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ABSTRACT

The BRST-BFV procedure of guantization is applied to
establish, in a gauge independent manner, the equivalence of
the gauge noninvariant and gauge invariant formulations of
the Chiral Schwinger model
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1. INTRODUCTION

The quantization of anomalous gauge theories involving
chiral fermions has drawn much interest recently. For the
case of Chiral Schwinger model (GSM) in two dimensions
Jackiw and Rajaraman (1] showed that inspite of it being a
potentially anomalous theory it is possible teo quantize it
consistently. Faddeev and Shatashvili [2] have suggested the
modification of the canonical gquantization by addition of
new degrees of freedom through a Wess-Zumino action. At the
present two formulations of CCSM are available: the gauge
noninvariant one [1} and the gauge invariant one £3,23.

Recently also the well known procedurse of quantizing a
gauge theory making use of BRST [4)] symmetry has been
further extended [5] and has been generalized into an
O=p(1,1|2> symmetry over an extended phase space [6,59). This
ensures the cancellation of the unphysical degrees of
freedom by the Parisi-Sourlax mechanism [7} so that the
final result is the reduced phase space theory. In the
present paper we will use this procedure to establish the
equivalence of the two versions of the CSM mentioned above.
We will show that they lead to the same effective action
after we have functionally integrated over the variables in
the wunphsyical sector. The formulation does not require the
computation of the Dirac brackets and the result is
independent of the choice of the gauge-fixing fermion
introduced in the theory (5,8 The gauge independance of
the result is thus automatically implemented. The result is
in agreaement, with the one derived using canonical
quantization [3) and the discussion parallels the one made
recently in the context of a consistent bosonic formulation
of chiral boson [9].

2. Chiral! Schwinger Model

The Chiral Schwinger model is defined by the classical

action
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J‘dzx[—il“”vli‘“v-l-;y“{ia“d-efa Ap(i-rs)}w

L& P
which is manifestly gauge invariant. under the
transformations & A}J- 8‘ch, S w = § ¥n e a -y,> v . The
functional integral over fermions may be done explicitly and
it introduces in the resulting effective action a free
parameter ‘a’ due to the ambiguity of the regularization of
the fermionic determinant. The gauge Invariance is lost and
anomalies are present [1]. We may ,however, obtain a gauge
invariant action if we add [11] in the theory a Wess-Zumino
[10] field such that its presence in the action makes the
absence of genuine anomalies in the theory transparent. The
effective Lagrangians corresponding to the two versions of

CSM are written as

_1 o1 po v e H
=- L FLF 3 0% e + e A, o+ an, a
2>
and
P AN 3
where
£¥Z = G 2,9 e - e A a1 9 + M) 2.0 4>

They have been re-expressed in local form by introducing an
auxiliary field ¢ to remove the nonlocal terms and N stands
for gauge noninvariant while I for gauge invariant. An
additional Wess-Zumino field 8 appears in .t‘l and the action
(3) is invariant. under the gauge transformation: & AH-

—ia“w,étp-m,ée-—m.
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The theory is shown (1] to be unitary and Lorentz

invariant. for a>l with a massive m® = eZa’/ca-1>> and a
massless degree of freedom and for a=i we obtain a free

field theory.
3. BRST-BFYV Quantization
Ca) The Case g > 1

Consider first the gauge invariant formulation <3). The

canordcal momenta corresponding to Ao A‘, ¢ and & are

»

indicated by 1 , E = F_ = A - A’ , 1 = ¢ +e CA_ -~ AD
o o1 1 [+] (o] 1

and l'l8 = Ca-1) & - e [Ca-1) Ao + Azl respectively. Here an

overdot. indicates the time derivative while a prime the

space derivative and we adopt npv- diagct,~1D, et = 1. The

primary constraint Iis no = 0 and the canonical Hamiltonian

i= found to be

z z
% = [n - e (A_- A‘)] + =%=-33 [n‘9 + e {m—n A+ Ai}]
+ 4 [Ez+¢'z-eza(Az—Az)+(a—1)6‘z]+EA'
z [+ ] = ]

-eqb‘(A-A)-ea‘[A +(a—1)A]
o 1 o Y

>
Following the Dirac’s procedure {121 and requiring the

persistency in time of the primary constraint we derive one

additional secondary constraint T = E° + e (Il - I‘l9 + 8" *

¢'> and the two constraints are first class [3). For the
sake of simplicity, though without any loss of generality,
we will fix the gauge Aoz 0 <{and Ao % 00 to take care of the

Ctriviald) first class constraint !'loz 0. The Dirac brackets
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of the remaining variables with respect to this set of
constraints evidently coincide with the standard Polsson
brackets. The gauge invariant theory is then described by
980 = *cle-O together with a single first class constraint
T = 0

Following the BFV procedure [B] the Lagrange multiplier
field A required to enforce this constraint along with the
corresponding canonical momentum T[] are now treated as

I
dynamical fields over an extended phase space to which we

add alsoe the fermionic dynamical ghost fields 79, ;} ‘along

with the correspnding canonical momenta P, P, The non
vanishing equal time graded Polsson brackets of the extended
phase space variables are defined by

{Pont={P . np= {0, , A} =N, ¢} = {0, , 6} = -1

6
The BRST charge which is nilpotent and conserved is found
to be @ m PN + n T while the anti-BRST charge is = - P

I'lk-l-nT.

We now construct. the following effective action [5)
2 . : : - T o=
Seﬁ.--l-dx[D¢+HQB+HXK+EA‘+7)P

+ 7 P - %+ {0 ¥} ]
>

where ¥ is an arbitrary gauge-fixing fermionic operator. The
gquantized theory is then obtained from the folowing
functional integral

= I[d Ml exp Sef:l‘> 8D

where [du]l is the Liouville measure of the extended phase
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space, [d u] = [4¢] [dNl 1de) [dN ) [dxl tdll,] [dA 1 [dE)

fdn} [dP1 [dn] [dP), and a normalization factor in 8 is
understood. A convenlent. cheoice for ¥ iz found to be o ?‘3

& n + P A where 3 is a parameter and we find

{0, ¥p = - 260 -AT=-PPF+

n 160
B nn

1l

The contribution of the ghosts to the functional integral is
a field independent factor. A functional integration over I'lk

brings down the delta functional & - .‘-13, 6. Integrating
over O, (a factor (3 originating from the delta functional is
cancelled by 173 arising from integral over the ghosts), and

making 3 + 0 leaves us with the following effective action

2 y : 1 z
Seff-Idx[ﬂ¢+EA1 z(n-reA‘)

1 P 1 , 2 2
M, + e AD z(E’+¢ + e

3
2¢a—1) a As >

- e ¢ Ai-x{a'+ecn—ne"+¢'>}]

<100

Performing a shift transformation M, » { flg = e A, 7 Y<a-1>

* e X f(a-i)} we obtain a Gaussian integral over I, which

gives rise to a numerical factor which is absorbed in the
normalization. The effective action after a rescaling of A -»
ArTe Y(a~1D) reduces to

N In

2 y : 2
Seff Idx[ﬂ¢+EA1 (l'l-l-eAi)

- L B el

N =

aAf)—nqb'A
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+ 1,2 —x{is' + 1+ ¢ +eA}/¥(a—1)]
4 e i

(& = B

A =hift transformation on X followed by a Gaussian
functional integration finally leoads t.o the following
effective Hamiltonian over the remaining variables

€ = iredadX+2 B +e¢*+e?aa®
eff 2 i 2 1

re g A+ i e’ (a1 <Ao>’

12>

where A R [ 1
e

E' + 1 + ¢ + e A1] and
the operator ordering ambiguities must be taken care of. The
result. is independent of the choice of the gauge-fixing
fermionic function ¥ as folows from the Fradkin-Vilkovisky
theorem [3,8] and agrees with the result following from the
canonical quantization (3]

The gauge noninvariant case may be similarly treated
The corresponding canonical Hamiltonian is obtained by
_di“opping the second term in (8> and setting 6=0. The two
constraints are now second class [13). It is easily seen

that we may conveniently rewrite them as

GEE’+e[ﬂ+¢'+e(a-1)ho+ehllxo,

F s - —==Fm—— n =0 . 3

{6, F} = -1, {6, 6} = {F, F} = 0 e
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The auxiliary fields A, I'!),k in the present case are
identified with the Lagrange multipliers reqguired to enforce
this pair of constraints of the reduce phase space theory
{14). The local transformations generated by G lead to & ¢ =
eu etc. which result in & %c = 0.

For the nilpotent BRST operator we take the symmetric
form [14]

n-f,; [nce+x>+Pcr~*+nk>]
s>

The extended phase space contains now ¢, A_, A, A, n NS,

n, B f,, P, FP. They satisfy an algebra analogous to that
in €6).

The effective action now takes the form

z - - - -
Seff-j‘dx [n¢+noao+sal+nhx

+§7F+T}P—wo+{n,w}]
16>

and the path integral (8> is defined over the phase =space
under consideration here.

A convenient choice for ¥ now 1s ¥ = v2( X F 5 + P M)

TE]
where (? is an arbitrary parameter. We fimi
{Q,\F}-—)\(G-rk)—%F(F+nk)+PF—%n'ﬁ A7

The ghost integration contributes a numerical factor while

the integration over l'l‘.',k brings down a delta functional &< =

el
F - A> which allows us to integrate functionally over l'Io and

in the Wimit 3 » 0 we obtain
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s -Id’x[n&-rEAa--’-e’(a—i)f-l-{x—xezca-n}a

eff i 2 (4] o
A K-22-2 t,0
o 'A =)

18>

where K = 0 | Integration over Ao is done by making a

ami

shift transformation as usual! and we obtain

s .[dz,‘[n;,+gg_-__'_< ________
1 2
J z e (a1
- 1,2 2 -
z?\{z-l-e(a-:l)} !‘ole_o]

190

which leads again to the same result <120 on integrating

over A.

(b>) The Case a = r

For a = 1 we easily derive from the equations of motion
following from (2> that c“vl“”v = 2 E = 0 and that AP is no

more independent being given by

A = -

Y - > s pm e AY €20>
7] v Ly

ol

It follows from <20> that e opA“ - - apo“ ¢ = 0 implying
that ¢ is a free field. The result may also be derived by
making use of the functionat integral. We briefly mention
the =sallent. points. Following the Dirac’s method we obtain
cne {(primary?> first class constraint l'loz 0 ,which generates

the time independent. gauge transformations of the action and

two (secondary) second class constraints K= Gla-ti = 0 and
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E = 0. It is  worth pointing out that requiring the
persistency in time of these constraints does not determine
the Lagrange multipHer u required to enforce l'lokz 0 in the
extended Hamiltonlan arizing in the context. of the Dirac’s
method. We may then follow the procedure described above for
the first and second class constralnts to write the
functional integral. Alternatively, we may add to the =set a
sauge~fixing condition Aoz 0 so that we are left with only
the set of second class constraints., The regquirement. of the
rersistency in time of Aoz 0 determines u to vanish and
thereby reduces the extended Hamiltonian to aeo- R’cl A®= O
The functional integration over the extended phase space are
done as above and the effective action is easily shown to be

that. of the free action for the field ¢,

For the gauge invariant version we obtain two first

classno“-co, E'+e(n—ﬂe+9‘+¢')«“:08ndt,wo

second class E = 0, He + e A1 = 0 constraints. We may, if
we wish, simplify the calculation as in the previous
paragraph by adding the gauge condition on 0 <and Aoz 0.
It iz evident, without making the actual computation, that

the Dirac brackets with respect to the set I'IO ,Ao s B , 1N

L]
+ e ﬁL1 of =second class constraints of the rémaining
variables ¢, I, 6, }19 coincide with their Poisson

brackets. We are then left with a gauge theory with the

(nontrivial> fFirst class constraint «cn -n. + 8 + @ > =

e
1 2 1 .2 1 z _ .
0 and %= 2 @ n* + 2 ¢% + 2 ng ¢

vhen we =set the second class constraints equal to zero as
strong relations which in its turn removes all the
dependence on the gauge [field Ap. Recalling the arbitrary

nature of the gauge fermion we may take it to be ¥ = ie n

3

+ P X . Proceeding as in the earlier case it is easily



CBPF-NF-(052/89

-10-

shown that the final result. after the functional
integrations over & and N
field ¢.

e is again the free action for the
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