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Abstract

We propose families of infinitely ramified fractals, which we call the m-sheet
Sierpinski gasket with side b ((mSG)s), on which the g-state Potts model can be
exactly solvable through a Real Space Renormalisation Group (RSRG) technique
and which presents phase transitions at finite temperatures for m > 1. We also
propose, within a cell-to-cell RSRG sheme, a criterion for a suitable choice of
cells in the study of antiferromagnetic (AF) classical spin models defined on (or
approximated by) multi-rooted hierarchical lattices, and apply it for the AF Potts
model on some (mSG), fractals. Concerning the Ising model on the (mSG);
family, we obtained the ezact para (P) - ferromagnetic (F) critical temperature
as a function of m; we verified that, for m = 1 and 2, there is no AF order (not
even at zero temperature). We calculated the ezact P-F and possibly exact P-AF
critical frontiers and the corresponding correlation length critical exponents for
g = 2,3 and 4-state Potts model on the (mSG),. The AF ¢ = 2 and 4 cases have
highly degenerate ground states and each one presents, above a certain critical
fractal dimension D4(g,m), an unusual low-temperature phase whose attractor
occurs at a non-null temperature. We proved, for ¢ = 2 and Dy(2,m) > 5.1, that

the correlations have a power law decay with distance along this entire phase.

Key Words: Potts model, Fractals, Real Space Renormalisation Group,
Criticality.
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I - Introduction

Gefen and coworkers [1] presented the first systematic study of critical phenomena
on fractals. Since then, much attention has been paid to the study of spin models
on fractals [2-12] and, in particular, on hierarchical lattices (HL) [13-17]. Despite
the fact that different models defined on several fractal lattices have been exactly
solved (see, for example, [2, 3, 10]), as far as we know, there is no one with
finite and short range interactions which exhibits phase transition at a non-null
temperature (except on bond hierarchical lattices). The existence of such a case
would certainly contribute to a better undertanding of critical phenomena on
these scale (but not translationally) invariant lattices.

In this paper we propose families of deterministic fractals (called by us the
m-sheet Sierpinski gasket with side b) on which the g-state Potts model (see

{18]) can be exactly solvable and which presents phase transitions at finite tem-

perature for m > 1. These fractals constitute hierarchical lattices on which the
aggregated objects are triangles generating, thus, three-rooted HL (differently
from the bond ones which have only two roots). Due to their hierarchical char-
acter, the Real Space Renormalisation Group (RSRG) employed here provides
the exact para (P) - ferromagnetic (F) critical frontiers and their corresponding
correlation length critical exponent v (m). |

Concerning the antiferromagnetic (AF) Potts model, one has to be very cau-

tious when a negative coupling constant changes sign under the first scaling lead-
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ing, thus, to renormalised ferromagnetic couplihgs in all subsequent iterations.
Our interpretation of this fact is that the symmetries of the antiferromagnetic
ground state are not being preserved under renormalisation, and that we should
choose sufficiently large cells (which appear in two subsequent steps of construc-
tion of the fractal) which conserve these symmetries. This point has been ne-
glected on Migdal-Kadanoff-like HL with even chemical distance [19, 20] and, for
g = 2, on the Sierpinski gasket (b = 2, m = 1) [9, 11, 12]. Herein we discuss,
within a cell-to-cell RSRG sheme where the spin states on the roots of the cells
are fixed under renormalisation, this point and prﬁpose a criterion for a suitable
choice of cells in the study of antiferromagnetic classical spin models defined on
HL (or on Bravais lattices which are approximated by these ones). Applying this
criterion, we obtained the P-AF phase boundaries and their respective critical
exponent v#F(m) for Potts antiferromagnets on the m-sheet Sierpinski gasket
families (which we shall refer hereafter to as (mSG); ) which we expect to be the
exact ones.

Another interesting feature of the fractals (mSG), on which we define the
Potts antiferromagnet is the appearance, above a certain critical fractal dimension
Dj(q,m), of a unusual low-temperature phase in which the correlations have a
power law decay with distance. Such systems have a highly degenerate ground
state which generates a non-zero entropy per site at zero temperature, violating
thus the third law of Thermodynamics. This residual entropy appears also, for

example, in AF Potts models on systems like: bipartite lattices (for ¢ > 3), FCC
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lattices (for ¢ > 2 [21]), decorated square latti-oe [22], and some fractals [6, 9,
11, 12]. If one applies to such a systems an argument similar to that of Wannier
(23], one would expect no long-range order of the usual type. But, after Berker
and Kadanoff [24] suggested that such systems may present a distintive low-
temperature phase with algebraic decay of correlations, much work has been done
{25, 21, 26, 27, 18, 28, 6, 29, 20] looking for this phase. Although, in some cases,
there are indications that such a phase exists (see, for instance, [6, 20, 27, 29]),
there is no proof, as far as we know, that the correlations decay algebraically along
this unusual phase. Herein we prove this for the Ising antiferromagnet on the
(mSG), for m > 116 (and hence for fractal dimensions Dy > 5.1). The existence
of an attractor at finite temperature (T # 0) for the ¢ = 4 AF Potts model with
two and three spin interactions on the (mSG)4 with m 2 17 (D; > 3.7) indicates
that such a phase appears also in this case.

The outline of this paper is as follows. In Sec.Il, we define the fractal families
(mSG), and the g-state Potts model with two and three spin interations. In
Sec.II1, we present the two-parameter RSRG formalism (valid for ¢ # 2), as well
as that with one parameter suitable for treating the Ising mode] without three spin
interations. In Sec.IV, we propose a criterion for a convenient choice of cells in
the study of antiferromagnetic classical spin models defined on (or approximated
by) HL. This criterion is a generalisation of the one derived in this section from
a mathematical analysis at T = 0 of the most general form that the mentioned

one-parameter RSRG can have. The appearance of an unusual attractor at a
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finite temperature emerges naturally from such analysis. The application of this
criterion led to the results reported in Sec.V for the Ising model on the (mSG),

and for the ¢ = 2,3 and 4-state Potts model on the (mSG),. Finally, in Sec.VI,

the conclusions are given.
II - Model

The m-sheet Sierpinski gasket (mSG), is a generalisation of the two-dimensional
case of the Sierpinski gasket family proposed by Hilfer and Blumen [30]. Different
problems have been studied in the (15G); family, e.g., spectral dimension [30, 31],
moments of a voltage distribution in resistor networks [32], criticality of self-
avoiding walks [33], residual entropy [9, 34] and other thermodynamical properties
[9] of the Ising model. Each member of the m = 1 family has a generator G(b) (b
is an integer) constitued by an equilateral triangle of side length b which contains
b(b+1)/2 upward oriented triangles of unit side. The (mSG); fractal (where b and
m are fixed) has a generator G(b,m) (see Fig. 1) which consists of m structures
topologically similar to G(b) connected only at three external sites A, B and C
(hereafter called roots). G{(b,m) constitues the n = 1 stage of construction of
the (mSG), fractal obtained in the n — oo limit. Any stage is obtained from
the previous one by replacing each upward-oriented triangle of each sheet by the
respective generator, and leaving the downward triangles empty (see, for m = 2,
Fig. 1(a)). In each step mb(b+ 1)/2 new units are generated leading, thus, to a

fractal dimension D; given by
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In{b(b + 1)m/2)
ol (1)

Dy =

One can easily show that in each stage (n) the order of ramification [35] R,
satisfies the recursive equation R.(m) = mR,_;, where R;(m) > 1 for all m.
Therefore, unlike the m = 1 case which is finitely ramified [30], the (mSG),
has an infinite order of ramification for m > 1. The particular case (25G); was

introduced {13] as an example of an HL in which the aggregated objects are more

complex than bonds,
At each site of the (mS@G), fractal with fixed b and m, we associate a Potts spin
variable g; = 1,2,--,q and consider the gq-state Potts model with two (J;) and

three (J3) spin interactions described by the following dimensionless Hamiltonian:

BH= —K3 3 8(oi,0;) —Ks Y &(oi,050) (2)

<hhy> <EGd>
where 8 = 1/Ki\T, K; = J;B (i = 2,3) and §(0i,--+,00) = 1(0),if oy, =--- = o
(otherwise). The first sum is over all NN pairs of spins and the second one is over

the spins on all the upward-pointing triangles. We consider here either positive

or negative values for both coupling constants.

IIT1 - Formalism

Let us now define our renormalisation group. For this, we perform a scale trans-

formation from one cell of side b to another of smaller side ¥ together with a
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renormalisation of the parameters K; and K3. The last step consists in sum-
ming over the spin states of the b and & —cells, with the restriction that the spins

(04,08 and a¢) on the roots are held in fixed states a, 8 and 7, namely

Wm(a: B, 7) =D W'(a’ﬂ! 7) (3)

where

WM(Q: ﬂ! 7) = {E:} 6(04‘! a)6(aﬂa 5)6(0'03 7) e ¥ =

=Z (6(ca,a)5(am,B)6(00,7) Yo—cen

=Z ploa=a,0p = o0 =17) 0]

W(e,8,7) = {Z} §(o’y, @)6(c’s, BYb(0G,y) P =
= z*' ( 6(6:‘, a)ﬁ(o”s,ﬁ)é(a—a ﬁr) )b’—cel! -

=Z' ploy=0,0p=p,00=") (5)

where (- - -} represents the standart thermal average, a.x-ld D is a constant due to
the renormalisation of the zero energy. Z and Z' are the respective partition
functions of the non-renormalised (b-cell) and the renormalised (¥) one. p(o4 =
a,0p = B,oc = 7) is the probability that the rooted spins 04,0 and o¢ of
the b-cell are in the respective states «, § and 4; a similar definition follows for
v(¢)y = a,05 = B,06 = 7) in the renormalised cell. Due to the symmetry

of the considered cell, it appears only three different "constrained” partition

e
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functions W,(e, 8,7) : W™ = Wo(a,a,a), W}m) = Wn(a,a,7), and win =
Wea(a, 8,7); where (a,8,y = i,2,---,q) and ¢ # B # 4, a # 7. A similar
notation W; (I = F,I and AF) is used for the V/-cell, where the superscript has
been suppressed since m = 1 for this cell. Eliminating D from Eq. (3), we obtain

that

W _ W ©)
W}&’ War
W}"‘} _ ‘B;i_ ™)
W,,th )" War

Therefore our RG preserves the ratios pr/par and pr/par of the above proba-
bilities. Since the m-sheets are connected only at the roots, the ”constrained”

partition functions factorise trivially as

Wala, 8,7) = (Wi(e, 8,7))" (8)

For the Ising case (¢ = 2) obviously only W,(;") and W™ are defined, and the

RG equation (with K3 = 0) is given by

W r’(?m) W 7;?

In this case, the K, parameter space is closed by renormalisation (i.e., if K3 =0

then K, = 0 for the considered triangular cell types).
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Notice that Eq. (9) is equivalent to the preservation of the correlation function

between any pair of the rooted épina of the (mSG),, namely:

wi  w, ,
W?"" =W _I‘S)(G(’),Kz)=I‘,(-;')(G(°’,K,) | (10)

(i?j = A, B, C)

where I‘EP(G(I), K3) and I'E?)(G(c'), K,) denote the correlation functions between
any two rooted spins at the respective stages n = 1 and n = 0 (see Fig. 1(a))
with NN couplings constants K; and K, respectively.

Eq. (10) follows from the isotropic case (I'yp = I'ac = Ipc) of the following

relations (which are easily derivable from Eqs. (4) and (5)):

m Z |
Wi = Wa(1,1,1) = 5 T4 +Tac +Tac +1] (11)
.,. z
Wj(' ) = an(]w 1, _1) = E [IAB —Tac—-TBc+ 1] (12)

where

I‘.—_,- = (a,-a,-} (a.-,a_,- = :|:1; i,j = A, B, C) (13)



CRPF-NF-058/91

IV - A criterion for the choice of cells in an
AF spin model

It is well know that the choice of cells in a cell-to-cell RSRG is an important factor
for the reliability of its results. One should cells that reproduce the geometrical
properties of the whole lattices a.s well as the symmetries of the ground state
configurations of the ordered phases. Although this condition has been taken
into account in most RSRG calculations of spin models on Bravais lattices (see,
for example, [38] and references therein), this has been neglected [9, 11, 12, 19, 20]
in the case of antiferromagnetic models defined on HL. As we will see below, when
the symmetries of the ground state are not preserved under renormalisation, the
RG generates unphysical disconnected basins of attraction. In this section, we
propose a criterion for a suitable choice of cells which avoids, for example, this
kind of problem. First we shall consider the one-parameter RG described by
Eq. (9) and derive such a criterion for either Ising antiferromagnets defined on
(or approximated by) three-rooted HL or AF Potts model on two-rooted ones.
Afterwards we formulate, inspired in the above results, a general criterion which
we expect to be valid for antiferromagnetic classical spin models defined on (or
approximated by) HL with an arbitrary number of roots.

Although Eq. (9) was mentioned in the context of the AF Ising model on
the (mSG);, this equation is valid for systems described by a one-parameter

Hamiltonian defined on cells which have only two different constrained partition
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functions. Let us, thus, consider the g-state Potts model on two-rooted graphs
(or the Ising model on three-rooted ones) with only two-spin interactions whose
Hamiltonian is given by Eq. (2) with K3 = 0. Each spin pair (o;,0;) where
o; = 0; (0; # 0;) contributes with a term e =Xz (e=#™ii = 1) to the
constrained partition functions. Consequently, these functions can be written,

for the non-renormalised cell, as

Wi(X) = % X (I=FI1) (X =) (14)

=0

where N, is the number of bonds of the cell and g,(") is the degeneracy of the state
with energy fe; = —Kai.

Obviously, the first nonzero term (g;(""} X"') of the lowest order in X* of
Eq. (14) represents the dominant term of W, for the antiferromagnetic case (J; <

0) of this model at T = 0. We shall denote each such term simply by

95" Xir = gp e Ps

g?l'} X.i: = g; e-ﬁl_r

where er (£1) is the lowest energy configuration of the AF Potts model on the non-
renormalised cell with the restriction that the spins on the roots are all (are not
all) in the same state. Therefore, er (£) refers to the configuration F (I) where
neighbour spins are in different states and: (i) either 64 = op (04 # og) in the

case of two-rooted cells, (i1) or 4 = 68 = o¢ (04 = B # 0¢) in the case of three-
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rooted ones. Observe that ¢p and ¢; constitute the two lowest energies of the
energy spectrum associated with the considered cell and, therefore, the smallest
of them is the model’s ground state energy for the cell. When e < £ (¢4 > ;)
we shall say that the ground state of the cell is of type F (type I). When ¢r = ¢4,
indeed, the type of the ground state is given by the one with higher degeneracy.

Notice that ,—‘f,fg-)l satisfies the following properties:

Wr(1) _
WiD) =1 (15)
and
. Wr(X)
Jim WT‘(T) — 00 (16)

So we can rewrite Eq. (9) as:

gr e~Pr 1 + fr(X))
gre~fr 1+ f1(X)]

= A(X') )]

with
gre®r [1+ fr(X)]
grefr |1+ fi(Xx")]

where the superscript ”’”, refers to the renormalised ¥-cell and where we sup-

A(X" =

(18)

pressed the superscript (m) since we are now considering systems which, in gen-
eral, differ from the (mSG), fractal.

The function fi(X) (I = F,I) (and similarly f;(X")) defined by

Ny g(") o
flX)=3 S X0 (=FI) (19)

i>h 9
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is a monotonously increasing function with the following properties:

fi(0) =0 | (20)

and
xh'_l:%o fi(X) =00 (21)
Let us now analyse Eq. (17) in the X=0 limit (i.e., T — 0 in the antiferromag-
netic (J3 < 0) case). Using the general properties of fi(X) (I = F,I) (Egs. (20)
and (21)) and relations {(15) — —(16), we obtain (see table I) the possible solu-
tions of Eq. (17) in this limit for different relationships between ¢r, €7 and e, €.

Three main situations arise from an analysis of this table, namely

1) er < €7 and €5 > €7 (case Bl). In this case the point X = 0 (K3 — —oo)
is renormalised into X' — oo (K; — o0). Since Kj — oo is the attractor
of the ferromagnetic phase, we conclude that the RG transformation leads to
a ferromagnetic solution for the AF case at T = 0. This situation arises, for
example, in the Ising model on bond HL with even chemical distance b (such as
the linear chain, diamond HL (see Fig. (1) of [13]), Wheatstone-brigde HL (see
Fig. (2) of [13])) where we renormalise a b—cell into a single bond (¥ = 1). Their
typical flow and phase diagrams in the transmissivity variable {37] ¢ = tanh(K,/2)
are shown in Fig. 2. Notice that, when the basin of attraction of the ferromagnetic
phase contain more than one point (Fig. 2(4)), this choice of cells generates an

unphysical disconnected ferromagnetic phase.
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2) The inequality between eF and ¢ is preset;ved under renormalisation (cases
Al and B2). For these cases X' = 0 is a solution of Eq. (17) for X = 0, which
means that the RG transformation presents an antiferromagnetic solution, at
least, for T = 0. This situation can be found, for example, in the Ising model on
bond HL with odd chemical distance such as the linear chain, Migdal-Kadanoff-
type HL (see Fig. 1(a) — (f) of [20]) and also on bond HL with even chemical
distances where we renormalise & b—cell into a ¥—one with ¥ = b/2 # 1. In Fig. 3
we plotted the two branches t:,_(t) and (1) of the renormalised transmissivity
(£, (t) is always positive and ¢_(t) is always negative) which appear in the latter
case for b = 4 and ¥ = 2 in the Ising model on the linear chain (Fig. 3(a)), and
on the diamond HL (Fig. 3(b)). The union of £, (t) (which is equal to the solution
obtained for the renormalisation of the b = 2 cell into a bond) for 0 < ¢ < 1 with
t_(t) for =1 € ¢t < 0 provides a solution (which we denote by t,,(t)) which is
physically meaninful. On the linear chain this solution leads to the exact known
phase diagram, while on the diamond HL it yields to the expected antiferromag-
netic order at zero temperature for the Ising model with J; < 0 (notice that in this
case there is no frustration in the thermodynamic limit). Concerning the Ising
model on HL with odd chemical distances the solution ¢(t) obtained for ¥’ = 1
are qualitatively similar to t,,(¢), not requiring therefore the use of bigger cells..
Differently from situation (1), we note that points with K; <0 (—1 <t < 0) are
renormalised into K, < 0, causing no disconectedness in the basins of attraction

of the phases.
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8) er = €1 (cases C1, C2 and C3). In this situation the RG transformation
provides a finite and non-null solution for X’. Furthemore, a solution X’ < 1 can
appear when the type of the ground state is preserved under renormalisation. On
the other hand, when there is no such preservation we do not know any example
in which X’ < 1 is & solution. When X’ > 1 the behaviour is qualitatively
similar to situation (1): any K; < 0 renormalises after one RG step to K; > 0.
One example of this situation will be given in Sec. V-A (AF Ising model on the

(mSG)z for b=2 and ¥ =1). When X’ < 1 it can happen two possibilities:

3a) Sucessive iterations of any K, < 0 converges to the paramagnetic attrac-
tor ¢4 = 0 through negative values of K;. Such behaviour occurs, for instance,

in the AF Ising model on the (25G); for b = 4 and b’ = 2 (see Sec. V-A).

8b) If | K| is large enough it can lead to an antiferromagnetic attractor at a
finite temperature, i.e., £ # —1 as illustrated on Fig. 4. We will see one example
of this situation in the AF Ising model on the (mSG), for m > 116 (see Sec. V-
B.1). Using a rescaling argument, Berker and Kadanoff [24] showed how this
behaviour can arise, in the RSRG scheme, on systems whose residual entropy
per particle is non-zero, such as the antiferromagnetic g-state Potts model on
hypercubic lattices [24], on Migdal-Kadanoff-type HL [20], on Sierpinski Carpet
[6, 36] and on Sierpinski Pastry Shell [6]; they also suggested that this unusual

phase is characterised by a power law decay of correlations.

We conclude from the above analysis that when er # &r and s'p # e} one
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should choose cells whose ground state are from the same type, otherwise it can
appear unphysical disconnected phases. When £r = &; (which is the case of the
Ising model on all the fractal families (mSG),) we showed that K3 —+ —ocoisnot a
fixed point, or in other words, the zero temperature character of the antiferromag-
net is not preserved under the RG, since the rooted spins after renormalisation
become nearest neighbours and have a non-zero probability of being all in the
same state. In the latter case if there is preservation of the type of the cellular
ground state, then it can appear an unusual phase characterised by an attractor
at a2 non-null temperature.

We also verified in some examples of a 2—parameter RG (see, for example,
Sec. V-B.2 and Sec. V-B.3) that a necessary (but not sufficient) condition for
obtaining reliable results is to choose cells which preserve the type of the ground
state under renormalisation. In fact we believe that this criterion can be gener-
alised to an n—parameter RG (n > 1) for AF classical spin models defined on {or
approximated by) HL with many roots and such that there are (n + 1) different
restricted partitions functions. The RG recursive relations are, then, constructed
by preserving r different ratios of these restricted partition functions. In this
case there will be (n + 1) configurations (with respective energies €;,€3,- - ,en1
and degeneracies g1, g2, -+ ygn41 ) Where the rooted spins are at frozen states and
the remaining epins are such that two nearest neighbours are at different states.
If &; is the smallest energy (or in the case of equalities among the energies, if g;

is the biggest degeneracy) then we say that the ground state of the cell is of type
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i. The generalisation of the above criterion would then be:

o a necessary, but not sufficient condition for the above n—parameter RG
to describe well AF classical spin models defined on (or approzimated by)
multi-rooted HL is to use cells which preserve the type of the ground state

under renormalisation.

V - Results
In this section we consider the Ising mode! on the (mSG); and the ¢ = 2,3 and
4-state Potts model on the (mSG), family.

V-A Ising model on the (mSG),

In this case, renormalising the b = 2 cell with m sheets (Fig. 1(a), n = 1) into

the ¥ = 1 cell with one-sheet (Fig. 1{(a}, n = 0), Eq. (17) becomes:

ol I 2
with

fr(X) = (3/4) X* +(1/4) X° (23)
and

fi(X) = (4/3) X* +(1/3) X* (24)

which agrees, for m = 1, with Eq. (1) of [1].
Rewriting Eq. (22) in terms of the finite valued ¢ = tanh(K,/2) variable, we

obtained the ¢'(t) and the corresponding phase diagram shown in Fig. 5. The
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exact ferromagnetic critical temperature K TF ‘ /Jz is plotted as a function of m
in Fig. 6. It should be noted that, for m = 2, points with —1 €t < 0 converge
to the paramagnetic attractor (P) through positive (instead of negative) values
of K;. Moreover, for m > 3, points with —1 <t < ¢ (t'(to) = tI) converge
to the ferromagnetic attractor (F), generating, thus, a disconnected unphysical
ferromagnetic phase. This behaviour can be understood in terms of the analysis of
the energies (¢r,€r) and degeneracies (gr, g1) introduced in the previous section

given by:

erp=—-3am gr=4" e}-=—3J; gr =1

!

g1 =-3Jam ¢g;=3" er=— Jy gr=1

So, the ground state for the antiferromagnetic (AF) case of this model on
the non-renormalised cell (b = 2, m sheets) is of type F (because, in spite of
eF = €1, gF > g1) while it is of type I on the renormalised one (¥ = 1) (because
€7 < £p). In order to avoid the unphysical behaviour above caused by the lack
of preservation of the type of the ground state, we should choose other cells that
reproduce exactly the same fractal, for instance the b = 4 with m sheets (see
Fig. 1(a), n = 2) and the renormalised cell ¥ = 2 with m sheets (see Fig. 1(a),
n=1).

The RG transformation (Eq. (17)) becomes, with this new choice of cells:
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gr(m) X 1+ fM(X)] _4xe [1+ fr(X")]
g(m) X~ [14+fM(X)]  3X* 1+ fi(X")]

where the dependence on m of the gr(m) and g;(m) are not any more powers of

(25)

gr(1) and g7(1), for example: gr(1) = 280, g;(1) = 273, gr(2) = 10900, g1(2) =
9675, gr(3) = 480844, g;(3) = 356265, £ and f™ are smooth polynomials
of respective degrees 18m and 16m, fp(X') and f;(X’) have the same functional
forms as those of Eqs. (23) and (24), respectively. It should be noted that, for any
value of m, the ground state for the AF case of this model is of type F for both
cells since, in spite of er = €7 = ~9J, m and ex = 7 = =3 Sy m, gr(m) > g1(m)
for all m and gr > g;. On the other hand, one can easily show that Eq. (25)
presents solutions with X’ < 1 at X = 0 only for gr(m)/gi(m) < 4. As we
can see from the above degeneracies, this condition holds exclusively for m =1
and 2. In Fig. 7 it is plotted, for m = 2, the real solutions on the {—variable
which can have any physical meaning. The positive solution ¢, (t) is exactly the
one obtained in the previous renormalisation (b = 2 — ¥ = 1). Similarly to the
examnples of case (2) of Sec. IV, the physical solution is obtained by the union of
t:,_(t) for 0 < t < 1 with the negative one t_ for —~1 < t < 0. Similarly to the
Ising antiferromagnet on the triangular lattice which due to its full frustration,
is paramagnetic even at T = 0 [23], there is no AF order (not even at T = 0)
.for this model on the fully frustrated fractal (25G);. For m > 3 the negative

branch becomes complex near ¢ = —1 and, therefore, ¢'(t) is given by the positive
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branch ¢, (t) which generates a disconnected ferfomagnetic phase. Despite of the
preservation, for m > 3, of the type of the celular ground state, the considered
RG leads to unphysical results — this example illustrates the ins_uﬂiciency of the
criterion stated in Sec. IV. We believe that, for a given m > 3, the convenient
choice of cells which leads to the exact results for the AF Ising model on the
(mSG); should have sides b = 2* and ¥ = 2"1 where n(1m) is such that each

basin of attraction of a phase is connected.

V-B Potts Model on the (mSG);

Let us consider now the ¢ = 2,3 and 4—state Potts model on a different fractal
family, namely, on the (mSG),. In this case, we renormalise the b = 4 cell with
m sheets (see Fig. 1(c)) into the ¥ = 1 cell with one sheet (see Fig. 1(a), n = 0).
V-B.1 ¢ =2 case (Ising model)

In this case the RG transformation (Eq. (17)) is written as

(168)™ X1 {14 fr(g=2,X)" _ X°
(175)™ X10m 1+ fi(¢g=2,X)" X'

(26)

where

fr(g =2,X) = (1/168)[847 X? + 1200 X* + 975 X® + 595 X®

+213 X" + 75 X1 4+ 13 XM 4+ 9 X8 + X% 27
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and

fila=2,X) = (1/175)[812 X? + 1243 X* + 991 X® + 545 X°

+223 X1 4 81 X2 4 21 XM 4 4 X6 4 X198 (28)

Notice that the above expressions lead, for m = 1 and K » 1, to e-3X "
e 2K 4 4 e~*X £ O(e%X) which agrees with Eq. (9) of [9] valid for all b and
m = 1. In Fig. 8 is showed the plot of Eq. (26) on the {—variable and the
respective phase diagrams for different values of m. The critical temperatures for
the P-F and P-AF transitions are plotted in Fig. 9.

It should be noted that this is an example of the case (C'1) of table I where
the ground state for the AF case of this model is of type I on both b = 4 and
b = 1 cells and where the suitable negative solution for negative values of K,
(=1 < t < 0) appears. We want to stress that it does not appear a new negative
solution for —1 < { < 0 when we increase the sizes of the cells to & = 16 and
b’ = 4 since for any fixed value of %}:F =4 there corresponds a unique value of ¢/
where —1 € #/ < 0. This is an indication that our solution might be the exact
one.

Frc;rn Fig. 8 we see that an unusual AF phase appears only for m > m, &
115.57 (D5 = 5.1). This occurs only when, for T' = 0, the probability p;(m) of
the configuration (I} of the non-renormalised cell becomes much bigger than the
probability pr(m) of the configuration (F) (pr(m.)/pr(m.) = 112). We obtained,

for J; < 0, the same RG behavior with increasing D; as the one proposed by
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Berker and Kadanoff [24] for d—dimensional sfstems with residual entropy per
gite with increasing d. In Fig. 9 the para-ferro and para-antiferromagnetic critical
temperatures for this case are showed.

Let us now calculate the correlation function I'45 on the (mSG), for a fixed
m > m, along the unusual phase with attractor X% # 0.

Using the X —variable (X = e¥?) and interacting n times Eq. (10) we obtain

that

r§ (6™, X) = TGO, X™ = (T,)") (29)
where
X' =Ta(X) (30)

Tm(X) is given explicitly by the square root of the left hand side of Eq. (26).
G'™ is the n** —stage of the (mSG), and X is the coupling constant obtained
after n iterations of the recursive equation (30).

Through linearisation of T,, around the AF attractor fixed point, X}, we

obtain

XW - X4 = A (X = X3F) + O(X?) (31)
where
dn = (8Tn/0 X) |x=x3, <1 (32)

Iterating Eq. (31) n times leads to
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X® - X3p & ()" (X - Xir) (33)
Combining Eqs. (29), (33) with the expression of I'{}(G©®, X) given by:

(X2+1)

() ¢ ~(0) =9\ T/ _

1 (34)

we finally arrive, in the fractal limit (n — o), at:

T48(G, X) = lim [§3(G™, X) - I§P(G), X3p)) =

S Bu(X)ra™  (r4p — 00) (35)
where
—_ (X'QF'I'I) » 1 - 1 X
BaX) =4 X +3) [X‘“’ ((1+xz’p) (3+xz’p))] (X = Xar) (36)

r4p is the chemical distance between the roots A and B at the n**—stage of the

(mSG)4 given by:

rag=4" (37)
and a{m) is defined as:
a(m) = ~ o (38)

Eq. (35) confirms, thus, the power law decay of correlations along this whole

unusual phase as suggested by Berker and Kadanof [24].
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Assuming that, similarly to the asymptotic behavior of I'(r — o0) in d~dimen-

sional Bravais lattices

T4s(G, X) & rgf™ 2™ (g s o0) (39)

we obtained the critical exponent 5,45 as a function of m shown in Fig. 10.

V-B.2 3-—state Potts model

For ¢ = 3 the RG transformation (Eqs. (6) and (7)) can be written as

@™ X (14 fr(g=3, X, V)" _ X°Y’

14+ far(g =3, X,Y)" 1 (40)
(4)m Xm [1+ff(q=3!X!_Y)]m — £ (41)
1+ far(g =3, X, V)" Tt

where fi(¢ = 3,X,Y) (I = F,I,AF) are polynomiale in X and Y with many

terms whose first and last ones are given by:

frle=38,X,Y) = (1/24) [204 X +--- + X?* Y] (42)

filg=3,X,Y)=(1/4) [8X +---+ X7 Y?| (43)
and

far(g=3,X,Y)= [48X?* 4.  +3 X® V?| (44)
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Using the finite value transmissivity [37] variable #3, (~1/(¢g—1) € { £ 1)

defined by

efr 1

oy Py

and a similar variable associated with three-spin interactions:

eks —1
BEEIE-D

we obtained the flow and phase diagrams for m = 2 shown in Fig. 11(a) as
well as the critical frontiers for different values of m (see Fig. 11(b)). Table
II contains the semi-stable fixed points tf and ¢AF which govern the respective
critical behaviours of the P-F and P-AF transitions.

It should be noted that the critical frontier P-F [P-AF] is tangent to the axis
ty = —1/2 [tz = 1] and finishes at the respective attractor F' (K; — oo, K3 —
—o0) [AF(K; — ~o0,Ks — o0)]. This unusual behaviour, where the attrac-
tor is localized on a critical line was also obtained for the pair of attractors
(K3 = —00, Kpp = —o0) and (K3 — 00, Ky — —o0) in the Ising model with
nearest-neighbour (K3) and n.n.—neighbour (K., ) interations on the square lat-
tice [38]. In both cases the attractors are characterised by infinite coupling con-
stants and asymptotic behaviors which depend on the angle of approach.

For increasing valuee of m, the connectivity increases strenghening the corre-

lations; consequently, the regions of the ordered phases become larger as shown in
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Fig. 11(5). On the other hand, on the m — 1 lﬁnit, where the order of ramifica-
tion (R) becomes finite, the critical frontier P-AF [P-F] reduces to the {; = —1/2
[t2a = 1 U t3 = 1} axis bringing the critical temperature down to T. = 0 in both
cases, and the semi-stable fixed point tAF [tF] coincides with its respective at-
tractor AF [F]. This is in agreement with the observed fact (see, for example,
{3]) that short-range spin models on structures with finite order of ramification
do not present phase transition at finite temperatures. It should be noted that,
differently from the fully frustrated Ising model on the (mSG) for m < my,
the 3—state Potts model presents, for all values of m, an antiferromagnetic or-
dering at T = 0 with a non-frustrated ground state. Notice also that, in the
AF case, the ground states of the used cells are both of type AF (considering
J2 < 0 and J3 < —3J;) and are non-degenerated. This case is a generalisation
to 2 parameters of the case (Al) of table I, where T =0 (X — 0,Y — oo} is a

fixed point.
V-B.3 4-—state Potts model

For ¢ = 4 the RG transformation (Egs. (6) and (7)) are given by

(360)" 1+ frig=4.X.Y)" _X°Y
(616)™ [1+ far(g=4,X,V)" ~ 1

(45)

and

(456)" 1+ filg=4XY)" XY
(616)" [1+ far(g=4,X,Y)" 1

where the first and last terms of fi(¢ = 4, X,Y) are:

(46)
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frlg=4,X,Y) = (1/360) [8064 X +.-- + X® Y°] (47)
filg=4,X,Y) = (1/456) [8928 X +--- + X Y?)] (48)
and
Jar(g=4,X,Y) = (1/616) [9168 X + --- + 3 X Y?| (49)

The AF-ground state of this model is of type AF on the non-renormalised
cell (since, in spite of cuar = €7 = e = 0, gar > g1 > gr) and also on
the renormalised one {since ¢,z < €; and €,z < €p, considering J; < 0 and
Js < —=3J;). This is a generalisation to 2 parameters of the case (C1) of table
I where, due to the degeneracies gr and gr, T = 0 ie not a fixed point for any
value of m.

The phase diagram on the (,,13) variables for m = 2 and m = 20 are shown
in Fig. 12. Similarly to the ¢ = 2 case, it appears an unusual AF phase with
attractor at T' # 0 only for Dy(m) > 3.7 (m 2> m. = 17.63), when the probability
par{m) of the configuration (AF) of the non-renormalised cell at " = 0 becomes
much bigger than those of the configurations (I) and (F) ( Al 2199 and
"-:ﬁ(n'ﬁ‘f = 12775). Table III contains the semi-stable fixed points ¢t and tAF
governing the P-F and P-AF phase transitions respectively as well as the attractor
t% 7 of the unusual AF phase. Similarly to the Ising case, as m tends to m, the

fixed points tAF and t5; approach each other until they merge, for m = m,,
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into a single marginal one where v — oo. INotioe also that, for m » m,,
the AF attractor converges to T = 0 since pr and pr become neglectable in
comparison with psp (;ﬁlﬁf—:ﬁ; & 10® and “r":::fs = 10-11). Although the
above behaviour confirms the one suggested by Berker and Kadanoff [24], it
remains to be proved that the correlations decay algebraically along this entire

distinctive phase.

V-B.4 Critical exponents »; and v#* for ¢ = 2,3 and 4

The correlation length critical exponents vy and v#F for the respective P-F and

P-AF transitions are given by

vh =In(b/¥)/In), (s =F,AF) (50)

where A; is the greatest eigenvalue (A4 > 1) of the Jacobian matrix obtained
through the derivation of the RG transformation with respect to the parameters
evaluated at the semi-stable fixed point ¢2 (s = F, AF).

The dependences of v§ and v#f with Dy(m) for the ¢ = 2,3 and 4—state
Potts model on the (mSG), are shown on Figs. 13(a) and 13(5). It should be
noted that vf diverges for m — 1 as expected [9]. Its asymptotic behavior is

given by

vr(q) ~ 1/(Dy(m) = Ds(1)) m—1 (51)
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which is similar to the result
vr~1f(d=1) d—=1

obtained for the Potts ferromagnet on hypercubic lattices [39]and Migdal-Kadanoﬁ'-
like HL {40] (where d = 1 is the lower critical dimension for the P-F phase tran-
sition on these lattices). Similarly to [40] (with ¢ > 2) the exponent »f presents,
as a function of Dy(m), a minimum at a value Dy(m) = D7 which increases
for increasing values of ¢ (see Fig. 13(a)). In the Dy(m) — oo limit vf tends
to 1 for all values of ¢, similarly to the result obt.tﬁned for Migdal-Kadanoff-like
HL {40] which differs form the behaviour found for hypercubic lattices [41] where
F

vi — 3 (d-+ o0).

For the P-AF transition, v#¥ diverges for m = m.(q) as a power law, namely

v#F (g) ~ D(g)(m ~ me())™*®  m — mc(q) (52)

where 6(2) & 0.494, 8(3) = 1, 8(4) = 0.511, D(2) & 7.00, D(3) = In4 and
D(4) = 2.20.
Notice that the exact behaviour of »#AF(3) has the same form as that of

Eq. (51).

VI Conclusion

We have proposed families of deterministic fractals, the m—sheet Sierpinski gas-

kets with side b ((mSG)i), on which the g—state Potts model can be exactly solvable
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and which presents phase transitions at figjte témpera.tures for m > 1. Using a
RSRG transformation which preserves under renormalisation the ratios of the
probabilities that the rooted spine are in fixed states, we obtained the exact
para (P) - ferromagnetic (F) critical frontiers and the thermal correlation length
critical exponent, v (m), as a function of m for the Ising model on the (mSG),
fractal family and for the ¢ = 2,3 and 4—state Potts model on the (mSG),.
The RG transformation for the antiferromagnetic (AF) Potts model provides
undesirable results on some cells of the (mSG), for cetain values of b like, for
example, a renormalised ferromagnetic coupling in the first iteration which can
lead to the appearance of a disconnected ferromagnetic phase. We have discussed
this point and concluded that it occurs due to a failure in the preservation of the
antiferromagnetic ground state of the chosen cells. Then, we proposed a criterion
for a suitable choice of cells in the study of AF classical spin models defined on
(or approximated by) multi-rooted hierarchical lattice. Applying this criterion
we verified that the fully frustrated Ising antiferromagnet on the (25G); never
orders (not even at T = 0) similarly to the triangular lattice. We also obtained
the P-AF phase boundaries and their respective critical exponent v4F(m) for the
¢ = 2,3 and 4—state Potts antiferromagnets on the (mSG), family, which we
expect to be the exact ones. In the cases where the ground state of this model
is highly degenerated (¢ = 2 and 4; in the ¢ = 2 case this degeneracy is due to
frustration) it appears, above a certain critical fractal dimension D%(q,m), an

unusual low temperature phase with an attractor at finite temperature. We have
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proved, for ¢ = 2, that such a phase is characterised by a power law decay of
correlations not only at the transition point, as usual, but throughout this entire
phase. This result had already been suggested by Berker and Kadanoff [24] but,

as far as we know, there has been no proof of this in the literature.
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Captions for Figures

Figure 1: (a) The first three stages (n) of construction of the (25G), fractal.
The second sheet of the n = 2 stage connected to A,B and C is represented by
just a single dashed line for visual purposes. (b) The generator (n = 1) stage of
the t2SG)3. (c) The generator of the (25G),. The roots and internal sites are
represented by empty and full points.

Figure 2: The RG transformation on the t—variable and the respective flow
diagram for (a) the linear chain: renormalisation b = 2 — ¥ = 1, (b) the diamond
HIL: renormalisation b =2 - ¥ =1, eand & repfesent, respectively, the unstable
and the fully stabel fixed points. The dooted line denctes the ¢ = ¢ curve and
the arrows indicate the RG flow directions. By sucessive iterations, an initial
value ¢ # 1 (P-phase) in case (a) will converge to the paramagnetic (P) attractor
tp = 0. In (b), an initial value ¢ < ¢o or ¢ > tI will converge to the ferromagnetic
attractor tf = 1. Another initial value {p < ¢ < tf (P-phase) will converge to the
tp = 0.

Figure 3: The RG transformation i'(t) and the respective phase diagram
for (a) the linear chain: renormalisation b = 4 — ¥ = 2, (b) diamond HL:
renormalisation b = 4 — & = 2. The solid and dash-dotted lines represent,
respectively, the positive (£, (t)) and negative (¢_(t)) solutions.

Figure 4: Typical plot of a RG transformation #'(¢) for negative values of
t and the respective phase diagram for situation (3) (er = ;). (a) the ﬁnit;a

solution, K; < 0, at T = 0 coverges after sucessive iterations to the paramagnetic
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attractor (tp), (b) when |K;| is large enough it leads to a finite temperature
antiferromagnetic attractor (AF).

Figure 5: The RG transformation (Eq. (22)) and the resﬁective phase dia-
gram for the Jsing model on the (mSG);: renormalisation b= 2 — ¥ = 1. (a)
m = 2, (b) m = 3; the flow diagrams for m > 3 are qualitatively similar.

Figure 8: The exact P-F critical temperature as a function of m for the Ising
model on the (mSG);: renormalisation b=2— ¥ =1.

Figure 7: Solutions of the RG transformation (Eqg. (25)) for the Ising model
on the (25G);: renormalisation b = 4 — ¥ = 2. The dash-dotted lines denote,
respectively, the positive and negative branches.

Figure 8: The RG transformation (Eq. (26)) and the respective phase dia-
gram for ¢ = 2 on the (mSG), for different values of m: (a) m = 50 (typical
of m < m.), (b) m = m, = 115.57, (c) m = 140 (typical of m > m.). tmis a
marginal fixed point.

Figure 9: Critical temperatures of the para-ferromagnetic (TF) and para-
antiferromagnetic (TAF) transitions of the Ising model on the (mSG). Notice
the jump discontinuity of Kg TAF [ |J;] at D} = 5.08.

Figure 10: Critical exponent 5 vs. m along the whole unusual phase of the
Ising mode! on the (mSG), for m > m, = 115.57.

Figure 11: The 3-state Potts model on the (mSG)a. (a) Flow diagram for
m = 2. The o and B points denote, respectively, the semi-stable and fully stable
fixed points; the dashed and solid lines indicate the flows and the critical frontiers

respectively. (b) P — F and P — AF critical frontiers for different values of m.
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Figure 12: Flow diagrams for the 4-state Potts model on the (mSG),. {a)
m = 2 case, which exihibts only the P and F phases. (b) m = 20 case, where
it appears the AF phase with attractor at a finite temperature showed on the

inset (c). The flow diagrams for other values of m with m > m, £ 17.63 are

qualitatively similar to that of m = 20.

Figure 13: The respective correlation length critical exponents »5 and v¥
vs. Dy(m) for para—ferromagnetic (a) and para-antiferromagnetic (b) phase tran-
sitions. The asymptots represent the lower critical dimensions for different values

of g.

Captions for Tables

Table I: Real solutions of Eq. (17) in the X = 0 limit for different relations
among er, €], €p, £;. Whenever there is the possibility of baving two solutions
we indicate them by X, and X.

Table II: Values of the semi-stable fixed points ¢f' and #AF for ¢ = 3 on the
(mSG), for different values of m.

Table III: Values of the semi-stable fixed points ¢F, tAF and the unusual

c

AF —attractor () ) for ¢ = 4 on the (mSG), for different values of m.
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Table I - |
PossIBLE CAsSES | SOLUTIONS OF EQ. (17) IN THE X = 0 LIMIT
ep>€; ep<er ep=€f
CASE (A) €5 > €1 | CASE A1) CASE A2) CASE A3)
AX)=0 X' =0 no real no real
solution solution
CASE (B) e < €1 | CASE Bl) c©asE B2) CASE B3)
| X, =0
A(X") > o0 X' - and X' = 00
X; = 00
CASE (C) er = €1 | CASE C1) CaASE C2) CASE C3)
X, #0
and
X'#£0 X' #0 finite
A(X') = &2 and and
finite finite X; — 0if
Y
L

I
—_—



Table 1I -

tf = (ts,13) |
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tAF = (14, 1;)

(_1/2’ 1 )
(0.07007, 0.29470)
(0.09403, 0.24317)
(0.09306, 0.22328)
(0.08780, 0.21234)
(0.06297, 0.18952)
(0.02823, 0.16199)
(0.01794, 0.14894)
(0.01301, 0.14016)
(0.00909, 0.13081)

(1, —1/2)
(0.93461, —0.47241)
(0.86671, —0.45039)
(0.81011, —0.43684)
(0.76041, —0.42683)
(0.58791, —0.39595)
(0.37136, —0.34369)
(0.31109, —0.31909)
(0.28110, —0.30343)
(0.25566, —0.28759)
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Table III -

m tf = (ts,t3)

1 (=173, 1)

2 {0.07306, 0.25262)
3 (0.09957, 0.20771)
4 (0.10037, 0.19144)
5 (0.09598, 0.18303)
10 (0.07143, 0.16725)
12 (0.06429, 0.16420)
14 (0.05841, 0.16172)
16 (0.05349, 0.15958)
18 (0.04932, 0.15769)
20 (0.04574, 0.15597)
m tAF = (ty,13)

thr = (ta,t2)

m. = 17.63436  (0.97021, —0.32647)

18
20
25
30
35
40
45

(0.94670, —0.32270)
(0.89129, —0.31522)
(6.79587, —0.30394)
(0.72491, —0.29580)
(0.66927, —0.28925)
(0.62444, —0.28374)
(0.58755, —0.27898)

(0.97021, —0.32647)
(0.98501, —0.32927)
(0.99590, —0.33186)
(0.99952, —0.33307)
(0.99992, —0.33327)
(0.99998, —0.33332)
(0.99999, —0.33333)
(0.99999, —0.33333)
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