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ABSTRACT

A generalization of a simple-majority rule model is pre-
sented. The system, say a d-dimensional hypercubic checkerboard,
whose elements are coloured with one out of g colours with pro
babfﬁtiespl,pz, cees pq, presents a continuous phase -transition,
Using a real space renormalization group (RG) approach, we esta-
biish the phase diagram as well as the correlation length crit
ical exponent v. The various types of convergence of the-Ra nu-
merical values for v towards the (presumably) exact answer are
analysed in connection with finite size scalings.

Key-words: Majority model; Renormalization group; Phase diagram;
Finite size scaling.
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In this work we present a generallzation of @& malortty-ruie
mode! developed by one of us (1). We conslder & majority model on
say a d-dimensionai hypercubic checkerboard (simply
"checkerboard™ from now on) whose elements are coloured with one
out of q colours with probabilities p

qQ
respectively (tg‘pi = 1 ), We arbltrarily choose a colour which

" pzaa----o Pq

will de refarred as the first one; we then consider a cluster of
elements of the checkerboard and check {f there (s a simple
maJority of the first colour. |If this is the case we choose, at
random, a targer cluster: 1f the malority of the first coiour I8
atil) preserved we Kkeep increasing the cluster size wuntil a
different colour achieves the malority. The mean size of the
cliuster slze £ at which the malority was shifted to other colours
is then calculated. For small vatues of p , finite vajuves of
T(lp }) are expected and a divergence will show up for |Increasing

vatues of p. . This threshoid defines the critical frontier

8
Ccritical point if q = 2, critical iine 1f q = 3, etc). The
divergence of £ at the critical frontier is presumably given by
(p“l - p‘)iv and we want to catculate the critical exponent .,
More specificatly, I¥f q =2, then ﬁ: = 1/2 and v =2/ ([1).
For q = 3, the critical frontler Iis given by p + p, /2 = 1/2 ¥
p, =P, , 8nd by p/2+0p =11/2 Ifnp £p . 1t can be shown
within the RG framework that along these |lines the critical
exponent 18 the gsame as8 The one obtained for the qQ = 2
cese, excepting for the particular pointp =p, = p, = 1/3,
where a possibiy new value of ¥ |s expected. In fact It wilt Dbe

shown that the numerical results suggest ¥ = 2/d for any poOiIRt on

the critical frontier fOor any q.
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Notice thet, for o gliven value of q, taking the probeblilty

of one of the colours % equal to zero leads to the (q-1) model.

We wili use the reai space RG technique Yo catcuiate the

=» =" = L 3
cerlticatl polnt P = (p‘.pz...,pq) (the point which s common Yo
all the branches of the critical frontier) and the corresponding
critical exponent v, Based on these caiculations we witl) discuss
the convergence of ¥ to the exact value of the frame of finlte

scaling hypothesis.

in order to define the RG transformation we take a
cluster of side length b (in elementary cell units) so the
cluster has v = a wunitary celis, and consider the probability
of having & malortty of cells of the first colour. The
probabilities of the configuretions for which the filrst colour
shares the majority with r other colours are welghted with
s factor (r + 1) °. In this way we have an unamblguous
assignation for p  (probabiiity associated with the cluster with
first colour malority)
at pot ppt .. po¥

b

] 1
nt. ﬂz i1.. nq.

r -2 ”
p, = R Up 1) = } H(n‘,nz,...,nq) 8B

where the sum |Is over n

1’"

p ¢ ..-.Ih running over non—-negative

Integers with the constraints

n, + 0y + .. + N = b = 4 (2.a)

q

o,z on , ¢ J=2,3, ,8) (2.0)

b
and “("1a“,=-'-:"q) Is defined as foliows
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i 1 ifon > n; (J= 2.3,...9)

(r+1f1 I¥f the first colour shares
w(n‘,nz,..nq) z (3)
maeJority with r other colours

9 o otherwise

Notice the symmetry of H(nl,nz....nq) under permutations

among the last (g-1) varlables n, ., "S""'h'

In anelogous form the vrenormalized probabilities Ffor the

other colours are

N n N
ot ol p 2., 941

i | }
ntongl.. nq.

¢ . RS = ”
p; = RjUp )= L Wn,ng L) (0 1) (4)

1;0.

sls0o with the constraint (2.8).

Before we go on we consider, as an exampie, the case q = 3.
Let us refer to the colours black, white and red and thelr
probabiiities P, = Py . P, = Py and By = B - For a given value

of a, the renormalized probability ‘ |8 given by

Py

al p:4 p:Z p:3

p’ = I Win_,n_,n.) (5>
B n‘IlE! '5! 1772772
with
.
1 I ¥ n‘> R, Ry
1/e ifn =0, >»n_ orn = n, >
H(nt,nz,ns) = 4 t z * * 2 (B)
1/3 ifn, = n, = n
1 2 8
| O otherwl!se
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and the constraint 'fl‘ + I'Iz + l'l. T 0.

in the particular caste =m = 3, Eq.(5) becomes

r

Py = P + 3 B (1-p,) + 3 g (1-R,) + 28 R R (7).

The p, ong p; are obtained anologously, The RG transformetion
presents a fully unstabie fixed point ﬁ' e (1/3,1/3,1/3) an¢
three semi-stable fixed polints (1/2,%/2,0), <(1/2,0,1/2), and
(0,1/2,1/2). The phase diagram and the RG critical frontlier |Is
shown In Fig (1). The frontier separates the bleck, white and red

prevalent colour regions,

We return now to the general case of q colours.

Eqe (1) @&nd (4) deflne the RG transformation from
d

probabilities of elementary cells to a celi b = @ times

larger. There are Eq-(q+1) non-trivial fixed points, one of
which, P* = (1/9,1/q9, ...,1/9) Is fully unstable, the rest of them
being semi-stable. The fixed point ﬁ‘ i1s at the geometrical center
of a hypertetrahedron In a (g-1)-dimensional space and the
semi-gtabie ones are located at the centers of the faces and of

the edges.

We wiill study the linearized RG recursion relations In <the

»
nelghborhood of P . At the fixed point Eq.(1) yields

[

a-1 al Win_ ,n,..,n_ )
] : T t 2 '3 (8)

!
ntont., nq !

-y

The derivative of p; with respect to pj Is
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’ -4 1
Op" al P‘..Pn-‘ .. '\Q'
ap; T nton l.."q- (N5Pq = Mg Py) WiR .My oveuny)

(8)

al H(n‘,nz..,nq) [ y 724

P_’P*:}: NN r (nj-nq)=0 () =2,..9)

nq!
This expession vanishes due toc the symmetry of H(n‘,n:,..,n )
therefore the |Iinearized transformation at the critical point

»
P iIs dlagonail. Since all colours play the same role, the diagonal

elements colncide and are given by

Ip/ al (%'“:"'”H) 1 Y2t
3, | p* * My Byl.. n_! [?] (ny = ny)
{10)
q zelw(n‘.nz...,nq)n‘[l]c—: 8 _
(q-1) n‘! nz!.. nq! -1) a

From this eigenvajue we obtain the critical exponent

» . In{b) . 1 in{a) '(1i5"~
a,1 ln(xn) d In(in) :

The RG transformation, Eqs. (1) and (4), define 8 change of
scale with a factor b. Through this transformation we may define a
recursive reiation between the probabllitlies assigned to a

d
cluster of side length b’ (8’= b’ ) and that &assigned to the

ctuster of side iength b, namety
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p‘J‘.' . n';"(P) s n?'(a“q(p“)) (12)

It follows the critical enponent Hma, given by

J _In(a/a’)
©v .I d ——zx—7i—— (113)

¢,a’ in a/™a-
We now pass to discuss the RG results we have obtalned for

the critical exponent v,

First of all we should notice (see Eq.C(11)), that the
dimencionallty d of the problem always enters in the same way In
the expression for . We can as well think that theclusters of
eiements of the checkerboard are arrange¢ [(n a one dimensional
array of length « (d = 1), in RefiV] s proved that ¥g = 2 I8 the

exact answer, Besides this, the RG scheme shows that the a =+

asymptotic dehaviour of (”a.a“ v'xmn) Is of the form 1/inda),
-1 -1
whereas the beheviour of (¥ _ . - vaﬂri) is of the form 1/= .
Our <calculations for q > 2 strongly suggest that the

exact value is vd =2 for any q. The ssymptotic behaviour of

Hy - is alse of the Fform 1/in(a) as can be seen In
a,1 axact
Fig.(3),

The finlte size scaling hypothesis [2,3] would indicate that
faster convergence Is obtalned when we conslider the asymptotic
sequence U;JV with a’ a8 close to a 4% possible. Due to the way
through which renormalization procedure treats the caese in which

the majority |s shared by two or more colours, an oscitiation of
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period 4q is shown ID 9“4 as & function of . These

osciltations become less Important as = goes to infinity: see
Fig.{2). This effect I8 rather dramatic In the case 0q = & since

an Infinite value of phmrz Is obtained I¥ a equals an even

Integer, though & good convergent sequence is obtained if we

consldger va,c-! for any parity of a. In general, we have aimost

always considered sesquences of the form vaﬁrq since they exhibit

smooth convergences to the sxact value of 1w,

Filg.{3) shows, for different values of q, the numerical

resutts of vaé as functions of 1/1na). The plot of
@t -vt ) - (
exact a,6-q ve a 1In log-icg scale Is shown in Filg,(4).
As we have already mentioned, the case q =2 is well fitted
with a stope (-1) straight fine, whereas for atl the other
cases (q =3, 4, 5, 6 ) the slopes are in the interveai
(-0.52,-0.949). This sudden change in the asymptotic
behaviour of v;zrq with q > 2 still requires further study.

It might be related to the fact that, whenever q > 2 , an
Important degeneracy |s present. For example, for q =3 , a b5b%
presence of black cells can be obtained In many manners by varying
the frequency of white and red In the 45% of non—-black cells.
Analytical solutions of the present mathematically simple model
would be very welicome. Aiso, & further generalization of the
present model which woulid use higher than simple majorlty <{and

would consequentiy present hysteresis) would be interesting to

conslder.
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GCaptions ¥for figures

Fig. 1 : Phase dlagrem for the case q = 3, 8, W and R respectively
refer to the biack, white and red coiours. ¥ , @ anga O denote
fulty stable, semi—stabie and fully wunstable fixed points., The

arrows indicate the RG flow,

Fig. 2 : The ¢criticeal exponents vﬂ as a function of a for the

A

case g = 3, Notice the oscitiations with period 3.

Fig. 3 : The critical exponents ¥ _ as @ function of 1/infa) for

A
typical vaiues of q.
-1 -4
Fig. 94 : RG numerical resuits for (v - Va,aq ) ¥8s =
for typical values of g. The sotraight |Iines are the filtted

a — ® asymptotic behaviour,
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FIG.1
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