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Abstract

A generalized tJ Hamiltonian is analyzed within the framework of a quantum real
space renormalization group. Desides the usual hopping (2), exchange (J) and chemical
potential () terms the Hamiltonian contains a nearest-neighbor charge interaction one
and is invariant under the renormalization. The finite temperature phase diagram of the
d = 2and d = 3 model is calculated in the full range of the parameters. Our results show
that many of the critical properties of the Le and Y based high-T, superconductors
can be explained by the present model.

Keywords : tJ Model, real space renormalization group, high-T. superconductivity.

PACS index : 05.30,75.30.Kz, 71.90.



CBPF-NF-055/91

I Introduction

The tJ model has received intensive attention in recent years since Anderson {1] suggested
that it contains the relevant physics of the high T, malerials, at least those containing copper
oxide planes. The model is described by a lattice Hamilionian of hard core fermions and
includes hopping () and antiferromagnetic exchange interactions (J). 'This Hamiltonian is
related to the sirong coupling limit of the Hubbard Hamiltonian (U/t »» 1 in the stan-
dard notation) by a canonical transformation (2] within which appears the correspondence
J/t = 1/2U « 1. On the other hand, Zhang and Rice [3] derived with some approxi-
mations the tJ model direclly from a CuO multiband Hamiltonian, finding values Of. J/t
somewhat larger than t/2U; consequently the entire range of J/t (and not only J/t < 1)
must be studied. Since the experimental evidence strongly. supports the assumption that
high T. superconductivily is an effect mainly due to the doped CuQO; layers of the ceramic
compc.mnds, most of the work has focused the {wo-dimensional t] model. However, neutron-
diffraction experiments [4, 5] have shown a three-dimensional long-range antiferromagnetic
order in both La and Y compounds with a rather high Néel temperature; the long range
order is probably originated by wen.k-intérpla.ne exchange couplings. Therefore, it is also
interesting to investigate the magnetic properties of the finite temperature phase diagram
for the three-dimensional tJ model.

Since there are no exact solutions for the tJ model in dimensions d > 1 (an‘d only a

few ones for d = 1, see for instance [6]) many approaches (e.g., Lanczos method {7], and
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approximations based on finite clusters [8}) has been applied to the study of several oi' its
properties. However, most of the effort has been devoted to the zero temperature properties
of this model. Using a quantum real space renormalization group (RG) scheme we analyze
in this paper the finite temperature phase diagram of a convenient generalization of the tJ
model. Such model is described by a Hamiltonian which contains, besides the hopping and
exchange terms, a nearest-neighbor charge interaction (K) as well as the chemical potential
term (u). This model is invariant in form under RG and can be obtained as the U — oo
limit of an even more general Hubbard Hamiltonian [9], which alse remains invariant under
RG.

Our RG procedure is based on a calculation performed for a two terminal cluster whose
iterations yield an hicrarchical lattice. Lel us anticipate that the resulls are not exact for the
hierarchical lattice because of the non-commutaf.ivi ty of the involved operators. However, the
results are asymptotically exact at high temperature and believed to be a good approximation
for a wide range of temperatures. To the best of our knowledge this is the first calculation
of the full phase diagram at finite temperature for the present model.

In Sec. Il we derive the generalized t]J Hamiltonian and .some of its basic properties are
briefly reviewed. In Sec. I1] we discuss the RG formalism and we analyze the RG recurrence
equations for some particular cases. A numerical calculation of the d = 2 phase diagram is
presented in Sec. IV; the existence of first order phase transitions (two phase coexistence) is

analyzed for different values of J/t. In Sec. V we analyze the d = 3 phase diagram, which
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turns out to be very rich one. Our resuits suggest that the d = 3 generalized tJ model oo.uld,
af least qualitétively, describe the phenomenology of the magnetic phase diagram of some

copper oxide superconductors. We finally conclude in Sec. VL.

II The Model

Let us.consider a system of hard-core fermions on a lattice, i.e., we assume that each lattice
site can be occupied by al most one particlc. Then the dimensionless tJ model is defined by
the following Hamiltonian |
Hy=—PHy=t ) (a,!.,a,-,, + a.;-.,a.;,) I §.5;+ ,u}:n.-'.', (1)
(id)e (i3} "
where § = 1/kgT, a,{, = (1 - nio)c!,, ¢!, creates an electron with spin ¢ =1, in a
Wannier state centered at the site ¢ of the lattice, n,, = c‘t.,c,-,,; t, J and p are respectively
the dimensionless hopping const#nt, exchange interaction (J > 0 corresponds to antiferro-
magnetic coupling) and chemical potential; (i, 7} runs over all pairs of first-neighboring sites
on a d-dimensional hypercubic lattice. The a! , operators are introduced in order to properly
take into account the constraint of no-double occupancy. The spin operators S, are defined
by

5= Y clafas cis )
af

where & are the Pauli matrices and o, 8 =1, .

There is another version of the tJ Hamiltonian that sometimes appears in the literature,
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namely ‘
Hu=t Y (al 050 +al,0i0) I Y (5.5 - nins) + 3 ni, (3)
(i)e (5.3} ¥
where n; = n;1 + n;,;. This Hamiltonian is derived approximately in the strong coupling
limit U 3 t of the Hubbard model by a canonical transformation {2, 12}. Such procedure
yields, for the Hamiltonian (3), the value J = t/2U [13]. In order to aveid confusion let
us s‘tress that the Hamiltonian (3) is in general different from Hamiltonian (1) (they only
coincide if the total number of electrons precisely coincides with the number of sites); very
unfortunately they are both commonly refered as tJ model. The generalized Hamiltonian we
shall introduce here contains both as particular cases.
In order to study the critical properties of the 1J model at finite temperature we use
a real space renormalization group (RG) method. The procedure consists in replacing d-
dimensional hypercubic Bravais lattices by d-dimensional diamond-like hierarchical lattices.
Such lattices are defined through infinite iterations on a two-terminal cluster, which consists
in an array of {9-! sirings in parallel, each siring being conétituted by { bonds in series. Some
typical clusters arec shown in Fig. 1 (I = 3). The RG recurrence equations are then obiained

by explicitly compuling the partial trace

exp(H'+C)=  Tr exp(H) 4)

tniernal sites

where H denotes the Hamiltonian of the cluster and H' denotes the Hamiltonian of the
renormalized two-site cluster (see Fig. 1). The partial trace is calculated by summing the

matrix elements of exp (H) over the set of occupation numbers {n,;,} associated with the in-
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ternal sites of the cluster. Such procedure neglects at every iteration the non-commutativity

between the Hamiltonians associated with first-neighboring clusters. This approximation

is asymptotically exact at high temperatures (see [14] and references therein). Neither the

Hamiltonian (1) nor the Hamiltonian (3) salisfy the relation (4), in other words, if H is a

tJ Hamiltonian the resulting H’' may contain new terms that were not present in H. In a

previous work {9] we derived a generalized Hubbard Hamiltonian whose form is preserved by

the RG transformation (4), namely

HE = t Z ( o Cie CJWC"') +U Z"‘-Tn"1 + #Z e

{id)we

— I 5S -k (S (S) + Y T A

(3.d) (i) () .
- I (Z%[p.’p}—(m*p, o'eY)] +1?2[(a=*.)z +(p})ap.’] (5)

+ D 2 (cf o Cio + c,- oGi ,,) (-0 — n,-'_,)’

(b

+ E E (c.t',c,-', +c}',c,~',) NoTj—o

(i.)e

where the charge operators are defined by -

P

o;

P

]

1]

nip+niy—1

CE,TCEJ (6)

i (pt - p7) | (7)
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The Hamiltonian (5) is the minimal one that contains the Hubbard Hamiltonian as a imr-
ticular case and remains invariant under the RG transformation. In order to obtain a gen-
eralization of Hamiltonians (1) and (3) that satisfy relation (4) wé should first impose the
constraint of no-double occupancy to the Hamiltonian HY. Such constraint can be achieved
by taking the limit U — +oo in Eq. (5) while keeping finite all the qther parameters. In
this limit the states with doubly occupied sites will not contribute at all. and the effective
resulting Hamiltonian will have non zero matrix elements only between states belonging to
the subspace of no-double occupancy, i.e., those states which satisfy: n;n;y = 0 for all sites
i. In this case the only remaining hopping processes will be those that only connect sites
with single or null occupancy; such condition can be made explicit by setting D) = E=-t.
Since the non-diagonal charge operators g7, p¥ only connect states having null and double
occupancy, the corresponding terms in Eq. (5) will not contribute at all. Furthermore, since

n;ni,| = 0 for all sites 1, we find that

P = —p=1-(SIY - ®
(st = n (9)
From Egs. (8) and (9) we see that the terms in Eq. (5) containing the diagonal charge oper-

ators p! can be absorbed in the terms associated with ihe K and p parameters. Therefore,

the resulting Hamiltonian can be rewritten as follows:

Hs=1 Z (a!',aj,g -+ a}.’ai,o) -J Z 51..‘3"_, - K z (.5':‘)2 (.S'f)z + pzn,-_, (10)
(id)e (i) - {i.3) o
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The term associated with the parameter K in Hamiltonian (10) can be rewritten (by using
Eq. (9)) as S(i j) in, 80 it describes a nearest-neighbor charge interaction. Setting K = 0in
Eq. (10) we recover Hamiltonian (1), while for X = —J we recover the Ha.miltonian (3). The
subindex S in Hamiltonian {10) makes reference to Schlottmann who first proposed [11] this
Hamiltonian in the context of heavy-fermion systems (K =V in Schlottmann;s notation).

The Hamiltonian % was derived by constructing the most general Iiamiltonian which
satisfics some basic symunetries of the Hubbard Hamiltonian to be preserved through the
parlial trace (4) . It can be sccn that all these symmetry properties are still preserved in
the U — oo limit procedure used to derive Hamiltonian (10) from the Hamiltonian (5).
Therefore, the Hamiltonian (10) is the simplest one that contains the tJ model {in both of
its versions) as a particular case and remains invariant under the RG transformation. All the
above mentioned symmetry arguments, as well as the problem of the correct choice of the
cluster in this procedure, are discussed in detail in Ref. [14]. By using the same arguments
it can be shown that, in the presence of an external magnetic field, the Hamiltonian which
remains invariant under RG is Hs + Hp [14], with

Ha=BY.5i-h3 |55 - (257 + SYSY)] + Rq > [sors;+ ()] aw

i ig i§

Let us mention some important properties of Hamiltonian (10). First, we can easily verify
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that

I
=]

[#s, 5] (12)
MsN] = 0 . (13)

where § = §; §; and N = ¥; n; respectively are the total spin and total number of particles
operators. By means of an unitary transformation [15] it can be seen that the spectrum
of Hs is invariant under the change of sign of the parameter {. Hence the grand-partition

function

Z =Tr exp(Hs) (14)

satisfies Z(t) = Z(—t) and the phase diagram which results is symmetric under the trans-

formation ¢ — —¢. For definiteness we assume { > 0.

ITI1 The Renormalization Group

A General considerations

The RG procedure is carried out in two steps. First we perform an exact calculation of the
partial trace (4) for a linear four-site cluster (see Fig.1a), by summing the matrix elements
of exp (Hs) over the set of occupation numbers {na,,n4r}. This calculation yields the
recurrence equations between the set of parameters L = (u, K, J,t) of the Hamiltonian Mg

associated with the four-site chain and the set of renormalized parameters I/ = (¢!, K*, J', ')
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of the Hamiltonian Hs' (associated with the two-site cluster); therefore we obtain
I = L(L) - (15)

where the subindex 1 stands for d = 1. In the second step we consider a more general
diamond-like cluster of the type shown in figures la, 1b and 1c. Every cluster of this kind
consists in a parallel array of §9-! four-site chains, where d is the intrin;ic dimensionality
of the hierarchical lattice and ! = 3 is the length scale of the RG transformation. The
Hamiltonian associated with each of thesc clusters can be expressed as a sum of linear-
chain Hamiltonians. Therefore, neglecting the non-commutativity between the liner-chain

Hamiltonians {14], the following approximate recurrence relations are obtained
I'=Lj (L) = r* Ly(L) (16)

These equations determine the flow of pointis in the (g, K, J,t) parameters space for d = 2
and d = 3 and enalblc the calculation of the corresponding phase diagram as well as various
critical exponents.

The calculation of Eqs. (15) involves the exact diagonalization of Hs. The subspace with
no double occupancy of the Fock space |[{n;.}} associated with the four-site chain is a 3*-
dimensional one; in such subspace Hy is represented by a 81 x 81 matrix. By using the fact
that the basis vectors are simultaneously eigenvectors of N and S* (see Egs. (12} and (13) ) we
can present Hs in a block diagonal structure by simply rearranging the order of these vec_tors

according o the eigenvalues of N and §*. Even so, the largest irreducible blocks are in general
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analitically untractable and part of the calculation must be done numerically. We found
that all thé relevant fixed points of the recurrence equations (16) are located ai the ¢t = 0
subspace of the (u, K, J,t) space. In fact, for this particular case i;he recurrence equations
can be derived analylically. In Sections IV and V we derive the phase diagram generated
by the general recurrence equations (16) for d = 2 and d = 3 respectively; nevertheless, it is

convinient to discuss now some general properties of the ¢ = 0 recurrence equations.

B The t = 0 recurrence equations

For t = 0 the Hamiltonian (10) takes the form

=Y 55 -K (S (5]) +sT(S) (17)

(i) (5.5
where we have used Eq. (9). Although this Hamiltonian looks like a quantum analog of
the BEG (Blume-Emery-Griffiths) Hamiltonian {16, 17], the situation is more complex than
that. This is due to the fact that the S; operators cannot be interpreted as standard spin-

1 operators. Since the condition ¢ = 0 is preserved through the Eqs. (16), the subspace

(u, K, J,0) constitutes an invariant one under RG. In this case we obtain

F.
' d-1 2
g = 21 ]n (—F‘l)

' ' d—1 Fzz
K = -J+h -I':l-j‘-'; (18)

td' 1 F 5
' — i — im S—
J = 2 arctanh ( 3 )

4
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F;
Fy
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1+ 4 exp(p)+2exp(2s — K)gs(J)

exp (p/2}[1 + 2 exp () + exp (2p — 2K) g4(J). + exp (s — K_)ys(-f)]

exp () + 2 exp(2p — K ) g5(J) + exp (34 — 3K) 91(J) (19)

exp () +2 exp (20 — K) gs(J) + exp (3 = 3K)@a(d)

exp(3pu — 3K) g3(J)

gi(z)

g26z)

93(z)

94(z)

gs(<)

]

exp () + & oxp(—32) + § exp (3z) cosh (2v3 =)
+ exp(z) (cosh (2v2 z) + L sinh (2v2 2))
Lexp(z) + § exp(~3z) + § exp (3z) cosh (23 x)
+ exp (<) (2 cosh (2v2 z) — J; sinh (2v2Z =)
91(z) - 93(=) | (20)
1+ 2 exp(—2z) + exp (4z)

exp (—z) + exp (z) cosh (2x)

From equations (18) - (20) we find that J = 0 further constitutes an invariant subspace

under RG (s.e., J = 0 implies J' = 0). Some general properties of the phase diagram in this

subspace can be easily deduced by noting that, for J = 0, the Hamiltonian (17) takes the
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form
H=-K> nnj+p).n (21)
(3.3 ‘ .

Defining a new variable t; at each site 1 as
t;=2(n - }) (t: = £1) (22)

the Hamiltonian (21) can be mapped into a spin-1/2 Ising model with an effective (temper-

ature dependent) external field [18]

H1=-—%Kzt§i5+23"h (23)
(i3} i
where
Bi=}(p-1aK +n2) (24)

and z; is the coordination number of the site t. For a Bravais lattice z; = z is a constant
and the resulting field B; is homogeneous; for an hierarchical lattice z; is site-dependent and
then B; is a local field. The line K = 0 in the plane (g, K) is also an invariant subspace
of the RG (i.e., K = 0 = K' = 0). This subspace is associated with a non-interacting
system which corresponds, in the magnetic analog (see Eq. (23)), to a free spin system in
a magnetic ﬁelci. Along this line we find three fixed points: i) the semi-stable fixed point
(u, K, J,t) =(0,0,0,0), hereafter denoted by q ; ii} the fully stable fixed point (+00,0,0,0),
which we denote by p, and 4it} the fully s;.able fixed point {—~00,0,0,0), hereafter denoted by
h. Through Eq. (24) we can see that the fixed point p is associated with a phase characterized

by (&) > 0, which is equivalent (see Eq. (22)) to {r;) > 1/2; consequently, this phase is an
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electron-rich (high density of electrons) one. The fixed point h is associated with a phase
characterized by {t;) < 0, which is equivalent (see Eq. (22)) to {ni} < 1/2; therefore, it
describes a hole-rich phase (low density of ele(_:trons). Both phases (electron-rich and hole-
rich) are paramagnetic ones. For K < 0 Hamiltonian (23) describes a ferromagnetic model
and ;a. first ofde.r transition line between the above {wo phases is expected for d > 1.

For K > 0, lamiltonian (23) describes an antiferromagnetic Ising model and conse-
quently for d > 1 an antiferromagnetic like ordered phase is expected in some region of the
K > 0 half of the (1, K) plane. 1n other words, if we divide the lattice into two interpene-
trating 1*¢ neighboring sublattices, (t;) > 0 for all sites of one sublattice and (¢;} < 0 for the
other one. Through Eq. (22) we can see that the sites of one subiattice are predominantly
in the state n; = 0, whereas the sites of the other one are in the state n; = 1. This situation
corresponds to a charge densily waves (CDW) phase. The total density of electrons in this
phase is n = ¥;(n;)/N = 1/2, where N is the number of lattice sites.

Let us now consider some important limits of the J # 0 case. From Egs. (18) - (20) we

find, in the limit g — 400, the following asymptotic behaviours

ﬂ' ~ fd_lp
K ~ fi(d,J) (25)

J' ~ fi(d,J)
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where
hH(d,J) = ?uctgnh (—:%E—g-) | . (26)
9i(J)

fa(d,J) = ¥ ln( ) - fi(d,J) (27)

20:1(7) 0s(J)
" We see that the recurrence equations (25) decouple and the only nontrivial one is timt of
the exchange coupling J. This fact can be easily understood if we notice that in the limit
i — +00 the density of electrons n — 1, i.e., all sites are occupied. In such situ.ation the
charge interaction terin in Hamiltonian {17) becomes just an irrelevant additive constant,
the Hamiltonian thus becoming equivalent to the following one

Ho ~J Y 85 | (28)

(i)

where &; are the Pauli matrices at the site 1, i.e., we recover the isotropic spin-1/2 Heisenberg
model. The function f;(d, J} is depicled in Fig.2 for = 2 and d = 3, for both signs of J. The
recurrence Egs. (25) yicld, for d = 2, only trivial fixed points, i.e., there is (as expected from
Eq. (28)') no phase {ransition into any magnetically ordered phase. The trivial fixed point
J = 0 corresponds to the alrcady described fixed point (g, KX, J,1) = (+00,0,0,0). F_'c:)r d=3,
fi{d, J) exhibits two non-trivial fixed points : an antiferromagnetic critical point JA = 0.353
a.nd. a ferromagnetic one JF = —0.522. Besides them there are two other stable fixed points,
namely, an antiferromagnetic attractor J# = 2.457 and a ferromagnetic one J§ .= —00.
Note that the antiferromagnetic atiractor appears at a finite value instead of the usual

J = 400 (zero temperature) value. This shift of the zero temperature fixed point is probably
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due to the high-temperature approximation made in the RG procedure. This behaviour
has already been encountered in other related works (sce Ref. {14] and references therein}.
. The fixed points of J1(3,J) provides, through the equations (25) and (27) the following set
of fixed points for Egs. (18) : (g, K,J) = (400, KA, JA); (+o0, K}, JAY, (400, KT, JF);
(400, +00, —00); with KA ~ —0.001; K# =~ —18.78 and K] ~ 0.328.

Another interesting asymptotic behaviour occurs for g — —oo and K — —o<. Let us

first consider the case J = 0. We firsi propose
K=p+ha ' (29)

We then use Egs. (18) - (20) and impose that, in the g — —oo limit, X’ ~ ' + In ao.
We straighforwardly obtain

#’ ~ Id_l i (30)
and

d-1
1““":2;.;_1 In2 (31)

In other words, the line determined by Eq. (29) is an asymptotically invariant line under
the RG for J = 0. The existence of this line is numerically confirmed in sections IV and
V. The point (4,K,J} = (—00,~00,0)| ., 100, i 2 fixed one of the RG equations. If we
calculate the Jacobian of the recurrence Eqs. (18) for J = 0 and we take the limit g — —o0
(with Eq. (29)) we find a relevant (greater than one) eigenvalue A = 9, whose associated
eigenvector is (g, ('} = (1,0). The physical meaning of this fixed point will be discussed in

Sec. 1V.
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Let us now consider the J # 0 case. In the limit g —» —oo with K = u + consiant we

find, through Egs. (18), the {ollowing asymplotic behaviours

pr ~ Id—l"
K' ~ ¢ (32)

J' o~ fi(d, )

where fi(d,J) is given by Eq. (26). From Eqs. (32) we find, for d = 3, four new fixed
points : (u, K,J) = (—00, ~00,J4); (—00, —00,J#); (—00, —00,JF) and (—o00, —00, —00).
In this limit (z — —oo) the Jacobian of the recurrence Eqs. (18) evaluated at any of the
just mentioned fixed points exhibits an eigenvalue A = 19, which is associated with the
eigenvector (g, K,J) = (1,0,0). The physical meaning of all these fixed points will be

clarified in Sections IV and V.

IV The d = 2 phase diagram

First of all we analyze the J = t = 0 cross-section of the phase diagram in the (g, K, J,t}
space; this cross-section is invariant under RG. The flow diagram resulting from Eqs. (18)-
(20) is depicted in Fig.3. We find three non-trivial fixed points in this subspace : the
doubly-unstable fixed point a, the singly-unstable fixed point b and (from Eq. (30)) the
singly-unstable fixed point (g, K,J,t) = (—00,~00,0,0)|g_,1a/4 a2 2lready discussed in

Sec. III; which we denote by Fy this last fixed point.
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All p-voints belonging to ihe line ea of Fig.3 are attracted by the fixed point Fo.. The
relevant eigenvaluc of thé recurrence equations linearized at this point equals A=14(I=3)
~and corresponds to the eigendirection (g, X} = (1,0). Since the chemical potential 4 is the
ordering field associated with the order pa.ra.meter n, this result shows that the fixed point
Fy fulfills the Nienhujs and Nauenberg condition [19] for a first order phase transition fixed
point. In other words, the line ea, which has the g — —oo asymptotic form indicated in
Eq. (29), is a first order transition line (two phase coexistence) between the hole-rich a.pd
the clectron-rich phases, respectively defined as the complete basins of attraction of the fully
attractive fixed points A and p; this line ends at the critical point a. The basin of attraction
of the fixed point ¢ (dashed line in Fig.3) corresponds to a smooth transformation of one
phase into the other, i.e., the density of electrons n changes smoothly when passing through
this line. The correlation length and the correlation function critical exponents at the critical
point a are given respectively by v = Inl/In A} and by 5, = d + 2(1 — In{/In A{*) where
A1) and A? are the eigenvalues of the recurrence equations linearized at the fixed point e
(the associated eigenvectors are respectively tangential and normal to the line ea).

All the points belonging to the region in the plane (g, K) enclosed by the line cbd in
Fig.3 are attracted by the fully stable fixed point (4, K, J,2) = (+00,400,0,0)| x_,,,,» With
v = 4; we denote this fixed point by w. This fixed point characterizes the CDW phase
discussed in Sec. III. All points on the line cbd in Fig.3 are attracted by the fixed point b.

This line corresponds to a second order (continuous) phase transition between the hole-rich
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and the CDW phases. The corresponding correlation length critical exponent is given by
vy = Inif In Ay where )y is the relevant eigenvalue at the point b (thg associated eigenvector is

_tangential to the dotied line shown in Fig.3). All the numerical values of the above described
fixed points and their general characteristics are summarized in Table I

The fixed points structure shown in the J = ¢ = 0 subspace completely determines the
flow of points in the full parameter space (g, K, J,t) for d = 2, because all the points outside
of this subspace are attracted into it, i.c., its flow is driven by the set of fixed points located
at the J = { = 0 subspace; the different transition hypersurfaces are governed by the above
described non-trivial fixed points. We now describe several representative projections of the
d = 2 complete phase diagram.

Let us ﬂow analize the t = 0 projection of the phase diagram for J > 0 (the J < 0
part of the phase diagram is completely analogous to the J > 0 one). In Fig.4 we show the
K < 0 (attractive charge interaction) and u < 0 region of the phase diagram. There is a first
order transition surface between the hole-rich and the electron-rich phases. This surface is
governed by the fixed point F and extends the line ea shown in Fig.3; this surface ends at
a critical line (denoted by af in Fig.3) whose points are governed by the fixed point a. The
first order surface, as well as the critical line, extends to the K > 0 and g < 0 region.

In Fig.5 we show the K > 0 (repulsive charge interaction) and g > 0 region of the phase
diagram. A second order transition surface between the hole-rich and the CDW phases

appears. This surface (which is an extension of the line cbd of Fig.3) is governed by the fixed
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point b. ‘The second order surface separates the CDW phase from the hole-rich one.

The gt;neral structure of the ¢ # 0 phase diagram repeats that of the ¢ = 0 one. The
K = 0 phase diagram (which is associated with the Hamiltonian (1)) is depicted in Fig.6.
For 4 < 0 we find again a first order transition surface between the hole rich (below the
surface) and the electron-rich (above the surface) phases. This surface ends at a critical line
(denoted by gh in Fig.6) governed by the fixed point a of Fig. 3. The critical value of J
increases with t. No CDW phase exists for K = 0.

The general structure of the full d = 2 phase diagram in the (g, K, J, t) can be summarized

as follows :

o Three phases arc present : hole-rich, electron-rich and CDW.

o For p < 0 there is a first order transition hypersurface between the hole-rich and the

eleciron-rich phases, which ends at a critical surface.

e For p > 0 and K > 0 there is a second order transition hypersurface between the

hole-rich and the CDW phases.

e For i > 0 the transition belween the hole-rich and the electron-rich phases is smooth

(in the sense that there is a smooth change of the electron density).

A representative cross section of the phase diagram for typical K and t values is shown in
Fig.7. A complete list of the fixed points underlying the d = 2 phase diagram and their

general characteristics is presented in Table L.
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The problem of phase separation (two phase .coexistence) in the d = 2 tJ model at zero
temperatufe has bcen previously treated by Emery et al [20); such work suggcsts. that a
_phase separation occura for all values of J/t. This is in variance with our results. Indeed
let us analyze the phase diagram in terms of the ‘temperature independent variables J/t, uft
and of the dimensionless tefnperature 1/t. In Fig.8 we show the coexis.tence lines in the
(u/t,1/t) plane for K = 0 and constant J/t, for several values of J/{. FEach line ends
at a critical point whose corresponding critical temperature (1/t). decreases with J/t. In
Fig.9 we show the g_itical temperature (1/t); as a function of J/t. Numerical errors make
extremely diﬂicult/to get accurate results for very low temperatures (1/t < 0.1). However,
our results suggest that a critical value (J/t). exists below which the first order transition
disappears for all temperatures, i.e., the system does not phase separate for low J/t. From
Fig.9 we extrapolate the value (J/t), &~ 1.4. It is interesting to repeat the above analysis
for the case K = —J. The results we have obiained are analogous to those for the X = 0
case. For K = —J the extrapolated value of {J/t). is (J/t). = 0.67. This result suggests
that the Hubbard model neither shows phase separation, at least for high values of U/t
where similarities arc expected between the tJ and Hubbard models. This conclusion is in

agreement with recent Monte Carlo calculations on the Hubbard model [21].
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V The d = 3 phase diagram

Now we present the phase diagram generated by the recurrence equations {16) for d =
3. A!though many of the features of the d = 2 phase diagram persist for d = 3, the
phase diagram in this case is appreciably modified because the spin interactions related to
continuous group symmetries give rise to long-range magnetic order. So, a very interesting
and complex phase diagram appears. Since all the relevant fixed points, i.c., those which
completely determines the critical properties of the model, are located at the ¢ = 0 subspace

(invariant under RG) we start our discussion with this case.

A The t =0 phase diagram

As we said above, all the relevant fixed points lies in the ¢ = 0 subspace. In other words,
all the points in the (g, K, J,1) parameter space are driven to this subspace under the RG
transformation.

We start our analysis with the J = { = 0 invariant subspace. The general fixed point
structure in this subspace is qualitatively analogous to the fixed point structure at d = 2 (see
Sec. IV and Fig. 3). The numerical values of the fixed points in this subspace and their general
characteristics are presented in Table II, where the notation for the fixed points is the same
as in d = 2. All the eigenvalues of the linearized recurrence equations corresponding to the

| scaling fields associated with the t and J parameters at every fixed point are irrelevant, s.e.,

all fixed points are attractive in such directions. For J = 0 there is no long-range magnetic
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order. In order to emphasize the paramagnetic nature of the hole-rich and electron-rich
phases we now denote them as Ph (paramagnetic hole-rich) and Pe (paramagnetic electron-
rich) respeclively. .

The phase diagram for J > 0 and K < 0 is shown in Fig.10 and the set of fixed points
for J > 0 which determines its structure is shown in Table III. The global connectivity
of all the fixed points for J > 0 is schematically depicted in Fig.11. As expected, this
phase diagram shows qualitatively a great similarity with the RG phase diagram of the
classical d = 2 BEG model (see Ref.[17]). Three phases arc present for X < 0 : 1) ti:le
Ph phase below the FMT surface; ii) the Pe phase below the FTC surface and i) an
antiferromagnetically ordered phase {AF) located above the surface FMTC. These phases
are defined respeciively as the basins of atiraction of the fixed points k, p and (g, X,J) =
(+o0,K#,J#) hereafter denoted by A. The surface FTC is governed by the critical fixed
point (p, K,J) = (+00, K2, JA} which we denote as C4. The fixed points A and C emerge
from Eqs. (25)- (26). Conscquenily this surface corresponds to a second order transition
between the Pe and the AF phases. The corresponding correlation length critical exponent
is given by v4 = Inl/In A4, where

)
S Y I

The FMT surface is governed by the fixed point (g, K,J) = (—o00, —00,J#), hereafter de-
noted by Fy. As we have seen in Sec. III this fixed point is attractive in all directions but

one, namely that associated with the ordering field g, whose corresponding eigenvalue is
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A = !4, Since the eleciron density in the AF phase satisfies n &= 1 (4 = 400 at the ﬁ;\cad
point A), FMT is a first order transition surface between the Ph and the AF phases.

The surface FEae is governed by the fixed point F. The cha.l;acteristics of this fixed
point for d = 2 were alrecady discusscd in Sec. IV. Through the same arguments we see that
" the FEae surface is a first ord;:t transition one between the Ph and the Pe phases. This
surface ends at the isolated critical line a5, which is governed by the fixed point a.j

The FMT and FT.C surfaces join smoothly at the line FT. The fixed points E and T
on this line are non-trivial ones. The fixed point T is attractive along the line ET, i.e., the
eigenvalue whose eigenvector is tangential to the line ET satisfies A < 1. Also the fixed point
T has two relevant eigenvalues (A‘T" > 4\5?) > 1) , whose associated eigenvectors are respec-
tively transversal and tangential to the transition surface. This structﬁre is characteristic of
{ricritical behavior and therefore the ET line is a tricritical one [22]. The tricritical exponents
are given by v; = Inl/In M and ¢, = n AP/ 1n M. The numerical values of the different
relevant eigenvalues are shown in Table III. The two first order surfaces FMT and FEae, and
the second order surface FTC meet along the line FE, where the two first order surfaces have
equal slopes. The line I'E is governed by the fixed point (g, K, J) = (~—o0, —00,J2), which
we denote by G4. As we have seen in Sec. III this fixed point has two relevant eigenvalues :
one first order eigenvalue A = {4 coupled to the field 4 and thus giving a first order transition
in the density n, and the other A = ['/V4 giving the same critical behavior as the fixed point

Ca. The fixed point G4 is unstable towards C, (see Fig.'ll) with A = ¢ and unstable
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towards Fy and Fy with A = [’*4, This structure is characteristic of critical end-points
behavior and the FE line is made of critical end-points {critical end-line). The tricritical
line ET, the crit_ical line aE and the critical end line FE join at the fixed point E. This point
has three relevant cigenvalues (A > A% > A? > 1) thus being a multicritical point. The
analogous point in the cla:ssicai BEG model describes a spet;ial tricritical point associated
with the three-stale Potts model transition {17, 23). This fixed point is probably related to
some quantum analog of the threc-state modci.

The transition surface bet\?een the antiferromagnetic and the paramagnetic phases (in-
cluding both first and second order regions as well as the tricritical line) exiends to the
K > 0 region of the parameter space. Below this surface there appears, for 4 > 0, a second
order transition surface between the hole-rich and the CDW (enclosed by the second order
surface) phases; this surface is analogous to the one encountered in Sec. IV (see Fig. 5) and
is governed by the fixed point b. In Fig. 12 we show some typical constant-K cross sections
of the phase diagram for J > 0.

The phase diagram for { = 0 and J < 0 shows the same qualitative structure as the
above described {J > 0), the antiferromagnetic phase being now replaced by a ferromagnetic
one. For each of ihe fixed points for J > 0 there exists an analogous one for J < 0; ils
locations and general characteristics are listed in Table IV. The global connectivity between

the different fixed points is the same as that shown in Fig. 11 for the corresponding set for

J>0.
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B The it # 0 phase diagram

As stated at the beginning of this section, all the points in the parameter space (g, K, J, 1)
 are governed by the fixed points located at the invariant subspace ¢ = 0. Then the first and
second order surfaces become three-dimensional hypersurfaces in the complete parameter
space, while the tricritical and critical-end lines become two-dimensional hypersurfaces. The
special multicritical fixed points generate isolated multicritical lines which are located at the
boundary between the tricritical and critical-end surfaces. We now analyze some particular
cases.

In Fig. 13 we show some typical constant-Z cross section.s of the phase diagram for K =0
and J > 0. For K = 0 the transition between the Ph and the Pe phases is smooth everywhere
but for a small first order line for t53; this line is located very close to the second order line.
For high values of ¢ and low values of J we observe the appearance of a ferromagnetic (F)
phase, i.c., a region of the parameter space governed by the fully stable fixed point Fp I(sec
Table IV). This region is bounded by a second order transition surface to the Pe phase. The
presence of a F phase can be better understood by #na.ljzing the phase diagram in terms
of the variables {s/t,J/t,1/t). Indeed in Fig. 14 we show some typical constant-J/¢ phase
diagrams for K = 0 and different values of J/t. In Fig. 14c we see that the F phase appears
at low temperatures 1/, for low values of the parameter J/t, precisely where the tJ model is
expected to present a behaviour similar to that of the Hubbard model for high values of U/t

[24). 1t is a known result [25, 26} that a hole in a half-filled Hubbard model tends to form
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a ferromagnetically ordered region around itself, sometimes called a ferromagnetic polaron.
On the basis of these results, and various approximate methods, such as Hartree-Fock [27), it
_ is believed that _thc Hubbard model has a ferromagnetic ground state for some range of hole
concentrations. Moreover, many approaches predicts a finite temperature phase transition
into ferromagnetic state [28, 2.9, 30]. Therefore, the F phase in the th}'ee-dimensional tJ
model can be understood in terms of ferromagnetic polarons. The F phase disappears when
J/t is increased.

We observe that the system is antiferromagnetically ordered at low temperatures for all
values of J/i and low concentration of holes (i.e., for high values of #). The AF order is de-
stroyed when the concentration of holes is increased, i.e., by lowering p. Several experiments
show that doping with holes destroys the Néel state in La and Y copper oxide compounds

[4, 5, 31, 32, 33]. Tor high values of J/t and low temperatures this transition can be a first
order one (v&ith a tricritical point separating the second and first order transition lines), i.e.,
we get, as in the two-dimensional case, phase separation but now the electron-rich phase is
antiferromagnetically ordered. Indeed NQR [32] and muon-spin resonance [33] in La com-
pounds suggest that the magnetic transition could be a first order one for some range of
hole concentration. Moreover, the observed anomalies in the NQR relaxation rates could be
indicative of tricritical behaviour.

Finally we consider briefly the phase diagram for J < 0. In Fig. 15 we show two typical

cross sections of the phase diagram for K = 0 and constant ¢. For low values of ¢, the general

-
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structure of the phase diagram is very similar to that of the J > 0 one, the AF phase being
now replaced by the F one. However for high values of ¢ this similarity breaks. We observe
_in Fig. 15b that, for low values of |J|, the magnetic interactions induce a second order phase

transition into the CDW phase (compare Fig. 15 with Fig. 13).

V1 Concluding Remarks

‘We have performed a real space RG ana!ysis of the full finite temperature magnetic phase
diagram of a d = 2 and d = 3 generalized tJ model; this phase diagram exhibits a very rich
structure. In addition to the general interest of such a rich phase diagram, our results suggest
that the phase diagram of several high T¢ materials {e.g., La and Y based copper oxide
compounds), at least as far as the magoetic properties are concerned, could be explained by
a three-dimensional tJ model. Of course, the present model is too simple to get a numerically
accurate description of such materials, but many improvements could be implemented. For
instance, we see from Fig. 14 that, for the undoped system (i.e., for p — o0), 1/t ~ 1,
which corresponds to a Néel temperature Ty ~ 10°K (assuming a band width ~ leV).
This value is of course unacceptably high. However t.he interplane exchange couplings are
very weak [34]. It is therefore reasonable to expect that a three-dimensional tJ model with
strongly anisotropic exchange couplings will highly reduce the Néel temperature (it is not
unreasonable to think that an anisotropy of the order of 10~ could reduce Ty to the order

of 100 K).
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Our.d = 2 results predict {hat the tJ model does not show phase separation for low
values of J/t. This result indicates that the Hubbard model neither phase separates at finite
. temperature, at least for high values of U/t and possibly for all values of U/t, a fact which
18 in #greement with recent Monte Carlo calculations. An interesting possibility would be to
perform the present RG analysis of the Hubbard model for arbitrary values of U/t, both for

d =2 and d = 3. This work is in progress and will be published elsewhere.
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Captions for Figures and Tables

Fig. 1: Renormalization group cell transformation. Every two-rooted cluster generates,
through infinite iterations, an hierarchical lattice of intrinsic dimensionality d. L stands

for the set of paramelers of the Hamilionian; o and o denote internal and terminal sites

respectively. (a} d =2; (b) d =3.

Fig. 2: Asymplotic recurrence relalion J’ = fi(d, J) corresponding to the Hamiltonian

(17) in the limit p — oo, for dimensionalities d =2and d = 3. {a) J > 0; (b) J < 0.

Fig. 3: Flow diagram in the invariant subspace (g, K) for d = 2. The RG flow is
indicated schematically by arrows. The solid line cbd is a second order transition line. The
solid line ea corresponds to a first order transition between the hole-rich and the electron-
rich phases; this line ends at the critical point a; the dashed line corresponds to a smooth
continuation between the two phases. The dotted line is associated with the relevant scaling

field at the fixed point b.

Fig. 4: Phase diagram for t = 0 and K < 0 in d = 2. The surface eaf corresponds to a
first order transition belween the hole-rich and the electron-rich phases. This surface ends

at the critical line a f and extends to the ¢ < 0, K > 0 region.

Fig. 5: Second order transition surface between the hole-rich and the CDW phases for

t=0and J>0ind = 2.
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Fig. 6: Phase diagram of the d = 2 tJ model (K = 0). The picture shows a first order
transition surface from the hole-rich (small values of J) to the electron-rich (high values of
J) phases. This surface ends at the critical line gh; the ih line lies on the ¢ = 0 plane.

Another similar surface exists for J < 0.

Fig. T: Representative cross section of the d = 2 phase diagram for typical values of
the parameters t and K. The dotted line corresponds to a smooth continuation between the

hole-rich and the electron-rich phases.

Fig. 8: Coexistence lines (first order transitions) for K = 0 and typical values of Jftin

d = 2. Each line ends al a critical point as the dimensionless temperature 1/t increases.

Fig. 9: Dimensionless critical temperature (1/t). as a function of J/t, for K = 0 in
d = 2 (see Fig.7). The curve suggests that (1/t). — 0 for J/t — (J/t).. The extrapolated

value of (J/t). is (J/t). = 1.4.

Fig. 10: Phase diagram for t = 0 and KX < 0 in d = 3. The region above the surface
FMTC corresponds to an antiferromagnetic {AF) phase; the region below the surface FTC
corresponds to a paramagnetic electron-rich phase (Pe) while the region below the surface
FMT corresponds to a paramagnetic hole-rich phase (Ph). The surface FTC is an AF-Pe
second order transition surface, while the surfa;ce FMT is an AF-Ph first order one; the
surface €aEF is a Ph-Pe first order one and it ends at the isolated critical line oE. _The

dash-dotted line FE is a critical-end line, while the solid line ET is a tricritical one.
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Fig. 11: Schematic diagram showing the global connectivity of the set of fixed points
which determine the phase diagram of Fig. 10. The dark-full and dotted lines correspond
to RG tra.jectoriés respectively flowing through second and first order surfaces; the double-
dark-full and dash-dotted lines respéctively correspond to the tricritical and critical end lines;
light trajectorics do not correspond to any phase transition. The numerical values and the

general characteristics of all the fixed points are listed in Tables 1I and III.

Fig. 12: Typical constant-K cross sections of the d = 3 phase diagram for ¢ = 0. Dashed

and solid lines respectively correspond to first and second order phase transitions.

Fig. 13: Typical constant-i cross sections of the d = 3 phase diagram for K = 0. Dashed
and solid lines respectively correspond to first and second order phase transitions. The point
E, is a special multicritical one. For ¢ = 3 the first order line between Ph and Pe, and the

second order line are too closely located to be resolved in the present scales.

Fig. 14: Phase diagrams in the (u/t,1/t) space for K = 0 and typical values of J/t.
Dashed and solid lines respectively correspond to first and se-cond order transitions; dotted

lines correspond to a smooth change in the density n and do not describe any phase transition.

(a) J/t =1; (b) J/t = 0.5; (c) J/t = 0.25.

Fig. 15: Typical constant- cross sections of the d = 3 phase diagram for J < 0 and

K = 0; P and F respeclively stand for paramagnetic and ferromagnetic. (a) ¢ = 1; (b) ¢t = 3.
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Table I: Classification, locations and critical exponents of the fixed points underlying
the d = 2 phase diagram of the tJ model. All the fixed points in this table are located
at the invariant subspace (i, K,J,1) = (p, K,0,0); Pe and Ph respectively stand for the
paramagnetic electron-rich and ho.le-rich phases; CDW stand for the charge-density.-waves

phase.

Table 1I: Classification, locations and critical exponents of the fixed points at the in-
variant subspace J =1 = 0 for d = 3. The connectivity between the different fixed points is

the same as in the d = 2 case (see Fig.3). See caption of table I.

Table T1I: Classification, localions and relevant eigenvalues of the fixed points for J > 0
and ¢ = 0, underlying the phase diagram shown in Fig. 10. These fixed points, together
with those shown in Table II, completely determine the d = 3 phase diagram for J > 0;
Ph and Pe respectively stand for paramagnetic hole-rich and electron-rich; AF stands for

antiferromagnetic.

Table 1V: Classification, locations and critical exponents of the fixed points for J < 0
and ¢ = (. These fixed points, together with those shown in Table II, completely determine
the d = 3 phase diagram for J < 0; F stands for ferromagnetic. The general connectivity
between the different fixed points is the same as that shown in Fig. 11 for the correspondig

J > 0 set of fixed points.
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S —
Location (4, K) Stability Domain in (g, K,J,t) | Relevant

phases

space eigenvalues
q (0,0) singly un- | smooth continuation hy- | A = -T=73
: stable persurface between Ph
and Pe phases
P (+00,0) fully stable | Pe phase —_—
h (—00,0) fully stable | Ph phase —_—
w (00,00)| ki fully stable | CDW phase _
T4
Fo (—00,—00)ixopsa, | BnEly un- | First order hypersur- | A= =3
oap=3/4 In2 stable face between Pe and Ph
phases '
a (—3.42,-2.93) doubly un- | critical surface AV o= 227
stable _ M) = 7.84
b (2.03,6.14) singly un- | critical hypersuriace be- | Ag = 2.80
stable tween Ph and CDW

Table 1
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Fixed point | Location (i, K) Domain in (g, K, J,t} space | Relevant |
eigenvalues
¢ [ (0,0 [ smooth continuation boundary | A=T1=9 |
. between Ph and Pe phases
P (+00,0) Pe phase —_—
h (—00,0) Ph phase e
(00,00 = psy CDW phase —_—
N~ 1248
Fo (=00, =)=y 40, | First order hypersurface be- [ A =1"=27
ap = 9/13In2 tween Pe and Ph phases
a (—1.82,-1.47) critical surface A~ 827
. A0 = 11.33
b (1.44,14.43) critical hypersurface between | A, = 8.10
Ph and CDW phases

Table I1
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Fixed | Location {u, K, J) Stability Domain in (u, K,J,t) | Relevant
point spacc : cigenvalues
A (400, KZ, 75 fully stable | AF phase
Ca (+00, K2, J2) singly un- | second order hypersur- | A4 = 2.42
stable face between Pe and AF
phases
[ 4 (—o00, ~00,J) singly un. | first order hypersuriace | A = [0 = 27
' stable between Ph and AF .
phases :
Ga |(-00,—0,J%) doubly un- | critical end points sur- [ A4, A= 1€
| stable face
T (-1.02,-0.01,0.70) { doubly un- | tricritical surface N~ 12.87
stable 2~ 1.57
E (-1.72,-0.97,0.49) | triple special multicritical line [ M =~ 16.32
. unstable Ag) ~ 2,74
22 = 1.66

Table III
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Fixed | Location (g, K, J) Stability | Domain in (u,X,J,t) | Relevant

point space eigenvalues

Fr (+00,+00,—00 fully stable | F phase

Cr (+00,KF,JF) singly un- | second order hypersur- | Ap = 2.03
stable face between Pe and F

phases

[ Fp (—o0, —00, —00) singly un- | first order hypersurface | A = ¢ =27
stable between Ph and F phases '-

Gr (=00, —00,J:) doubly un- | critical end points sur- { A, A=1{*® -
slable face :

T (—1.54, —0.36, —1.15)[ doubly un- [ tricritical surface A~ 1541
stable Ag) = 2.18

E (—1.76,-1.10, —0.58)] triple special multicritical line | A}’ =~ 16.87
unstable M) o~ 296

AP =~ 1.38

Table IV
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