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ABSTRACT

We study a discrete N-component spin ferromagnet with Hamil-

tonian

sf--w § @3 -nun ] (3.5
<i,j> 1 <ij> + 3
in 4 semi-infinite cubic lattice. The coupling constants at the

surface, K_. and LS, are allowed to be different from the bualk: ones,

S
XKg and L;. Using a simple real-space renormalisation group pro-
cedure we obtain the N-evolution (N.real) 6f the phase ‘diagram,
including the N + 0 and N + « limits, The thermal (v) and cros-
sover (¢) critical exponents at.various critical and multicritical.

points are calculated.

Key-words: Discrete N-vector model; Surface magnetism; Renormalisa

tion group; Critical properties.
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I INTRODUCTION

Hamiltonﬂms containing cubic anisotropié terms, which break
the full totétional invariance, have been used to degcribe
structural phase transitions in lattices with cubic symmetry'! as
well as the behaviour of some anisotropic ferromagnets?.

The discrete N-component cubic model, which is a_limit of
high cubic anisotropy of such Hamiltonians, was‘firstly “intro-
duced® in relation with the tricritical-like behaviour of cubic
rare earths compbunds,.in particular HoSb. This model can be

defined in several ways. Usually it is defined by

- sl = ] 5;-8, ' (1
<i,j>
with B = 1/kBT and where <i,j> denotes pairs of nearest-neigh-
bouring N-component spins Ei' These spins can only point along
the positive or negative axis directions of a N-dimensional hy-
percube, 1i.e., gi = (+1,0,0,...),(0,¥1,0,...}, ... The ..madel
may be alternatively defined by assoclating with each .. :lattice
site i two discrete variables, namely, an axis variable oy =
1,2,...N and the Ising variable o, =t 1.
In this way Eg. (1) is equivalent to

<i,j> i

SX SR R N @

The discrete cubic. model has many realisations in two  dimen

siong (d =2), mainly in the field of adsorbed monolayers (for a
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review see Ref. 4)..For example the orientational ordering of
diatomic molecules adsorbed in a triangular lattice® (as ob~-
served in N, adsorbed on graphite®) can be simulated by
the cubic model with N = 3.

On thecoretical grounds, the cubic model has been .. treated
using several techniques, such as Mean Field theories?®, | Nie-
meijer-van Leeuwen renormaligation group'(RG)f, Migdal RG®, va
riational RG®, Monte Carlo-like approach'®, conformal inva
riance'! and Monte Carlo RG'Z, -

Using a real space RG procedure which preserves the cor-
relation function, an extended N-component cubic model with 4ai

mensionless Hamiltonian

- BfQ = NK <i§'

'§i.§j + N2L ] (§i'.--§j)2 3
J)

<i,j>
was recently studied in a square lattice!®. Using the nota-

tion of Eq. (2), the Hamiltonian of Eq. {3) is equivalent to

- B =NK ] 0.,0.8 + NL } & . . (4)
ie <i’j> 1 J ai.'u'j {i,j> ai'aj

Besides the fact that this extended model presents se-
veral interesting limiting cases, andther motivation to study
it is, as we shall see later on, that the Hamiltonian of Eq. 3 -
remaing closed for all N under ﬁhis kind of RG, whereas . that
of Eq. 1 dces not.

In the present work, we consider the model given by Eq. (3)

in a cubic lattice with a free surface. The coupling constents
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at the free surface, Ks and.Ls are allowed to be different from

-

the bulk ones X, and L. Using simple diamond cells, we

cobtain the phase diagrams, for arbitrary values of N,in the (KB,
LB'Ks'LS) parameter space as well as the various . thermal (v)
and crossover (¢) critical exponents. |

This paper is divided as follows: in section II we  present
the model and the RG formalism, in section III our results and,

finally,we conclude in section IV,

II MODEL AND RG FORMALISM

We will consider the generalised version of the  discrete
cubic model, given by Eq. (3). Let ud review some important par
ticular cases and features of this model. We note that the Hamiltonian
as given by Eq. (4), for .- K = 0, corresponds to the N-state
- Potts model with dimensionless coupling constant N?L. Also in the
N + 0 limit, the self-avoiding walk problem is obtained’ with
step fugacity K. For N = 1, Eg. (4) reduces to the spin 1/2
Ising model for all values of L, For N =2, the Z(4) model
is recovered (see Ref. 14 and references therein). In +the case
K =NL, we can see that we obtain the 2N-state Potts model with
coupling constant 2NK, For finite K and NL/|K| + =, the second
tefm in Eq. (4) becomes dominant, and cne of the N axes is preferential
' - ly chosen, consequently the spin 1/2 Ising model with coupling

congtant NK is -recovered.
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Let us now focus on some results. It was conjecttred that
the Mean Field approach is exact in the N » « limit!® if L =O0.
Similarly to what happens for the Potts ferromagnet, a first
order transition is expected (on a Bravais lattice) for N > N .
Mean Field theory predicts® that the model given by Eq. 2, foxr
d =3, exhibits a first order transition for N > 3; : series re-

sults!S indicate that already for N = 3 the transition is first order,

‘For the model given by Eg. 4, for d =3, several types of transi-=-
tions occur (as will be seen later on), which correspond to dif-
ferent universality classes: the 2N-state Potts transition,which
is a first order one for 2N 2, 3, the N-state Potts . transition,
which is a first order cone for N » 3 and the Cubic ..transition,
whose first.or second order nature is believed? to depend on the
ratio L/K if 1.1 < N < 3,4, and is a first order one for values
of N above 3.4. We will not be concerned here with first order phase .
transitions, which have already been studied, for d =2, employing
the vacancy technique within a RG framework?®. The present RG will be
exact for hievardiical lattices, which do not present first order transitions
far the cubic model. Therefore, :the present results will be relgvant for Bra-
vais lattices only for N § N_ (N_ depends on the particular transition).

Let us now briefly review the phase diagram of the d =2 sys-
tem (which is gualitatively equal to the d =3 case, as will be
shown later on). It presents three distinct phases. For low
values of both K and L, we have the paramagnefic (P) phase, where
-the spins §i are disordered. For relatively high values of both
K and L, the fearomagnetic (F) phase appears (in this case the
Spins-gi -amapreferentially ordered along one of the 2N direc-

tions). For low values of X and intermediate values of L, a new
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phase appears, namely, the inteamediate (I) phase, where the
spins gi are preferentially aligned along ocne of the N axes of
the hypercube but there is no preference concerning the orienta-
tion along this axis. In Fig. la we show the phase diagram as
obtained in'® for the cubic model in a square lattice (N =3).
In Fig. 1lb we algo display a typical phase diagram (Wheatstone-
bridge hierarchical lattice, N = 2), as obtained in'®, where a
convenient: variable has been used, namely.the_   veetor thérmuab

transmissivity (tl,tz)(see‘Rai 13 and references therein) with

1 - o~2WK

tl = ’ (5.48)
: 1+ 2(N-1)e N(K+NL) e~ 2NK

1 - 2¢"N(K+NL) _ -2NK

y E . . (5.B)
1+ 2(N-1)e N(K+NL) . -2NK

It will be useful to present also the inverse relations, namely

_ 1 -t
e N{(K+NL) = 2 _ , (6.a)
1 + Ntl + (N-l)t2

o-28k _ L TNt 4 (Lt

1+ Nt + (N-Dt,

' (6.b)

Within the RG frameworksié’ié, the'atractors(tth&aliixaipoints)
of the paramagnetic, ferromagnetic and intermediate phases are
respectively located at (t,,t,)) = (0,0),(1,1) and (0,1) which
correspond to (ﬁ,L) = (0,0),(»,=) and (O;w). The Semi-gtable
fixed point & (see Fig. 1), associated with the transition from
the intermediate to the ferromagnetic phase (1n which the spins

5 preferentially align in one sense along a previously ".chosen
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axis), has the Ising character. Similarly, the other two semi-
stable fixed points in this diagram, namely $(N) (N-state Potts
fixed point) and € (cubic fixed point) are respectively . associated
with the transitions from the paramagnetic to the . intermediate
phase (cne out of N axes is chosen) and from the paramagnetic to
the ferromagnetic phase (one axis and one sense in this axis are
chosen}. 'The.fully unstable fixed point P(2N) (tl =t2J . cor-
regponds to K = NL, then, as we noted.before, we have the 2N~
state Potts critical behaviour. For N > N*, an interchange of
stability occurs for the £ and the P(2N) fixed points!3’16 |

The presence of a surface in this problem introduces new pos
sibilities of order. 1In general, this order will depend on the
ratios of the surface and bulk'coupling constants. For instance,
-the phase diagram for the Ising ferromagnet in a cubic . lattice
with a free surface (0,0,1) is known to be as indicated in Fig.
_2(a). If A = KS/KB 1< A , for temperatures below the .ctitical
bulk temperature Tg (cdrresponding to l/K; in Fig. 2{a)) we have
the bulk fernomaguetic (BF) phase, where both the bulk and the
surface are ordered; for T > Tg we have the paramagnetic = (P)
phase, where both are disordered. If A » Ac, another phase ap-
pears for intermediate values of T{ Tz < T« Tz(ﬁ)),in which the
surface remains ordered while the bulk is completely disorderdd
(surface ferromagnetic (SF) phase). 1In Fig. 2(b) we show the
phase diagram as obtained in'’, where = the . transmissivities
tB = tgh KB and ts = tgh Ks have been used. If we look at the
correlation length in a semi-infinite ferromagnet, we. expect
the following critical exponents: whereas. the bulk ° correlation

_, - _.,3D
length divarges as |T - Tzl V for all values of A, the surface
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‘correlation. length diverges, on the P - BF line (A < ﬂc),; as
v 2D
1

]T-Tzl , and, on the P-SF line (A > ﬁc)_as | T —Ti(ﬁ[l‘v .

In addition, a sofﬁ-singularity might be present in the surface
correlation length on the BF =SF line (A >Ac).1n:xh9fvicinity of
the multicritical point (A +Ac +0), we expect (Ti.(g)/rﬁ-l)a(mgl)lmi
which defines the crossover exponent ¢. Here we will be concerned
with thermal exponents associated with bulk transitions (simjilar
to vsD} and with surface trangitions (similar to vZD),as well as
the crossover exponents ¢ at the various multicritical points.

In tﬁe present work we consider a discrete cubic ferromagnet
(given by Eg. (3)) in a semi-infinite cubic lattice  .with  a
(0,0,11 free gurface. The nearest-neighbour interactions - are
characterised by the @imensionless coupling conshants Ks -and. . Ls
(K.S > 0 and KS + NLS > 0) if both sites i and j belong to the
surface, and.by KB ard LB(KB>0 and KB + NLB > 0) otherwise.

To obtain the phase diagrams in the four-dimensional space
(KB,LB,KS,LS), we consider the RG transformations of Fig. 3, simi-
larly to the Migdal-Kadanoff approach-used by Dotany -and ‘Riedel®. The diamond
%islls which we have addpted proved satisfacvory for surface magnebism.in  the
Potts modell”. The large two-rooted graph shown in Fég.3({(a) approaches,throush
the standard bond-moving procedure, the bulk of ¢he cubic lattice. The large
gfaph of Fig. 3(b) approaches, in the-same way, the surfidce region of ocur sys-
tem, where the dashed bords represent the free surface interactions. -
The graph of Fig. 3(b) may be viewed' as:that of Fig. 3(a} laying
with its two terminals on the free surface, nine missing . .bonds
in the vacuum, nine on the surface and nine in the bulk. The re

currence relations for (KB'Ks'L ,Ls) are obtained by imposing

B
that, under renormalisation, the correlation function between
the two terminals is preserved (see Ref. 18). It has been shown'®
that thig procedure is connected with the. phenomenclogical RG ap

proach. We have, for the bulk transformation (Fig. 3(a)), that
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-8
#3123. ..20

= Tr e ’
1,2,3,...20

_Bk '
e B12

and for the surface one (Fig. 3{5}), that

e-Bﬂ' 512 | -BK'Slza.f..i# |

= . Tr e '
1,2,3,404,14

with
- ' = ] 2r 1 ¢ 2 0
BﬂBlz NKiS .5, + N .LB(§1.§2) + Ky
(associated with graph Gi),

> > -+
-8 = NK_(8..5, +8..3_ + ...+ 8. .8
fenlza..zo g'®1+%5 ¥ 5.5, 20°°2

(7.a)

(7.b)

(8.a)

i 'Y + . +  + g . 3 2
+ ML ((5,.5,)2 + (s__l.s7) +...+(§20.sz) }

(associated with graph G}) ,

— ' = : 1 2 1 ] 3 2 o
6#312 Nhs(§1.sz) + NL{(5,.5,) 2 + Kg
(@ssociated with graph Gi)and

e

-B&Pe =NK_ (5.8, +8,.8_ +...+8...8.)
8423, .14 g {515, 1°55 1452

> > oy
+ NzLS((§1§_3)3+ (3,.8)% +...+ __._(_§14.§z) 2)

{B.b)

(8.c)
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> +

+ NKB(§1.§; + 8.8, +...-§14.§2).+ NzLB((§R§9)2
v EE 2 e 8,8 (8.4)

]

{associated with graph G,) where Ky and Kg

are additive constants- to
be determined. |

Equations (7) uniquely determine Kﬁ,Lﬁ,Ké,Lé. ‘Thesie. recur-
rence relations may be equivalently obtained using the vector
thermal transmissivities defined in Eq. (5). Ih fact, we&  have
established the effective bulk and surface vector ‘transmissivities
for this problem, using its series and paralel composition  rules
and  the . definition of its duall’® ,

For the bulk transformation we have obtained

y 3
-— ' -—
1 -t - 1o s - (9.a)
- 1 Ty 4 3 - 3 .
.1 + Nt13+(N L)tZB 1 +_Nt1B + tn _l)t23
and
. _ ' _ ' _ 3 _ 3
1 NtlB + (N l)t28 _ E Ntln + (N 1)%32 g . (9.b)
3 L n . H L] al
] - ' -
1l + NtlB + (N l)tZB 1+ Nt15-+ (N l)tzn
For the surface transformation, we have obtained
" _ 33 e +3
1=t _ 1=t 1- oty
1 4+ NtM, + (N-1)%! 1+ N£3 o« (N-l)t3 1+Nt5 +(N-1)t§—
1% . 28 18 - 28 iB 2B

{(9.¢)
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_10_
and -
' - 1 - 3 - 3 - 3
L-Ntjg + (Dt /1 -Nej + (-1 85 ( -NE, +(N-D £
1 - ] 3 - 3 - 3
1-+Nt18 + (N l)t28 1 +Ntls + (N 1)t 1-+Nt +(N_l)t2
(9.d4)
. T t ] t :
Tterating (t],,tj.,ti ,t) ) as functions of (t prtoprtigrty)

given by Egs. (9), we obtain for fixed N the RG flow which will
determine the fixed points, the phase diagram, as well as the
universality - classes with their corresponding critical exponents.
To obtailn the exponents v énd $ -we calculate the Jacobian matrix

| B(t'B,t'B,t'S,t Y/ a(t B’t ) on the various semi-stable

28’1 2n't1s7 %25
or fully unstable fixed points. In general, we perform this
" calculation on invariant planes, whose corresponding Jacobian is
a 2 x2 matrix. Denoting its eigenvalues by-kl and Az' we  have

(i) for the semi-stable fixed points, xi>1>12 and

£nB

\)=m; , - (10)

where B is the linear expansion factor (for our transformation,

B =23);
(1i) for the fully unstable fixed points, Al > 1 and Az > 1,and
: ZnB L a
£n12

$ = IHXI' ’ | (12)
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where A, > X,. BAs mentioned before, the thermal critical ex-
ponent will corresporid to the ‘bulk.ér-surface correlation length,

-according to the nature of the respective fixed point.

I11 RESULTS

We find, for arbitrary finite N, the following " fully .stable

ZS)
(1) (0,0,0,0), which corresponds to Ky =L, =K, = L. = 0, charac

fixed points (t 1p'EsprEisrt

terizing the paramagnetic (P) phase;
(ii) (1;1,1,1), corresponding to KB = LB = KS = LS + «, charac-
terizing the bufk fernomagneiic (BF) phase, Both bulk and sur-
face have their spins preferentially aligned along one axis and
one orientation in this axis;

=0, L

(iii) (0,1,0,1), corresponding to K Kg = 0, Lo> =,

B B~ 70 Bg
characterizing the bulk {ntermediate (BI) phase. Both bulk and
surface have theéir spins preferentially aligned along one axis,
without restriction about the orientation along this axis;

(iwv) (0,1,1,1), corresponding.to-KB = 0, LB + . ®, KS +> o, Ls + o,
characterizing the surxgace 5ea&omagnet£c/bu£k:Lntékmediata phase
(SFBI). In this phase, the surface remains ferromagnetically or.
dered while the bulk mantains only an intermediate order;

(v) (0,0,1,1), corresponding to KB = D'-LB_= o, KS + o, LS + ™,
characterizing the surdace ﬁekaomagnetic phase (SF). We have
a paramagnetic bulk while the surface is ferromagnetically or-

dered;
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(vi) (0,0,0,1), cofresponding,to K =0, L =20, KS =0, Ls + ™,

B B
characterizing the surface intermediate (SI) phase. We " have
an intermediate ordered surface and a paramagnetic$ bulk.

We note that it is not possible for the surface to be in a
less ordered phase than the corresponding bulk phase:; the bulk
order induces surface order (while the opposite. is not true).

For all arbitrary finite values of N we find that t1B =0,
t,s =1 and tZB = 1 are subspaces which remain invariant under
renormalisation. These invariant cubes are shown (for N =2} in
Figs. 4,5 and 6, respectively. As we have used the transmissivi-
ties, a non-physical region(complex coupling constants) appéars

in those figures. The non-physical region is given by

——

1+ Nt1B + (N-l.)t-2B <0 ,

1+ Nt o+ (N-l)t2S < 0 ', (13)
1 - t25.< 0
and 1;—.t2s.§ 0 ..
for tig =0 (Ky = 0) we only have the second term in the

bulk Hamiltonian, i.e., we have the N-state Potts model for the
bulk and the N-cubic¢ model for the surface., Thisgs is a quite in-
teresting case; as it may be applied to describe a semi-infinite

Potts system with an adsorbed monolayer on its free surface.
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Five different phases appears in the unitary cube of Fig. 4,
namely the P, BI, SFBI, SF and SI ones. We also notice that

the critical -behaviours associated with aff the internal critical points

in this cube are governed by the fixed (critical) points in
" " = = =

the "walls tZB ‘ 0, tls 0 and t25 1l (see Table 1).
For t . = 1l (LS + w) (see Fig. 5) the second term in the

surface .Hamiltonian is dominant, hence all the surface spins ard aligned
along one axis. We recover the épin 1/2 Ising model at the surface while
the bulk remains associated with the cubic mcdel. Five phases are presented
in this unitary cube, namely the SF,SFBI,SI,BI and BF ones (see also Tablel).

We note that in this.cube there is an invariant line corresponding

to tlB = tZB 0.31 where we have for all values of.j:ls three

coexisting phases (either SF/SFBI/BF or SI/BI/BF). Along this

187tz 157 E2g) =
(0.31,0.31,0.48,0.48) where the five present phases coexist.

line we have a fully unstable fixed point (t

We &ill turn back to this point later on.

For tZB =1 (LB + ») .{see. Fig. 6} the second term in the
bulk Hamiltonian is dominank, hence all the bulk spins  are
aligned along one axis. Now the surface remains associated with
the cubic model while we recover the spin 1/2 Ising model for
the bulk. The phases corresponding to a completely .disordered
bulk do not appear and we only have three phases, namely = the
BI, BF and SFBI ones. For this unitary cube, the plané t,p =
l, t = 0 goes, at the first RG iteration, into . the.  plane

25

ths = typ = 1.

Estimates for the critical thermal exponents v3D antil\)2d at-the fixed

(critical) points which govern the various. transitions in those.
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cubes are presented in Table 1 for typical values of N. . From
these values we notice that the SI-SF and the SFBI-BI transitions
belong, for all N, to the same universality class, namely the
surface Ising one. ' Analogously the BF-BI and the BF-SFBI tran
sitions belong to the bulk Ising universality class. - For a
given N, the SF-SFBI, BI-SI and BI-P transitions belong to the
bulk N-Potts universality class. Analogously the BF-SF and the
P-BF transitions belong to the bulk Cubic universality class.
For all finite values of N we have a class of invariant
planes which arises faom the_bulk fixed points (see Table 2).
This is due to the fact that the recurrence relations for htih

and t). involve only te and tZB' We show these invariant planes in -

2B

Fig. 7, for N.= 2, The bulk fully stable fixed points(tIB,tzB)=

(0,0),(0,1) and (1,1) give rise respectively ..to ' the phase
»

diagrams (a), (b) and (c). We identify.these planes as "walls"

of the t =0 ({(a) and (b)) and the t {{c)) cubes. The

1B 2B=1
bulk (critical) fixzed points $A2N), 2, 9°(N) and & give rise res
pectively to the planes (d), (e), (f) and (g). These planes are
part of the caditical hyper-surfacétdn our four-dimensional space
{the associéted transitions are indicated in the figure). We
noterin plane (¢), that the P-BF transition .and . the fixed
(critical) point which characterizes it has notuappeared before
(see Table 1). For N > 3 the structure of this plane is dif--
ferent from that for N < 3 (Fig. 7(¢)), as shown in +Pig. 7(h)
(N =3). We observe that, for N > 3, the BF-SI critical surface

disappears. Plane (d) corresponds to qritical surfaces where we

have fhree coexisting phases (indicated in the figure). This
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can be alternatively observed in the cube t,ga1s Where we. have

the line tig = ton = 0.30792 along which three  phases .coexist

(SF/SFBI/BF or SI/BI/BF). The vicinity of this line, inside the
critical surface, is.attracted tinder renormalisation by fixed

points at the lines (tlB'tZB) = (0.34,0.12), (tln'tzﬁ) = (0,0.34)

or (t .,t,z.} = (0.34,1). This indicates that, insidd the criti-

2B
cal hyper-surface,the plane (d) is ungtable with respect to .the

variables tlB and_tzB, whereas the plames (e}, (f) and (g) are
stable,
For all finite values of N, we also have the invariant plane

t ='t2S =1 (KS =L, *» «, completely ordered guface). This

18 S
plane is shown in Fig. 7 (i), for N =2.

Let us now focus on a different set of invariant planes which
involve both bulk and surface variables. They are (see Fig. 8,

for N=2): (a) tlB = tls =0 (KB =KS =0, which corresponds to

the N-state Potts model); (b) t2B = t23 =1 (LB'LS +> w©, which

corresponds to the Ising problem); (c)_tIB =0, t = 1I{Kn-= 0,

28
LS * ©, which corresponds to an Ising surface and a N-Potts. bulk).

and (A) €5 = typr tig = tyg (Ky s

responds to the'ZN—statg Potts model). The cases (a), (b) and

= NLB, K :uNLS; which cor=
(d) present a famjliar structure (see Fig. 2): . three phases
join at a muiﬁicritical point, one of them being a .surface
phase. The semi-stable fixed points of case (d) are associated |
with the coexistence of three phases, as indicated in the fi-
gure. The case (¢) presents a different stfucture, since four
phases are present. Various semi-stable fixed points are in-

dicated in ‘Table 1.
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In Fig. 9 we présent the N-evolution of the phase diagram in

_ L
standard variables (a) 1/Ly and Ly /L, (8, = -L-§- - 1);: (B) 1/K,
Kg a B - Kg
and KS/KB (ﬂb = E; - 1); () l/LB and K-S/LB (ﬁc = I-:_B - 1) .and

(4) l/KB anﬂ“Ks/KB (ﬂd = KS/KB - 1). The cases of Figs. 9@, (b)
and (d) are gquite similar: for ﬂi <-Aic we have . two - possible
phases depending on the value of the temperature T _<{below or
above the bulk critical temperature}; for ﬁi > aic, a surface
phase appears for intermediate temperatures. Notice in Fig. 9(b)
that the phase diagrams associated with all values of N can be
represented by.only one diagram by using l/NKB (instead of l/KB).
Thig is due to the féct that one out of N axes has been chosen (LB,
LS + ), and consequently the problem is driven, for ali N, to
the Ising model (N =1). In diagram (c),.as we raise the tempera
ture, the system can evolve in two ways: if 4 < Ac the system
changes from the SFBI into the BI and then into the SI phase;
if A > A_, it changes from the SFBI into the SF and then into
the-SI phase. It is worthy to stress that in the cases (b)
and (c) the conditions are such that the ultimate transition of
the entire system towards the paramagnetic phase occurs at in-
finite temperature.

In Tables 3,4,5 and 6 we present,for typical values of @ and
for the diagrams of Fig. 9, our estimates for the Ac's, critical
bulk couplings, critical thermal exponents and, for the multicritical
points, the crossover.exponent ¢. We note that for a given N,

the value eof \)3D

at the multicritical points on diagrams (a) and {c)
is the same, corresponding to the bulk NvPottslnﬂxenﬁﬂity{ﬂass.

To digcuss the N + = limit let us first consider the ‘infinite
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bulk case. We verify that the paramagnetic phase collapses on
the tlB = t23 = 0 corner (see Fig. 1l(b)). Also the IF -critical

line becomes a curve which gimply joins the t =0 cormer. :to

1B~ 28
the point (see Table 2). If we now turn back to the semi-infinite bulk
case, we can see that the above mentiocned cgllapse implies
the non-exigténce, in this limit, of the planes generated by the
S(N), §%(2N) and € fixed points. The plane generated . by the.bulk
fixed point (t)gstyg) = (0,0) (Fig., 7(a)) presents only the SI
and SF phases, the P phase collapses on (tlB'tZB'tls'tzs) = {0,

0,0,0) (see Fig. 7(a})). There &s only one non-trivial fixed point, ~ the
one on tﬁe line ‘t2é=l. The same structure is mantdined in the &iagrams of
Figs.7(b),(c)and(g) . In the limit N>w,, the Pand SI.phases, i1 the diagram of
Fig. 8(a},-collapse respectively on the point tZB;t23=0 and on the line t2ﬁ=0.
The. same structure ismaintained in the diagram of Fig.-8(b). .In the ‘diagram

of Fig. 8(c) the SF and ST phases -collapse respectively on the lines t._ =0,

2B
t 70,62 and t,p =0, t < 0.62. In the diagram of Fig.8(d),.the Pand SF phases

collapse, respectively, on the point t tlS=0 and on the line tlB =Q.,

1B~

The N + 0 limit is a special case, as it recovers the self-

avoiding walk (SAW) problem’, if the coupling constants LB and

L., are zero. In fact, the L-terms in the Hamiltonian given by -

8
Eq. (3) are proportional to N? and will anyhow become neglectable

with respect to the K-terms (proportional to N) in the N +=limit,
The recurrence relations become

K' = 9K; ,

= 3(1{; + xg) . (14)

I
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For an infinite bulk we £ind KT = 1/3 and the associated critical
exponent v@D=l. For the semi-infinite bulk we obtain the phase
diagram.shown in Fig. 10, with the disordered, surface ordered
and bulk ordered phase. At the multicritical point (special tran
sition), A_ = K /Ky - L = 0.53 and 1/K; = 3. The thermal criti-

W= 1 and ¢_1 = 1.29. At the

cal exponent associated is
fixed point (KB,KSL = (1/3,0.12) (ordinary transition), we have
VP = 1 and at the fixed point (Kg,Kg) = (0,0.58) (surface transi

2D

tion), vi'= 1,

- IV CONCLUSIONS

We have studied surface effects in a discrete N-vector ferro
magnet in a semi-infinite .cubic lattice.  The phase diagram pre-
sents six phases, namely the paramagnetic (P), the bulk ferromad
netic (BF), the bulk intermediate (BI), the surface ..} ferromag=
netic/bulk intermediate (SFBI), the surface ferromagnetic  (SF)
and the surface intermediate (SI) ones. In all cases we verify
that the surface is not less ordered than the bulk. We . found
various invariant subspaces which we analised in detail. . We
have obtained the N—mluta:on of the-critical thermmal expanent far. the
various transitions which - occluir. These estimates in-
dicate that the SI-SF and the SFBI-BI transitions belong, for
all N, to the same universali.ty class as well as the. BF-BI and _the
BF-SFBI transitions. .Furthermore, for a given N, the SF=-SFBI,

BI-SI and BI-P transitions belong to the same universality class;y,
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the same octl#s with the BF-SF and the P-BF transitions.

In the particular case LB’LS + », we recover the results foond.
in Ref, 17 for the semi-infinite Ising ferromagnet. The N-siate
fbtts semi-infinite ferromagnet is recovered in the case KB =
KS = 0. 1In Tables 1,3 and 4 we compare our estimates for v,$ and
A with the ones found in Ref. 1% where more sophisticated RG clusters
have been used used for this model. As we can see through the series and
Monte Carlo results (which also.are in Tables 1,3 and 4) we can
consider our estimates for the exponents as qualitatively cor-
rect for Bravais lattices (in particular in what concerns - the
N-evolution-of the various relevant quantities).

The general features of the phase diagrams obtained here agree
with known feshlts (whenever -awailable} ﬂm:BraWﬂsbhniicmi&mddamanxxmsis—
tent with what might be expected.for this problem,: which in fact is -heredm
studied for the first time. Let us mention an 'unexplained feature which oODUES
for the invariant plane generated by the bulk cubic fixed point:
its structure is different depending on whether N isdess (Fig. 7(e))
or greater (Fig. 7(h)) than N = 3, in our approache: |

Our results concérn only second order phase transitions. O©Our
caE&ahatbonsuthenvapproxim&te, for N&ﬁ.Né (Nc d%pends-on the par
tieulaictrangition), the results for a Bravais lattice. Never-
theless, -for the hierarchicalllattice associated ~ with the

RG transformatiom, P&ll-the preseént results are exact for all N.T

We gratefully acknowledge E.V. L. de Mello, 8. Coutinho, E.P.
S. da Silva and M.L. Martins for useful remarks. One of us (a.C.)

has been supported by a (NPq Fellowship.
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CAPTION FOR FIGURES AND TABLES

Figure 1 - (a) Phasé diagram®® for the Cubic ferromagnet, N= 3, in
a square lattice:P,F and I respectively denote the
paramagnetic, ferromagnetic and intermediate phases,
{b) Diagram for the Wheatstone~bridge hierarchical ‘lat-
tice, N=2, in the (tl,tz) space. The arrows indicate
the RG flow; 8 , @ and O respectively . denote fully -
stable, semi-stable and fiuily . unstable fixed
points. |

Figure 2 - (a) Phase diagram for the Ising ferromagnet . in the
semi-infinite cubic lattice with a (0,0,1) surface: P,
BF and SF respectively denote the paramagnetic, bulk
ferromagnetic and surface ferromagnetic phases.

(b} Phase diagram in ‘the (tn,ts) space., Thé RG flow is in
dicated.®, ®,a0d0 respectively denote fully stable, semi-stable .,
and fully unstéble fixed points.

Figure 3 - RG cell transformatiwdn: (a) for the bulk (each bond is
asgsociated with coupling constants Ky and LB)r (b} for
the free surface (each dashed bond is associated with
coupling constants Kg and LS).

Figurg 4 - Cube t,, =0 (N=2). The entire region inside . the
dashed lines is ncon-physical. The RG flows :are indicated;
B ., ® and O respectively denote fully stable, semi-
stable and fully unstable fixed points.

Figure 5 - Cube t2S = l (N = 2).

Figure 6 - Cube t,, = 1 (N =2},

Figure 7 - Invariant planes generated by the infinite bulk fixed
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Figure 9

. Figure 10
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points. Phase diagrams (N =2) corresponding to {(a) (t

18° 23 18 %2p? =
(1,1). Critical regions (N =2) corresponding to (d) (t

1B’

u

t,.)

,p) = (0,0); (b) (t

) = (0,1); (o) (t

1B’

t,5)

{(g) (t,petyp) = J (the associated transitions are indicated).

P(2N); (e) 1t13't23) = £; (£) (tin'tzn) = P(N);

(h) Critical region, for N =3, corresponding to - (FIB'

tzh) = £. (i) Phase diagram (N =2) corresponding to

(tIs’tZS) = (1,1). The non-physical region is - at the

right of the dashed lines.

Phase diagrams (N =2) for (a)'tIB =t =0; (b) ¢

= 1 and (d) t1B = t2B' tlS

2B

t = 1; {c} t

28 =0, t

1B 25

tzs L

For typical values of N, the same diagrams of Fig. 8§,

- in standard wvariables.

N > 0 limits (a) KS versus KB phase diagram (the RG flow

is indicated); (b) l/KB versus KS/KB phase diagram.

- 3 i - % * * * ' .
N-evolution of the fixed points (tlB'tZB'tls'tzs) which .
characterdge - the various - transitions, with the . corres-
_ponding exponents v. * denotes the results obtained  in

Ref. 19, "®Ref. 20, i®Ref. 21, ®Ref. 22. The symbol § de-

notes a collapse between an unstable and.a stable-fixed:point. '

Table 2 ~ Infinite bulk fixed points, for  typical values of N, ob-

-4ained through the bulk RG transformation of Fig. 3(a).

The interchange of stability for the £ and J(2N) Eixed

points occurs for N =N*:= 13 in our approach.-

Table 3 ~ RG estimates for the guantities: associated with the multi~

critical point on-theidiagram of Fig. 9 (a) (1;:1]3 = t = 0 or

18
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Table 5 -

Table 6 -
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KB = KS = 0), for typical values of N. *denotes the

results obtained in_ Ref. 19; 4 Ref.zj,eRef, 24, -.'-fRef,__r 25,
For § see caption of Table 1.

RG estimates for the quantities associated with the
multicritical point on the diagram of Fig. 9 (h)luiB=

t,g =1 or Lg,L. + =); these estimates are N-independent.

RG estimates for the guantities associated with the
multicritical point on the diagram of Fig. %(c) (tlB =
0't§5'= 1l or Kg =0, Lg + =), for typical values of N,

For § see caption of Table 1.

RG estimates for the guantities associated with the mul
ticritical point on the diagram of Fig. 9(b) (tlB =

t or KB = NLB,KxS =NLS). Estimates fotr the

287 t15 T %5
semi-stable fixed peints amd corresponding thermal exponents,
respectively asgociated with the coexistence of the

phases P-SI-SF, SF-SFBI-BF..and P-BI-BF. For § see cap-

tion of. Table 1.
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(a)

(b)

Fig. 3
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Fig. 7(b}
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TABLE 1
transition| N=1 N=2 N=3 N+
i (0,0,0.62,1) (0,0,0.62.1) (0,0,0.62,1) 1(0,0,0,62;1) .
SiosE v = 1.35 V2= 1,35 20 = 1.35 w2 = 1,35
SF-SFBI (0,0.37,1,1) (0,0.34,1,1) (0,0.32,1,1) - [(0,0,1,1)
v =120 193 = 1,08 v = 0,90 - §
' (0,1,0.62,1) (0,1,0.62,1) (0,1,0.62,1) (0,1,0.62,1)
SFRITBL |y g w22 = 1,35 v =135 WP ay35
(0,0.37,0.1) (0,0.34,0.1) (0,0.32,0,1) (0,0,0,1)
e v o124 v =108 (3P w99 5
o (0,0.37,0,0.15) [(0,0.34,0,0.12) - (0,0.32,0,0.10) (0,0,0,0)
' P=BI | (1.20%) }. (1.04%) ‘ | |
 ¥Pa.2000.88% . [v=1.08(0.63%)  [v?P=0.99(0.96% | §
© (0,0,0,0.68) (0,0,0,0.625  1(0,0,0,0.58) | (0,0,0,0)
P-SI | @.65%) (1.37%) (1.24%) _
vP=1.64 (4/3% [v¥P=1.3501%) veP=1.22(5/6%) §
(0,0,0.62,0.15) |[(0,0,0.62,0.38) = |(0,0,0.56,0.44) (0,0,0,0).
il v =135 v = 1035 P =1 | s
(0.34,1,0.12,1) |(0.34,1,0.12,1) [t0.34,2,0.12,1) [(0.34,1 0.2,1) .
SR v =108 [y =1.08 - (3P o108 v = 1,08
| (0.34,0.05,0.12,1) |(0.34,0.12,0.34,1) _ .
e v = 1,08 v3? =108 |
(0,34,1,1,1) (0.34,1,1,1) (0.34,1,1,1)  [(0.34,1,1,1)
ProSERL v3P = 1,08 19 = 1.08 v - 1.8 VP - 1.08
(0.34,0.05,1,1) [(0.34,0.12,1,1) ,[(0.32,0.17,1,1) | (0,0,1,1)
RESE v 1.0 |v3 - 1,08 M =097 §
(0.34,0.05,0.12,0.81) | (0.34,0.12,0.12,0.02) | ©.22,0.17,0.110.03)(0, 0,0, 0)
i v?? = 1,08 v? = 1.08 PP =0.97 §
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TABLE 2

X2y
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b

I

(0.,0.37)

(0.34,0.34)

(0.34,0305)

(0.34,1)

R ™

(0,0.34)

©(0.31,0.31)

(6,6;32)“ |

10.29,0.29)

{0.33,0.17)

{0.34,1)

'.{ﬂ,bij.

(0,0).

(0.38,1)




CBPF-NF-059/89

-46-

TABLE 3

N | multicritical point
)

(t

L

LA YA T ALY

%& =LS/LBA;. 

SVAS

3p

v

‘1 {{0,0.37,0,0.62)°

1.11 (1.10%)

2.18

1,24

1,63 (1.68%)
4 .. '

2 [(0.0.34,0,0.55)

-

1 0.74 (0.76%)

(@.6%,0.59

5.65

1.08

1.53 (L.54%)
(1.47%)

3 {40,032,0,0.51)

| 0.59 (0.63%)

10,2

0.99

1.50 (1.49%)

& GO;O,U,U)
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TABLE 4
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T multicpitical point | A =K/K.=1 | 1/ | v?0 | ¢*t

(¢15rt,5r 5rt,)

(0.34,1,0.55,1) | 0.74 (0.76%) | 2.82 |:1.08] 1.53 (1.54%)

TABLE 5
multicritical point] A =K /Zs-l- 1/1% u33']~ ¢"1
_ . ) 1 5 | v _

(tla’tzn'tlsftzs?r - |
'(0,0.37,0.62,1) 0.58 2,18 1.24 | 1.09
(0,834,0.62,1) 1.04 | 5.6 | 1.08 | 1.25
(0,832,862,1) 1.45 | 0.2 - 0.99 | 1.36
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