

The minisuperspace quantum model we have studled generates a Wheeler - De
Witt equation that can be exactly solved. Its  general solution ylelds
semi—classical wave functions which are in the most general WKB form and can
be divided into two sets: one given by eq. (3.9) and the other by (3.16) (the
latter can be obtained from the general solution by setting F(c¢) in (3.7) to
be a sharply peaked function of C around a fixed value €). All these
semi-classical wave functlons correspond to classical solutions of the
equations of motion described on Secticn II and so they satlisfy the

Correspondence Principle. For wave functions of the type of eq. (3.9) it
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seems that 1t is enough the knowledge of the functions B(C) and, consequently,
of Sn(x,y) given in (3.10) in order to decide which are in the most probable
classical sclutlons. Examples were given In Section III where flat
space-time, slngular and eternal universes were obtained. in the case of wave
functions given by (3.16), the knowledge of the pre-factor is important to
decide about the most probable classical solution. Examples which show
the way the pre-factor provide predictions were also glven;

We could construct a measure on the space of all possible solutlons of
the Wheeler - De Witt equation (see, e.g., ref. 14) which is spanned by the
function F(c) and B(c) (see eq. (3.7)). However we.still do not know what
could be the relation of the specific forms of F(c) and B(c} with the singular
and non~singular nature of the sclutions.

We conclude that, in order t¢ make definite predictions about thé
probability of having eternal universes, it is necessary to have a unique wave
function that could be cbtalned by imposing suitable boundary conditions.
Imposing the no-boundary condition, the semi-classical wave function selects
flat spacetime as the most probable classical solution. This 1s in
accordance with the general belief that the no-boundary condltlon selects a
kind of "ground-state” wave function. The tunneling boundary condition seenms
not to be restrictive enough in order to select a unique seml-classical wave
function.

Let us remark that the flat spacetime selected by the no-boundary wave
function 1s classically unstable{7h It can evolve elther to a contracting

singular universe or to an eternal universe. As we are now surely living in
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an expanding one, we conclude that, in the context of the no-boundary proposal

applied to our model, our universe must be eternal.
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