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Abstract

Within the framework of a recently generalized Statistical Mechanics and
Thermodynamics, we establish the Fluctuation-dissipation theorem for mag-
netic systems, as well as an integral transformation (Hilhorst formula) which
enables a quick derivation of the specific heat and the equation of states for
the d-dimensional classical ideal gas. We finally discuss possible applications
of this formalism to Condensed Matter Physics, Astrophysics and other areas.

i
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I Introduction

During recent years, an interesting tendency is developing in Physics, namely
towards noneztensivity (or nonadditivity, as sometimes referred to). These
generalizations contain traditional extensive Physics as particular cases. They
present a somehow holistic (context-dependent) nature, and mainly follow
along two streams: Generalized Statistical Mechanics and Thermodynamics
[1-19], and Quantum Groups [20-33]. PFurthermore, a possible connection
between those two areas has been very recently proposed [34]. Let us briefly
review them.

Generalized statistical mechanics can be obtained through the following
generalization of the entropy [1]:

5=kl e e

where p, is the probability associated with the microscopic state s of the
system, and &k a conventionally chosen positive constant. The ¢ — 1 limit of

Sy yields the well known Shannon expression —kg Zp. In pr. (where we have

used pI~1 ~ 1+ (¢ — 1)Inp,). S, satisfies a great vanety of properties and
yields a great variety of results. Let us mention:

(i) S =20, Vg ¥Y{p.};

ii) S, attains its extremum (maximum for ¢ > 0 and minimum for ¢ < 0
9
for equiprobability (i.e., p. = p«, V(8,8'));

F

(iii) S, is expansible for ¢ > 0, i.e.,
Se(pr,p2, - pw) = S4(pr, P2, Pw, 0} V{p.} (2)

(iv) S, is concave (convex) for all {p,} if ¢ > 0 (¢ < 0), a fact which
guarantees thermodynamic stability for the system;

(v) H-theorem: under quite general conditions [5-7] dS,/dt is nonnegative,
vanishes and is nonpositive for ¢ > 0, ¢ = 0 and ¢ < 0 respectively (¢
being the time);
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(vi) If £ and X’ are two independent systems (i.e., frur = prprr, where
p denotes the density operator, whose eigenvalues are the {p,}), 5, is
pseudo-additive, 1.e.,

(S2V% [k) = (SB/K) + (ST (k) + (1 - (SE/RNST 1K) (3)
Consequently, entropy is generically extensive for and only for ¢ = 1;
SPYE' is smaller (larger) than ST + S¥ if ¢ > 1(g < 1);

If we define the entropy operator S, = k(1 — 5*~9)/(1 — q) (s referred
to because it satisfies < S, >,= I'rp?S, = S,), Eq. (3) (which holds
for arbitrary (pg, pz¢)) can be rewritten as follows:

(577 1K) = (S7/R) + (57 [B) + (a = )(SF/RYST [B). - (9)

Notice the (1 — ¢) = (¢ — 1) changement from Eq. (3) to Eq. (4).

(vii) For generic and fixed {p,}, S; monotonically decreases for ¢ increasing
from (—o0) to (+00); 'lim S.({p,}) = 00 and lim S,({p.}) = 0;
0 g—ron

(viii) Canonical ensemble: The optimization of S, under the constraints
Trp =1 and Trp*H =< H >,= U, [3] (where H is the Hamiltonian)
yields the generalized equilibrium distribution [1, 3]

. _ J h=Aa- i if i-g1~gH>0
p= . (5)
0 , otherwise

with .
Z, = Tr(l - B(1 — H|™ (6)

where 8 = 1/kT is a Lagrange parameter. It can be shown [3] that 1/T =
1 .
0S,/0U Fy =U, =TS, = -38 L and U, = -S4 1.

1-q

The diagonal form of (5) is given by

T ki
p‘={!l—ﬁi‘—z§u~— if 1~ B(1-g)e, >0 @

0 , otherwise
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where {€,} are the eigenvalues of 7. In the ¢ — 1 limit, Eqs. (5) and (6)
recover the well known Boltzmann-Gibbs distribution

p=e"/2, )

with

Zy=Tr efH (9)
Besides the above properties, the present generalized statistics has been
shown to satisfy appropriate extensions of the Ehrenfest theorem [9], von
Neumann equation [13], Jaynes Information Theory duality relations [9],
fluctuation-dissipation theorem [16], Bogolyubov inequality [11], Langevin
and Fokker-Planck equations [14], Callen’s identity [15], among others. Last
but not least, Plastino and Plastino [8] have pointed that g # 1 Thermody-
namics overcomes the Boltzmann-Gibbs inability to provide finite mass for
astrophysical systems within Chandrasekhar’s polytropic model. We come
back onto this point later on.

Let us now focus Quantum Groups (gg-deformations, gg-oscillators, ga-
calculus, where we use ¢g, instead of the traditional notation ¢, in order
to distinguish it from the present entropy parameter ¢). Quantum groups
generalize standard Lie groups and algebras, which are recotered in the gg —
1 limit. The generalization occurs by appropriately modifying { “deforming”)
the commutator relations which determine the Lie groups and algebras (e.g.,
creation and annihilation bosonic operators might satisfy AAY - v AtA =1
with gq¢ # 1). Nonextensivity appears because certain basic eigenvihues
associated with £ U ¥’ (¥ and X’ being independent systems) differ from
the sum of those associated with ¥ and X' respectively. For example, the
eigenvalues associated with the gg-deformed bosonic number operator are
given by ([33] and references therein)

n _ 1

If £ and ¥’ are independent bosonic systems (respectively characterized by
ng=01,2---,and ngr =0,1,2,-- .}, we immediately verify

[nlzur = [v]z + [n]z + (a& — Dln}z[nle (11)

Consequently, [n] is generically extensive if and only if ¢4 = 1. The analogy
with Eq. (4) is, obviously, striking. Quantum groups have found applica-
tions in the inverse scattering method, vertex models, anisotropic spin chain

(n=0,1,2,..) (10)
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Hamiltonians, knot theory, conformed field theory, heuristic phenomenology
of deformed molecules and nuclei, non-commutative approach to quantum
gravity and anyons, the discussion of the existence of dark matter.

In a very recent work [34], we proposed (for the case where the g-source
of nonextensitivity cancels the gg-source of nonextensivity) a possible con-
nection between Generalized Statistical Mechanics and Quantum Groups, ¢
being a nonuniversal function of ¢, depending not only upon the system but
also on its state. For example, in the (g,9g) — (1,1) limit one expects, for
a system in thermodynamic equilibrium, ¢ - 1 o< g¢ — 1 where the prefactor
depends on the temperature,

In Section II we discuss fluctuations in a magnetic system for arbitrary
¢; in Section IIT we discuss an interesting integral transformation (Hilhorst
formula), which we apply to the classical ideal gas in Section IV; in Sec-
tion V we discuss the possible regions of physical relevance of the present
nonextensive Thermodynamics; we finally conclude in Section VI.

II Fluctuations in a Magnetic System

We discuss, in the present section, energy fluctuations (sperific heat) and
magnetic dipolar moment fluctuations (isothermal susceptibility). We first
review the fluctuation-dissipation form for the specific heat (established in
[10]) and then establish the corresponding one for the susceptibility.

By using U, = Trp?H with p given by (5) and (6} we straightforwardly
obtain the specific heat C, = T'9S,/8T = dU,/oT [10]

Co _ ¢ ag v _
kO (kT2 {Tr [p 1-5801 -~ q)’}?{] (12)
- [Tri"H] [Trpl T q)’;(] }

q i . —
(kT)’{<1-ﬂ(1-—q)?7t>.-(H):/z: } (1)
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This expression can be rewritten as follows:

. . '
C, _9%;° H _ H
k& (kT) <(1 -B(1-9H <1 - 801 - q)ﬁ>1 ) >1 (13)

hence C,/kq is, in all cases, a non-negative real number (thermodynamic
stability with respect to energy fluctuations).
Let us focus now the magnetic susceptibility. We consider the Hamil-

tonian H({3:}) — uH ZS’:, where u is the elementary magneton, H is an

uniform external mg.gm;tic field applied, along the z-axis, on the system of N
interacting spins {S;}, and H({S;}) is an arbitrary (H-independent) Hamil-
tonian. The total spin along z is given by

N .
S.=) 8 (14)
i=1
and the average total magnetic dipolar moment by
M, = p< S, >= uTri'S, !‘
~ A A t‘ A
Tr [1 - B(L - (H({S:Y) - sHY 5! )] [OH
: (15)

H

= j Ti_q [
{Tr [1 — B(1 - (RS} - pHZé.f)] }

It follows straightforwardly that the vanishing field isothermal magnetic sus-
ceptibility x, = limy_o(0M,/0H) is given by

« = S{r e
_ [Tr(§°§,)] [Tr;.“l _ﬂg’_ q)ﬁ]} (16)

gu 5’3 & -1 v
e (rma). (e} o
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This expression can be rewritten as follows

_ etz S, S, ’
Xe = T <(1-ﬂ(1-—q)7‘i <1-ﬂ(1-q)7-‘£>1) >, ()

hence X,/q is, in all cases, a non-negative real quantity (thermodynamic
stability with respect to magnetic dipolar moment ﬂuctuatlons) In the hmlt
g —+ 1, we recover the well known expression x, = (4*/kpT) < (S,—

5', >1)? >1. The general form for the ﬂuctua.tion—dnssnpa.tlon theorem ha.s
just now been established [16], and recovers Eqs. (13) and (17) as particular
cases.

IIT Hilhorst Formula

This Section is dedicated to an interesting integral transformation recently
established by Hilhorst [35]. From the definition of the gamma function we
have that

pr = T(v)_[ dz ¥ le™#* (,u>0v>0) (18)

If we identify now v =1/(¢—1) (hence g > 1) and p =1 — B(1 - q)e, > 0
({e,} being the eigenvalues of an arbitrary Hamiltonian ) amd use Eq. (18),
Eq. (6) can be rewritten as follows:

28) =y 3, de o0 (19)
q-l
Whenever E [ = / E, this equation becomes
Z,(B) = L) _/ dr z+le Ee‘ﬁ("'l)“ z (20)
q—l

Finally, with a = ﬁ(q — 1)z we obtain

Z(B) = / da ol T Zy(a) (¢>1) ()

(,_,)[ﬂ(q— 1))+
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which is Hilhorst’s formula. If we recall now that the Mellin transform

M(y; f(z)) of a function f(z) is defined by [36]

Muif@) = [ s fz)er (22)
we see that Hilhorst formula can be rewritten as follows
1 e™*Zi(B(g —1)=z)
Z (=M : 23
E( ) (q —- 1 (9_1) ( )
Let us now verify the ¢ — 1 limit. Using Stirling formula
1 1 \#
r2)~ (q L) R (24
we obtain
Z(B) ~ / daeTT 7, (a 25
where o
rla)=(2—g¢)lna— 3 +1 5 (26)

The derivative r'(a) vanishes at o = (2 ¢)8, in the nelghborhood of which
we have

r(@) ~ (2= (2~ 98+ (4-1) - 55—
Replacing this into integral (25) we obtain

Lee-gF oo [ la—(2-g)ff
Z(8) V2r(g—-1)8 Jo do p{ 2(¢ - 1)(2-¢)8?
Introducing v = [a/(2 — ¢)8] — 1 we obtain

)ﬂ,[a (2 f* (27

ba@ e

Z(B) ~ 2Z‘((f 11 f dv &~ XD (29)
Z,(B) MRS i
~ \/21riq—1 /ood e (29)

Z(B) 2”(‘1 ) ~
Bt =) Zy(B)

(29")
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as expected. In other words, though in a nontrivial manner, Hilhorst formula
reproduces identity in the ¢ — 1 limit.

Classical Ideal Gas

We discuss here a system constituted by N non-interacting non-relativistic
particles of mass m free to move in a d-dimensional hypercubic box of volume
V = L3 (with periodic boundary conditions). The classical partition function
is given by

N dN[2
50) = g () = DB (30)

where k is Planck constant. Replacing this into Eq. (21) we straightforwardly
obtain
br(A -4

r(&)

Z,(B) = ) g (31)

for 1 < ¢ < 1+ . Consequently,

F, = —kT-L

-

pr(4-4)1"
_ kTq [ . ('1"l 2 )] | (kT)(l—e)‘i! + T (32)

1-¢
hence, the specific heat C, = —T@F,/3T* is given by

1-¢
pr{Lt -«
q 11 2 )] (kT)(l—q)'F (33)
r (&
We remark that: (i} in the ¢ — 1 limit, we recover the well known universal
(mass independent) result C; = kgdN/2; (ii) for d = N = 1, we obtain
C, & T'3*, thus reproducing the result obtained in Ref.[10] (the prefac-

tor depends on nonuniversal quantities such as m); (iii) nonuniform conver-
gence aspects emerge (e.g., }Lr.no liII‘I C, = kdN/2, whereas lin} ’1'1-1310 C, =0},
[ hand [ and

dN dN
Co=k— |1 -{g-1)5
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similar to those which occur in gquantum Boltzmann-Gibbs statistics (e.g.,

;lr-iH}; }.1_1.% Ci = kpdN/2 whereas 11_1"% %11‘1(1) Cy = 0); (iv) were it not the very

restrictive condition 1 < ¢ <1+ %, the prefactor % [1 - {qg— 1)1’;—\"] would
make, for ¢ # 1 and N — o0, a crossover from a N-behavior to a N2-behavior
(the crossover occuring at Nerossover = 2/d(q — 1)). In fact, Eq. (33) might
be (in the present or in a similar form) correct under conditions larger than
those which we have used to deduce it; for instance, it could be correct, as
suggested by numerical results presented in Ref.[10] (see Fig. 9 therein),
also for 1/2 < ¢ < 1 (in which case, the prefactor HN+01- @)%] indeed
presents the above mentioned N to N? crossover in the N — oo limit, the
crossover occuting at Neossover = 2/d(1 — gq)). The possibility of an enlarged
validity (for instance, 1/2 < ¢ <1 in the dN — oo limit) for Eq. (33) is an
interesting one. Indeed, Plastino and Plastino [8] used the q = 1 equation of
states for the classical ideal gas as well as U, = TrpH and elegantly solved,
for ¢ > 9/7, the Chandrasekhar’s polytropic model paradox. A fully consis-
tent calculation would have to generalize all the steps of the calculation (and
not only the entropy and its direct consequences). In particular, one should
have to use U, = T'rp*H (as justified in [3, 9] and in many subsequent works)
and the (still unknown for arbitrary ¢) generalized equation of states of the
gas. Such calculation would certainly depend, for instance, on the energy
spectrum being say entirely positive (¢, = An? + B with A > 0, B > 0 and
n = 0,£1,42--.) or only partially positive (B < 0). So, cettain conditions
could exist such that the galaxy mass is finite for ¢ < ¢. < 1, diverges for
¢ — g ~ 0, and remains infinite for ¢ > ¢, (in particular for ¢ = 1, thus
recovering the well known paradox). In such a situation (¢ < 1), maybe one
could use Eq. (33). This possibility fits very nicely with a crossover to a
N2-behavior for a galaxy (made of a large number of stars which interact
“all with all” because of the long-range gravitational forces)!

Let us now address the equation of states of the classical ideal gas. We
have that

Py _ 95,

TV (34

where 7, is the pressure. But S, = (U, ~ F,)/T, consequently

P _ 10 __@_(552_1.) l_z_sl'Ll_]
T-Tav| 9\ 1-¢ ) Y5 14 (35)
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If we use Eq. (31) into Eq. (35) (D is defined in Eq. (30)) we easily obtain

Nd
2

a_ e\
br ("1'1 2 )] (kT)H‘F(l—c} (36)

(%)
The same type of remarks we did for C; are feasible here. In particular, in the

g ~+ 1 limit, we recover the well known relation 5,V = NkpT. In addition
to this, Eqs. (33) and (36) imply a remarkably simple relation, namely

AV =N[1-(g-1

dVp, _
hence _
Poo_ G (37)
1 Gy

In addition to the above discussion of the polytropic model paradox, let us
mention that, at fixed {N,T), Eq. (36) implies 5,/ o« (R?/V)s~UN (where
we have used the definition of D). Consequently, if ¢ > 1 (as suggested in
[8]), the pressure abnormally increases (decreases) if the volume decreases
{increases) and/or if h increases (decreases), i.e., if quantum effects become
stronger (weaker). In other words, for fixed number of stars and in a roughly
isothermal situation, this effect on one hand helps, for small values of V,
compensating the gravitational tendency towards collapse of the galaxy. On
the other hand, for large values of V, the pressure is abnormally small, hence
the gas remains relatively confined, thus behaving as a physical cut-off which
(presumably) impeaches the total mass integral to diverge {as occurs for

qg=1).

IV Increasing N

We want to focus here the role of the number N of particles of a system,
and its possible relevance in the extensive vs. nonextensive discussion. To
simplify the discussion, let us assume N classical rigid spheres with radius b
contained in a volume V = L3,

We further assume that the spheres are homogeneously distributed and
interact through two-body interactions characterized by a potential energy



-11- CBPF-NF-056/93

o(Fi5) (Fi = F; — ;) such that

+o0 if ri; < b

p(F) = wo<0 if b<r; <¢ (38)
{ 0 if ri;>¢€

where { > b is the range of the forces. We assume, for simplicity once more,

that £ is a multiple of b (i.e., {/b € A). Let us discuss the ground state of

the d = 1 compact system (i.e., V = L? = Nb?). The total energy E is given

by

N(N-1 .
o f 1SNSN =(¢/b)+1
E(N) ={ [N;’n;—l) +(N - N§| @ if N2 A" (9

If the system is half-compact, Eq. (39) still holds but £/b is replaced by ¢/2b.
If L/N = ¢, then E(N) = (N — 1)gg, and, if L/N > £, then E(N) = 0,
VN. Typical cases are represented in Fig. 1. When E(N) exhibits a N3-type
growth, we refer to the system as noneztensive (NEXT); when it exhibits a
N-type growth, we refer to the system as eztensive (EXT). The situations
that might occur are depicted in Fig. 2. Along the line V = (N —1) of
case (a) we have a typical compact clustering situation of Condensed Matter
Physics, and nonextensive behavior is expected for small clusters. Case (b)
corresponds to relatively diluted long-ranged-force systems, such as domain
walls in some d = 2 systems or grain elastic attraction (or repulsion) in d = 2
or d = 3 nucleation in alloys (or similar situations in Nuclear or Elementary
Particles Physics, in cases where there are “droplets” whose size is smaller
than the range of the forces. Case (d) (or case (c)) corresponds to situations
such as a galaxy, where the system is essentially nonextensive (as strongly
suggested by the result of Ref. [8]).

Let us now focus the N-dependence of a typical physical quantity P,
for various values of ¢. Suppose we are increasing N in case (a) of Fig.
2 along a line roughly parallel to the forbidden-nonforbidden frontier (i.e.,
OV/ON ~ b?) and slightly above it. A typical behavior one expects for
F, is depicted in Fig. 3. Nonextensivity should become relevant only for
Nmin € N < Npor (intermediate size). Otherwise, all values of ¢ should
merge into the ¢ = 1 behavior. The situation mostly encountered corresponds
t0 Nmin = Nunas, hence no ¢ # 1 behavior appears. However, depending on b,
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¢ and the path we are following {in the (N, V) space), it might happen that
Nmin =~ 0 (hence nonextensivity is expected to appear at small systems), or
Nyaz — 00 (hence nonextensivity is expected to appear at large systems; see
[32]), or both Npin =~ 0 and Nye. — oo (hence nonextensivity should appear
at all sizes, as seems to be the case in gravitational astrophysical systems).

H, instead of Eq. (38), we have

+oo if r; < b
o(Fy) = %e"‘if ¢, otherwise (40)
(with ¢ > 0;8 < 0)

the situation is much richer since it can be b > 0, £~ > 0 and a%ac(d)
where a.(d) is a crossover value which monotonically increases with d; there
are consequently 2 x 2 x 3 = 12 different cases. We may have singularities
only at r=0ifb=0 and a > a.(d) and ™! > 0 or if b = 0 and a > a.(d)
and £~ = 0 (analogous to the case (b) of Fig. 2), or singularities only at
r=coifb>0and a < a.d) and { ' =0o0rif b =0 and a < a.{d) and
£71 = 0 (analogous to the case (c) of Fig. 2), or both singularities if b = 0 and
£1=0and a = a.d), (a.na.logous to case (d} of Fig. 2),'ar no singularities
if 5> 0and ¢! > 0 and o2 Zafd)orif b=10and {' > 0 and a < a.(d)
orifb>0and ¢ =0 and a > a(d) (analogous to case (a) of Fig. 2).
The N-dependence of P,/P; should closely follow the discussion presented
for Eq. (38). The b = £" = 0 (i.e., @(rij) o 1/r3) diluted (i.e., N/V small
enough) case deserves some more words. If a > a.(d) an essentially extensive
behavior is expected for all values of N/V small enough (hence the ¢ = 1
description should be satisfactory). If @ € a.(d), nonextensive behavior is
expected to emerge in an increasingly stronger manner for increasingly larger
(though still small) values of N/V (see, also, [32]}. Then a ¢ # 1 description
is expected to be unavoidable. In particular, unphysical singularities (such as
the mass divergence in Chandrasekhar’s polytropic model for stellar matter)
are expected to be present for ¢ > ¢.(d, @) if ¢.(d,a) < 1 or for ¢ < ¢q.(d, a)
if ¢.{d,a) > 1 (this is the situation found in [8] by Plastino and Plastino,
whose calculation yields ¢.(3,1) = 9/7). Also, it seems reasonable to expect

2.(d, a.(d)) = 1, Vd.
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V  Conclusion

In the present work we have briefly reviewed the main aspects of the Gen-
eralized Statistical Mechanics and Quantum Groups, have presented, for the
first time, Hilhorst formula, and have established: (i) the striking analogy be-
tween Eqgs. (4) and (11); (i1) the fluctuation-dissipation theorem for magnetic
systems (Eq. (17)); (iii) the specific heat (Eq. (33)) and equation of states
(Eq. (36)) which imply a simple relation, namely Eq. (37)) for the classical
ideal gas; (iv) the expected extensive and nonextensive physical regions (Fig.
2), in terms of b (rigid sphere radius or, more generally speaking, minimal
allowed distance), { (cut-off length of the forces) and a (characterizing the
range of the forces if b = {1 = 0), as well as the expected N-dependence of
arbitrary physical properties for arbitrary values of ¢ (Fig. 3). As a final re-
mark, let us recall that, within the possible connection between Generalized
Statistical Mechanics (characterized by ¢) and Quantum Groups (character-
ized by ¢¢) [34], ¢ — 1 is roughly proportional (strictly proportional in the
ge — 1 limit) to gz — 1, the proportionality coefficient being a nonuniver-
sal function of the thermodynamic state of the system, in particular of the
temperature (if the system is at thermodynamic equilibrium). Consequently,
various calculations that have been done here at fixed ¢, could be redone at
fixed gg; in general, they differ, excepting of course for the particular case
¢ = ge = 1 (extensive physics). g

Naturally, experimental and further theoretical work in Astrophysics and
Gravity (galaxies, massive stars, black-body radiation), Condensed Mat-
ter Physics (domain walls, grain interaction in nucleation in alloys, cluster
physics), Nuclear and Elementary Particle Physics (“droplets” whose linear
size is smaller than the range of the interactions) as well as in Human Sci-
ences (learning curves, Neural networks, Economics) are strongly needed (in
order to clearly establish the conditions under which nonextensive physics is
unavoidable) and extremely welcome.

I am deeply indebted to H.J. Hilhorst for communicating to me his inter-
esting integral transform, to A.J.R. da Silva with whom I longly discussed
the content of Section V, to T. Kodama who first suggested the “droplets” as
possible candidates for nonextensivity, and to M.R.-Monteiro and 1. Roditi
for permanently illuminating my knowledge of Quantum Groups. Useful re-
marks from L.M. Falicov, M. Berry, R. Maynard, J.M. Sanchez, B. Koiller,
F.C. de S4 Barreto, M. Saraceno, C.A. Balseiro, A. Craievich, P.A. Lingard,
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I.K. Schuller, EM.F. Curado and W. de Heer are also acknowledged with
pleasure. Last but not least, I am grateful to J.L. Mordn-Lépez who made
possible my participation at the interesting Il Latin-American Workshop on
Magnetism, Magnetic Materials and their Applications, where I found great
inspiration.
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Caption for Figures

Fig. 1 - N-dependence of the ground state energy E(N) (o < 0) for typical
situations associated with a simple d = 1 classical system (Eq. (38)); ¢/b = 8;
L is the accessible length. (o) denotes nonextensive (extensive) behavior;
the last » on each curve is located at N*,

Fig. 2 - Physical regions of extensive (EXT) and nonextensive (NEXT)
behaviors related to the model characterized by Eq. (38) (V = d-dimensional
accessible volume, b = rigid sphere radius, { = cut-off length of the two-body
forces): (a) 5> 0and ¢! > 0;(b)b=0and {1 > 0; (c) b>0and ¢! = 0;
(d)b=¢1=0.

Fig. 3 - Expected N-dependence of an arbitrary physical property P, for
typical fixed values of ¢ (the choice Pi{N) > P;(N) in the intermediate
region N € [Npin, Nmas] i8 a conventional one). Ny, and N,... depend on
the physical path followed in Fig. 2. (see the text).
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