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ABSTRACT

Exceptional non linear Lagrangeans for a spln-two fleld in terms of
the Fierz variables are obtained using the method proposed by Lax. They
are ecquivalent to the Born-Infeld Lagrangean for a spln-one field theory

and are free from unbounded growth of wave velocities.
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I INTRODUCTION

The alm of this paper is to propose a new method to arrive at non
linear equations of motion for spin two-fields. This method has been
successfully applied by Boillat to generate a special case of non linear
Eletrodynamics. Traditionally, from the theory of representation of the
Lorentz-Poincaré group, a spin-two field is described In terms of a
symmetrlc second order tensor ¢“v. Beslides such a standard formulation 1t
is possible to use a third order tensor Ausu to represent such a
field. This alternative description, proposed some 50 years ago.by Fierz,
has been almost forgotten, untll very recently when it the enterprise of
reviving it was undertaken.. In ref. (1) a complete self-consistent theory
of linear spin-two fleld using the Auvx varlable was presented.

This Flerz representation deals with a third-order tensecr Aﬁpu whose
propertles will now be synthesized. )

The tensor Au’u is anti-symmetric in the first pair of Iindices, that

is

+ A =0
wfip Bup

»
and it is pseudo-trace free, that is A:’ = 0. The dual A:sv is defined as

usual by
_1 ¥
A::Bv B 5 nu.ﬂ Ap!v
in which nuﬂps = v-g euﬂps and e“Bps is the completely anti-symmetric

Levi-Civita symbol. The determinant of the background metric g“v is
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represented by g. This is equivalent to the cyclic condition

These conditions reduce the number of Independent components of Aup
from 64 to 20, which is still a very large number, far beyond the minimum
required to describe a spin-two fleld. It is worth to comment that the
same difflculty occurs with standard varlables. Indeed ¢uv has too many
unnecessary variables to describe the true physical degrees of freedom
associated to a spin two fleld. The reascn for the use of any varlable
that contalns unobservable quantities lies at the kernel of modern Physics
which has at 1ts foundations the existence of general symmetry principles,.

Until now the study of the spin-two fleld equationé‘in terms of Flerz
variables had been limited to the linear case. Two maiq goals were then
achieved: the complete descriptlon of a Lagranglan and Hamiltonian

formulation of the theory and 1lts quantum versiontz).

We can sum up the
achievements of such an enterprise by just notlicing that, by using Flerz
variables, the theory of spin two field shows up in a complete analogy to
Electrodynamics.

On the other hand, wWwe have learned, from the analysis made by
Thirring, Feynman and many others, that any theory which 1is a candidate to
describe gravitaticnal processes must be non-linear. In this vein, it is
natural to examine non-linear theorlies for the Aﬂﬂp field.

We then face the following question: how to obtaln a non-linear
equation of motion for Anﬂ”? To be more specific, what should the criteria

to which one should adhere to guide us towards this goal be? The simplest

way should be to proceed by analogy to the case of the standard



CBPFF-NF-055/93

—3—
second-order tensor variable ’uv by using an interative
process(m. However, attempts to provide an equivalent prescription for

Aﬂﬁ“ along thlis line were not successful. This motivated us to lock into
other possible methods.

It turned out that a very practical and efficient method to solve this
question was the one suggested some years ago by Lax“’, in another
context, for the arbitrary flield theory. In order tc obtain at a well
defined set of equations of motion for a given field, a theory must satisfy
three preliminary conditions:

a) The equations of motion must be of hyperbolic type;

b) A well posed standard Cauchy problem must be defined;

c) Stability property of arbitrary disturbances through any characteristic
surface must be satisfied.d. K

Condition "a" guarantees that the veloclty of the. disturbances 1is
finite and real; condition “b* is the basic requirement of any classical
fleld theory; and finally "c" is the true novelty of the Lax method. Let
us review briefly this method. The main ldea rests on an analysls of the
behaviour of the propagation of successive wave fronts. In order to
describe this method, 1let wus introduce some definitions. We call
exceptional waves some small disturbances such that its assoclated veloclty
of propagation remains finite. A perturbation which satisfies such a
requirement does not contain accelerating disturbances which could, at
least in principle, be responsible for the generatlion of undeslrayle shock
waves. BHence, the difficulties associated to unbounded growth of perturbed
velocities are automatically excluded. Indeed, if such limitations on the
perturbations are not imposed, there appears a difficulty to treat the

Cauchy problen in a standard way, since it iIs no more possible to propagate
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initial data arbitrarily. In the cases in which all the possible wave
disturbances are exceptliconal, the theory and its assoclated Lagrangean are
called exceptional.

In ref. {5), Bolllat exhlbits an example of the use of Lax criteria
which ylelds a model for Electrodynamics. Astonishingly enough, 1t turned
out that the resultant equation of motlion for thils case is nothing but the
one proposed in the early 30’'s by Born and Infeld'®. It seems worth to
remark that the "leitmotiv" of Born-Infeld, which guided them to suggest a
non linear Electrodynamics, was very distinct from the above
consilderations. Indeed, these authors were looking for a regular theory
which did not contain singularities of any sort. In particular they argued
that there should be a maximal value for any electromagnetic flield. This
was achleved by the hypothesis, made by Born and’“Infeld. that the
non-linearities of Electrodynamics should be manifes?ed through the
imposition of a particular Lagrangean from which the bondedness of any
electromagnetic fleld would follow. It is indeed an intriguing property of
lax's method that the Born-Infeld proposal can be derived from an
exceptional Lagrangean.

We shall see that the treatment used by Boillat in Electrodynamics can
be employed In the spin two case with almost trivial modifications. The
new aspects of the theory can be atributed to the exlstence of a higher
number of degrees of freedom which do not have a correspondence to the
Electromagnetic case.

We then obtaln at a very appealing result. The dynamics obtained by
using Lax suggestion in the Flierz varlables 1s nothing but a similar
reproduction, for the spin two-flield case, of Born-Infeld theory for spin

one.,
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In the next section we review the classical dynamics of the Fierz
variables in the linear case. Then we analyse some aspects of wave
dynamics and hyperbolic systems. Finally, in the last section, we
construct two exceptional Lagrangeans in terms of the Flerz variables which

are analogous to the Born-Infeld theory.

IT THE LINEAR THEORY

Recently, the spin-2 linear theory in terms of Flerz varlables has

been thoroughly examined'""? .

The theory is constructed in terms of a traceless field Cusuv def ined

3

by: )

-

1

1 i
= + + = - +
Cusuv Aor.ﬂ luiv] Auv[u;s] (xv) 8p 2 A(Su}‘ru.v 2 (up)'pv

1 1 .a¢
2R T aie T¥on T Ta¥ss) (2.1)

where 7uv is the Minkowski metric written in an arbitrary coordlnate

system, The quantity A«n is deflined by: Au 1= A S - A

8 « pit « £3p

In order to construct a dynamics by analogy with Maxwell's

Electrodynamics one is tempted to set the Lagrangean

- _1 Buv
L=-g3 c“wc“ (2.2)
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Variation of Ausu in (2.2} yields the equation of motion

v 20 (2.3)

HL4

From Flerz additional requirement, which is nothing but a gauge fixing

(1

procedure, we set (see for a complete review of the properties):

A =0 (2.4a)
and

AFS“_“ =0 (2.4b)

Then, using these conditions into (2.3), we obtaln the wave equation
oA =0 {2.5)

In this linear theory there are some simple relations between the

Fierz and the standard varliable, which can be written in a self-consistent
way:

_ [
pAv vip,al ¥ B‘.lnvhlv Btﬂk’ul B . (2.6)

AxE

g, oy (2.7)

Bl
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where

1 -8B
Q=178

and B is an arbitrary constant.

In a sense these relations can be interpreted as follows: the standard
varlable (va) has a potential (A“vx) in such a way that it becomes the
potential of its potential. That is, eq. (2.7) shows that A“va is the
potential of ’nv; and eq. (2.6) shows that ¢“v is the potential of
A“vh. The combination of these two egs. yields the consistency represented

by equation (2.5).

The condition (2.6) can be covariantly written as:

*

A =0 ' (2.8)

This 1is Just Fierz’s condition which allows the varliable A“p“ to
represent just a single spin-2 fleld. We remark that in the absence of

this kind of condition, one deals whith two lndependent spln-2 parts of the

fleld A .
-1
This linear theory was quantized in two equivalent formulations: (i)
Using the "Fermi~Gupta-Bleuler-method” and {i1) using Dirac’s
proposal‘m. We do not extend the analysls of thls linear theory in this

paper, Since 1t has been lengthlly presented elseuhere(z)

and we go
imediately Iinto our main subject, namely the construction of a non linear
model.

Before this, let us review briefly some results of Lax’'s method.
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II1 GENERAL FORMALISM

Let d(x’) be an arbltrary tensor field the evolution of which is

governed by a set of quasi-linear differential equations represented by:

A“(ﬁ.x’}aﬁ = 73, x%) (3.1)

in which A is a2 n x n matrix. Let S be a hypersurface defined by the
equation ¢{x) = 0.
We deflne the discontinuity, denoted by the symbol [ ], through the

hypersurface S in the standard way

_a

(3.2)
O+ o 0=

Discontinuity of equation (3.1) through this hypersurface implies that

S is a characteristic surface if the determinantal condition

A‘a‘¢ = 0 (3.3)

is satisfled or, otherwise, if

IAh ) hIl =0 (3.4)

where,
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-
A = (A9l (3.5)
n i
a ¢
0 and B = 22 (3.6)

A Teer Vel
since A° is supposed to be a regular matris.

The solutions of (3.4) will have the form A = A(X).

When the equations of motion are non~linear a sultable cholce of the
inltial disturbances can produce an accelerated wave. In this case the
disturbances grow without limit generating a shock wave.

However, there is a class of waves for which this phenoasenon does not
arise, that is the disturbances do not cease to be finite. This fact,
which seems to have been firstly noticed by Lax“). ,requires that the

1

velocity A must be continuous through the chracteristic surface, i.e.

[‘“ a:l =0 (3.7)

If the field equation 1s covariant, the caracteristic equation (3.3)

will be glven by:

W=C"*"Ys49 ¢ =0 (3.8)

& 8 p... ¥V

-
[}
[>T}
o
[}
b
2
R
1l
s
»
-

where,

The conditlon (3.7) can be written as:
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du = b5 -] = grBH...V du -
vy . [3;] |99 | —-—“o v“;\ . [_a ’ VG . [_a é ¢, 9,9 $, =0
that is,

[G“"‘""’]qs 49 o =0 (3.9)

x g u... ¥

This is the essence of Lax's method. We will apply this method to
spin-2 field equations in terms of the Fierz variable. Before, as an
example, we wlll show how this method works in the well known case of

Electrodynamics.

IV NON-LINEAR ELECTRODYNAMICS )

-

In this section we will make a brief summary of Boillat’s paperts, on

non-linear Electrodynamics,

The electromagnetic fleld.

F =A (4.1)

BV (y,v)

allows the constructlion of two invarlants

F = % F F* (4.2a)
1114 .
1 -
G=-F F (4.2b)
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The most general Lagrangean that may describe non-linear
Electrodynamics 1s an arbitrary function of these twe Iinvariants L{F,G)

The actlion is given by:
s = I L(F,G)a* (2.3)

Variation of S with respect to the vector potentlal Au ylelds the

following equations of motlion:

*
L F* +LF*" +L P =0 (4.4.)
F,v F v G,v
dL al. b
where, L? = 3F and Lb = s

In order to apply Lax’s method to Electrodynamics, we must start to
examine the characteristic equation corresponding to (4.4).

7

Following Hadamard’ s discontinuity condition we set:

A 1 =20k (4.5)
o, B [

where tu s the vector that characterizes the discontinuity and kg is the
gradient vector orthogonal to the dlscontinulty surface.
Thus, from {(4.4), and nothing that the discontinuity operator [ } acts

as a differentlation operator, it follows that

[L3F% + LIFIk + [LIF7k =0 (4.6)
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Defining the vectors
Vo= F"wkv

ey
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{(4.7a)

(4.70)

and using (4.5), equation {4.6) may be rewritten in the following way:

# o= o

where,

aker + L) =0

BkzLF + L) =0

(4.8)

{4.9a)

(4.9b)

Thus, the problem of finding the vector ¢ diferent from zero is

reduced to the problem of finding non vanishing values for « or 8.

Using the Lorentz condltlon

AY =0
M

and Leibniz rule we can write:

v (4.10)
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= (4-11!)
{LF] er[F] + L

6]

[Lb] = LhF[F] + LbG[Gl (4.11b)
The system (4.9) then becomes:

2 2
u{k l'LF +FL_ + GLm) - TLW} + B{k (GL. - FLFG] - 'th} =0 {4.12a)

a{kth‘Lm +GL_ ) - th} + ﬂ{kztl..r +GL_ - FL ) - ‘tl.,m} =0  {4.12b)
where,
T = t’wk“kv = (Fg'¥ - F“"va]kukv (4.13)
The system of equations (4.12) has non trivial seclutions if
apz +bu+c=0 {4.14)

and, in which a,b and ¢ are given, respectively, by:

(4.14a)
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_14_
2
b : Lo(L + L) . (4.14b)
2 2
c:=Li+2LL a(F? + ¢%) + FL(L_ - L) (4.14c)
vhere p =~ IE (4.15)
K

Belllat shows that, in the case in which equation (4.13} has a unique

solution, l.e., when

A=b%-4ac =0 (4.16)

the Lagrangean L(F,G) satisfying (4.16) has the form:

L(F,G) = Y-G*+2nF+n? - (4.17)

where n is a constant with the same dimensions of F. The Lagrangean (4.17)
is nothing but the Born-Infeld Lagrangean. If we Insert the solution
g of (4.13) with L(F,G) given by (4.17) into the characteristic equation
(4.16),which is the particular form that equation (3.8) takes for this
theory, it can be verifled that this theory 1s exceptional in the sense of
section III.This procedure will be developed in detall in the next section.

Let us polnt out once more that Born and Infeld obtained precisely
this Lagrangean (4.17) by a very distinct motivation, e.g., to haée a well
behaved theory of the electron and its corresponding electromagnetic field,
In particular, they searched a model in which a spherically symmetric field

which does net diverge at the origin can be generated by the electron.



_15_

In the next section we will apply the same method developed in this

example to construct a non linear theory for the Flerz field Auﬂg

V A NOW LINEAR THEORY FOR FIERZ VARIABLE: THE RIEMANN CASE

In this section we show an example of exceptlional Lagrangean which
depend only on twe invariants A and B. These Invariants are constructed
with the tensor S“B“v. which has the same symmetries of Riemann’s tensor

and 1s defined by (compare with (2.1) above)

Suﬂuv = A'uB[p.;v] * Apvlu;ﬂ] (5.1

where (;) is the covariant derivative taken in the flat metric r“v and Ausv

is the Fierz variable.

We can define two invariants of second order A and B given by:

A=g§ s (5.2a)
wfuy
*
= = el (5.ab)
o uv

The action $ is given in terms of the lagrangean L(A,B) which is an

arbitrary function constructed in terms of the invariants (5.2).

S = I d* V=7 L(A,B) (5.3)
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and ¥ is the determinant of 7uV'

Then, the equation of motlon is given by:

" &
(L s* + L g*) =0 (5.4)
in which,
Lzﬁ.]__zﬁ

A 3A B 3B -

In order to apply the crilteria described in section III to obtalm an

exceptional Lagrangean, we will examine the behaviour of the evolution of

1

the disturbances of the field Aum‘. Let us consider the case 1ln which,

-

across the surface S defined by
p(x*) = 0 (5.5)

the field has a discontinulty, which obeys Hadamard's condition given by:

[Auﬂp.,v] = Auﬂu.,viot) - Am.pp,:.w((:l«) = ¢u8ukv (5.6)

Thence,

[suﬁp.v] = [Auplu:vl] * [Auvlcasl] = ’uﬂ [ukv] * ¢nv[¢k8] (5.7)



CBPF-NF-055/93

in which we assumed that the metric tensor 1"" is continuous through the
surface S, as in the previous case of Electrodynamics.
The Fierz’s condition, which eliminates one of the two spin-2 flelds

represented by Ausu’ is given by:

*

A“B“‘ﬂ =0 (5.8)

According to the discontinuity (5.6), this condition (5.8) turns into:
$°PER” + ¢+ ¢ = 0 (5.9)

Consequently,
¢“’“k” =0 (5.10)

Combining the conditions (5.10) and (5.7) 1t follows that

sV
where

(5.12)

L

Besides this, condition (5.9) implies that the double dual §***Y 1is

divergence-free:
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s = (5.13)

Using (5.13) into the equation of motion, it follows that

« &
2L ¢F¥k% + (L 1s™*k + [L 1™k =0 (5.14)
A A v B v
in which we used the relations
[Lh;v] = [thkv {%.15a)
[Lh-v] = [La]kv } (5.15b)

' '

We define the quantities U“s" and V“s", which have the same algebraic

symmetries as Aﬂﬂu by the expressions (compare with (4.7)}).

yEH o s“““”kv (5.16a)
* ®
yeRE o s“’“"kv (5.16b)

Then we can rewrite (5.14) as:

guFHh = pUtBE 4 qyRH (5.17)

where p and ¢ are given by
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2Lx%p + [L.] =0 | (5.18a)
A A
ZL‘kzq +IL]=0 (5.18b)

In order to obtain the caracteristic equation, let us evaluate the
discontinuities [L‘] and [LB]'
From Leibniz rule we have

[L‘] = Lm‘[A] + 115[31 ~ {5.19a)

[L‘] = Lna[A] + LhB{B] (5.190)

The discontinuities, [A] and [B] can be evaluated by thé‘ formula:
[A] = 28 [s“’“"] =85 ¢ PHKY (5.20)
«fB v ®B v

Thus,
[A] = 80 ¢F® (5.21a)

ofp

Using the same procedure, we obtain for the discontinuity [B]
= ol '
[B] BVHB“Q (5.21b)

Inserting this result 1into equation (5.17) and taking account of

(T.1), (T.2) and (T.3) (see Appendix), we obtain:
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w1 = p{Zkz[(A - o, - -] - BQLM} :

+ q{Zkz[(A + 'l:)LBA - (A - t}LM] - BQL“} (5.22a)

L) = p{2k2[(A -, - (A~ rn.m] . scu.m} .

+ q{Zkz[(A ¢+ - (A - ':)Lm] - BQL“} (5.22b)

where Q = 41'“"k“kv and ©¥ = S“”“Su v - % (2a + B)g'¥

8 A

We can thus rewrite equations (5.18) under the form:

p{L‘ + (h—‘t)LM - (A-‘r]L‘m + ""Lu} + q{(Mt)L“ - {A-‘r)L'M - uLm} =
(5.23a)
p{(A-‘r}Lu - (A-'t')l..BB + uLm} +q{L‘ + LM--::}LEB - (A-‘r)Lm - "u"ss} =0

(5.23b)

where

4Q -pk =0 (5.24)

The determinantal equation reads:

[I..‘l + (»\.--r)l.M - (A----r]L‘“B + u] [La + (A-l--r)LBa - (A-T)Lm - "Lan] +

- [(ﬂ""l.')l..“ - (A-'I.')I..M - me] [(A—t)L“ - (A-T]L“ + BA] =0 (5.25)
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This equation is a second degree equation for p:

ap° +bu+c =0 (5.26)
where
a=1° -L L (5.27a)
AB AB
b=L(L, -L_) - 2at (5.27b)
(5.27¢)

c = L: + (AT)(L L L, + (A-T)(L,,-20 )L - 2ar(A-r)_

}
+

Equation (5.26) has a unique solution if its discriminant vanishes,

A=b° -4dac =0 (5.28)

A rather long but stralghtforward calculation shows that a function L

which is a solution of equatlion (5.28) is given by:

L{A,B) = Véz - 2nA + ni (5.29)

In which n is an arbitrary constant.
The caracteristic of this Lagrangean 1s provided by inserting the

unique solution g of (5.26) into (5.24) and usling (5.29):

{1 -~ (2A + B - n)y }k“k” =0 (5.30)
K TR Y
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which corresponds to (3.8).

According to Lax's characterlzation (see Boillat, op. cit.)}, the above
Lagrangean (5.29) is exceptional if the discontinuities of (5.30) through
the hypersurface S vanish identically. We have (compare (5.30)} with (3.8)

in order to identify G =t - (2A+B -n)y J):
v fri BV
6 1x"k" = ala 1k*k” - 2[Alk® - (5.31)
uy uy .

in which,

af A

[13% HEBA ¥
From equation (T.1)

pov o_ wBA, 2
(A 1K = au 6™k

and from equation (5.21a) it follows that
[c 1k*x” = o (5.32)
Hv
identically.

Eq. (5.32) implies that the exceptional waves of this theory are not

restricted to the null case kz = 0,
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¥I THE WEYL-LIKE CASE

Let us examine Lagrangeans constructed with the tensor C«auv def ined
in (2.1).

In thls case the possible invariants, D and E, are deflined by:

D=¢C C*H (6.1a)
g v .

L4
E=C ¢ (6.1b)
wBuv :
In the same way as in the last sectlon, we can construct an arbltrary

Lagrangean L(D,E), which vields the following equations of motion:

}
+

(L ™+ Lté“’“v] = 0 (6.2)

W .

We apply condition (5.8) to obtain:

*
L, G + L c™™ e S L c =0 (6.3)

Dl »
The discontinuity equation is:
[L Tk C¥¥Y ¢ L IC** 1k + [L 1k C** + LIC** 1k =0 (6.4)
v ] v E v E v

But.,

[c“’“']kv = 3¢*PH2 (6.5)
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Deflning,

Yﬂ-ﬂﬂ = C“-s #Vkv

Zusu = Euﬁuvkv

we can rewrite equation (6.3) as:
¢uﬂu = aYuBu + bzusn

where,

2
3k (a]..D

and

z —
3k [bLn + al"}:] + [LE] =0

Using Leibniz rule, we have:

[LD] = me[D] + lhE[E]

*

[Lz] = Lm[D] + Lm[E]

bLz) + [Lb] =0

CBPF-NF-055/93

(6.6a)

(6.6b)

(6.7)

(6.8a)

(6.8b)

{6.9a)

(6.9b)

After a straightforward calculation using the identities (T.4) and

{T.5), we obtain:
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[E] = 2(aE + bD)K? . (6.10a)
[D] = 2(aD + bE)K? (6.10b)

Thus,
L] = Z{a(ELDE +DL_) + b(EL - m_m)}l.:2 (6.11a)
(L] = 2{““‘55 +DL) + bEL__ - m.ﬂ)}k2 (6.11b)

Using equations (6.12) and (6.9) we obtain:

él\
{[3Ln + 2ELDE + anbn)a + (ZELnn - 2DLbE - aLt]b}k = 0 (6.12a)
2 _
{(ZELEE + ZDLED + SLE)a + (31.D + ZELDE ZDLEE}b}k =0 (6.12b)
-
This system admits linearly independent solutions 1f the

determinantal equation is satisfied:
4 2.2 2 2
k {9(LD+LE)+6(LDD-LtE)(DLD-ELE}+12Lbz(ELD+DLE)+4(D +E2]{Lbz_Lnans)}=0

(6.13)

There are two classes of solutions for this equatlion
i)
9(L2+L2)+ 6(DL ~EL )(L_~-L_} + 12L__(EL +DL_) + 4(D*+E?}(L® -L L _)=0
D E D E DD EE DE D E DE DD EE

(6.14)
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and

=0 (6.15)

11)

2 2 2 2
9(LI+L]) +6(DL -EL)(L -L ) + 12L_ (EL +DL ) + 4(D +E2)(LbE—LDDLEE)=o

(6.16)

In the first case, there is a set of exceptional Lagrangeans because

the equation

[¥ 1kK*k¥ =0 (6.17)
Hy

is identically satisfied (7“v is continuous).

In thls case, one of the possible solutions is prqyided preclisely by

the Born-Infeld type Lagrangean

L=vE?-2q0 +q° -1 (6.18)

This Lagrangean has as first approximation

= = ﬂ“v
L = gD = qc” Cotuv
which is nothing but the Lagrangean (2.2) used in the linear theory.
From (6.15), it can be seen that the exceptional waves coming from

Lagrangean (6.18) have x° = 0.
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VII CONCLUSION

Using the Lax method described in secticn Il we have obtalned
non-linear Lagrangeans for the Fierz field which are exceptional. They are
similar to the Born-Infeld Lagrangean for Electrodynamics and may describe
spin-2 dynamics with self-interaction. The Lagrangean constructed with the

invariants Cua ™Y and Ctﬂ“vauspv given by equation (6.18}) has thelr

v

exceptional waves with kK’ = 0 and its first approximation corresponds to
the Lagrangean that descrlbes the theory of spin-2 flelds In terms of the
Flerz variable, which is equivalent to the linear theory in terms of the

(1)

standard varlable ¢“v . Whether this theory may describe real Gravity is

an open question. We know that the Fierz varlable is the linear

approxinationm of the Lanczos potential(lu) of the Wey! tensor which can
be used to describe Gravity via Jordan-Lichnerowicz
equations(s’gl. However, we do not know the explicit relation of the

Lanczos potential with the metric tensor of the curved space and, as a
consequence, we do not know how to express Lagrangean (6.19) in terms of
geometrical quantities (we cannot compare, e.g., the series expansion of

(6.19) with the expansion of the Lagrangean -v-g W VN“B“V, where W . is

BV

Bu
the Weyl tensor, because it depends on the metric tensor guv]. We could

also fix Aaﬁp as a fundamental variable and obtain the tensor ¢pv by means
of a non linear relation involving covariant derivatives of the Flerz fleld
which satisfy equation (2.7) In the linear approximation. Using this
relation together with the equatlions of motion for A " the goal would be
to obtain equations of motlon for ¢uv which would have as first integrals
the GR equations of motion in the form presented in reference (10).

However, this is not a stralghtforward task. We leave this for a future
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work. Moreover we could identify the geometry In terms of Fierz variables

trough the interactlion between the spin-2 field and matter(iih

These are open questions.



CBPF-NF-055/93
-29-

TABLE 1

Propertles of Riemann’'s and Weyl's Tensors

«ge 1 _
agoly = 3 (A t)g“v + L (T.1)
* 1
afoe 1 _
Hafe v B 4 (A I]guv (T.2)
] . 1 )
wfe 1 -
MWRV ==z (A t]gw ML (T.3)
*ope _ 1 T4
Hoefle v - Z Cgpv * ZRp,uvBR (T'4)
L 3
where, C =R R"“go
poge
age _ 1
pagoly =3 Dg“v (T.5)
* ogo _ 1
oy =3z Eg“v (T.6)
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