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ABSTRACT

We consider a population with bi-parental procreation which genetically
transmits, through a specific blending-like mechanism, a combination of two
characters, namely a namadic and a sedentany ones. Consequently, as time goes
on, the population spreads out geographically, space distribution thus
reflecting genetic distribution. The ﬁodel is exactly tractable, and we
calculate the relevant quantities. We finally present and calculate a

generalized version of the model.

Key-words: Genetical evolutlon; Sedentary/Nomadic characters; Populational

geographic distribution; Population evolution.
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1 INTRODUCTION

Either because of its high inirinsic Interest, or because of its analogy
with spin glasses (see, for instance, Ref. [1]), Evolutionary Genetlcs is
actively studied nowadays (for updated reviews see Refsf (2,3]). The current
basic model for genetic evolution of populations relies on the Mendellan
picture. More precisely, a given macroscopic observable (saf the individual
size or the individual colour) of a glven speclies 1is genetlcally transmitted
through a genotype n-sized "strip" of practically independent binary (or more
general) variables. All the individuals of all generations of a glven species
share basically the same set of n’s for the various macroscopic observables
(n = 1 for say the sex or the overall colour of the eyes; n >> 1 for say the
gize or the welght; in this case n could achieve, in real species, values up
to 103 - 10‘). This mechanism for the transmission of genetic information has
clearly proved its blological efficlency. However, on evolutlonary grounds,
it can be considered as relatively sophisticated, and has presumably been
achieved through a slow optimization along successive generations. For
primitive populations (ancestors of the present species, or new species still
under relatively strong evolution) a simpler mechanism, blending-like, seems
more plausible. Within this plcture, the value of n could probably increase
{up to a relatively high limit) along successive generations. An extreme type
of increase one can think of is the geomelnic one; for instance, in the case
of bi-parental procreation, n would become 2n at the next generation. A more

moderate increase would be the anithmetlic one; for instance, n would become
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n + 1 at the next generation. Such hypothesis llies, in what time evolution 6f
n concerns, in between the geometric and the basic Mendelian one (for which n
is oataticnany). In any of these cases, the particular type of increase
{stationary, arithmetic, geometric or any other type) of n should somehow be
included in the genetic information to be transmitted. The three types of
increase under consideration are illustrated in Fig. 1.

We formulate here, for a population with (unisex) bhi-parental
procreation, a mathematically tractable model of the arlthmetic type by
assuming a binary variable which takes the values A (sedeniany character) or
B (namadic character). If we were focusing bacteries, the presence of B could
determine the appearence of say a flagellum (vibrating tail), which would
greatly enhance the translational motlon. For this population, the assoclated
genetic strip of each individual contains, at each generation, a certain
amount of A's and B’s. The tendency of any lndividual to move away is assumed
to increase, in a blending-like manner to be specified later on, with
increasing proportion of B's in its strip (for example, in the picture of the
bacteries, the proportion of B's could somehow determine, through its size
and/or strength or anything similar, the 'migratory efficiency of the
flagellum). Consequently, a geographle spread out of the population will
emerge along subsequent generations. In particular, the individuals wlth
BBB... strips will be found at positions further and further away from the
initial one, whereas the Individuals with AAA... strips will be found on the
same place f{for all generations. Consequently, space distribution will

intimately reflect genetlic distributlon and can be used as a tool for genetic
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studies.
The model and some relevant quantities are presented in Sectlon 2; we

generalize it in Section 3; we finally conclude in Sectlion 4.

2 MODEL

For simplicity we assume that the population can travel only
ane-dimensionally, say along a natural "valley" (x axis)}. Furthermore, we
assume that only the positive x axis 1Is accessible; for instance, a very high
natural obstacle exists at x = 0 which forbiddens the passage to the negative
x region. This second assumption is adopted for definiteness, and could be
released with no further mathematical complexities. To each individual strip
we assoclate a number v (0 s v s 1) defined as its proportion of B’s (e.g., v
equals 1/2 and 2/3 for AB and ABB respectively). Next we define, for ﬁn
arbitrarily given individual, its mignratony athength p as the space expansion
rate which will drive him, during his life, along the positive x-axis starting
from the poiht where he was born: more precisely, if he was born in a space
interval whose width is Ax, he will die in a space interval whose width is
(1 + p)Ax and which is shifted along the positive x-axlis In a way we shall
detail later on. We now assume the b&aaic hypathesia of the present model,

namely the following blending-like law relating v and p:

plv) = va7 {1)
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where P 20 and ¥ 2 0 are genetic characteristics of the species (see Fig.
2). Furthermore, we assume discrete time, the unit step corresponding to oﬁe
generation; also, all individuals of one generation die simultaneously and,
at precisely that moment, start living (and migrating) all the individuals of
the next generation (whose genetic strips will have one unit more than those
of the preceding generation: arithmetic growth). This is a good moment for
claryfing that, although we shall, for simplicity, keep talking of n
increasing arithmetically {(by one) at every new generation, the time unit step
could, in fact, as well refer to a certain ael af asuccessive genenations; all
the generations of the same set would maintain the same value of n, which
would become {n + 1) for the next set of generations (in this case - indeed
more realistic - the increase of n would be due to say a mutation rather than

to a genetic prescription).
At time t =0 we have, In the rggion 0 < x < r, {in the region
r‘ < x < T, + rBJ, NA (NB) individuals whose one-locus strip has the value
A (B). The total number of individuals then is N = NA + NB, and we define
the probabilities P, = N&/N and P, = NB/N. The NA (NB} individuals are
uniformly distributed in the interval with wldth T [rB), the populaticnal
density thus being AA = N‘/rA = Np“rA (ZB = NB/rB = NpB/rB). As frequently
done 1n theory of multifractals (see [4,5] and references therein) let us

introduce a measure defined through the momenta of the probabilities, 1l.e.,

q

let us introduce p:, pB

and po = p: + p:, where g is any fixed real
number. The parameter q will be used to characterize the growth (or decrease)
of the population: q = 1 (hence P, = 1), g > 1 (hence P, < 1) and g < 1 (hence

P, > 1) will respectively 1imply olaticnony, decreasing and incnheasing
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populations. The space occupancy as a function of time t follows a
deterministic dynamics which 1is indicated in Fig. 3 (where, for future
convenience, we have introduced p(C) which, at the present stage, equals

zero). At any time t -~ O (with t = 1,2,...) we have 2% reglons (along the x

axis) characterized by i = 1,2....,2‘, and univocally asscociated with t-locus
t
e
strip sequences; for instance, for 1 =1 we have AAA...A, for 1 = 2 we have
t t

AAA...B, and for { = 2" we have BEB...B. The width of each region is directly

related to the particular sequence, For instance for t = 1 - 0, we have

(1)
r

r‘[1 + p(0)] (2.a)

and

(1)
r
B

rall + p(1)] (2.b)

for t = 1 + 0, we have

. {1} 4 = q

R pl/po rA[1 + p(O)]p‘/po R (3.a)
- 1 q = q

re =T, pB/p0 r‘[l + p(O)]pB/po_. . (3.p)
_ . q _ q

Ty = T pA/p0 = rB[1 + p(l)]pl/po . (3.¢)



and

for t

(2}
r
AA

(2)
AB

(2}
r
BA

and

(2}
BB

for t =2 + 0,

r
AAB

rkBA

=1, [1+p(0] =111+ p(0)] p“/p

=r,[1+ p(’:)z)l = r‘ul * pI(o'}"l-.{ii ._+' '_p.tl/zllp:/Po
=1 + p(1/2)] = r {1 + p(1)]{1 . p(172)1p}7p,
= r (14 p(1)] = r (1 + (YR, s

we have

= :f) :/p =T, [t + p(0)] paq/p

= :i’ :/p = rAU, + p(O)]zpzlJ:/pz .

= r::’p:/po = r [1 + p(0)}1 + p[l/Z)]P:P:/po .

m
B

q - q
P/P, = rnll + p(l)]pn/po

=2 - 0, we have
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(3.4)

(4.a)
{4.b)
(4.c)

(4.4)

(5.a)
(5.b)

(5.¢)



r
BAA

BAB

EBA

and

In general,

ABB

2)
AE "B "0

(2)_q
BA pA/po

(2)_q
rBA pB/pO

L]
ﬂ
%
o

|
o
o

(a+b=1t) we have:

{1) at time t - O

l__(t.) _

where the set

J

rA[1

rB[I

rnll

rBII

r_[1

R

+

+

+*

+

(a-1)q_bq , a+b-1
]}pA qu /pO

p(0)111 + p(1/2)1P, /P, ,
Pt + p(1/2)1P2Vp

(1)1 + p(1/2)]p:p:/p§ .

p(1)] 2p:p:/p§

2 29,2
pl(1)] Py /P, -

aq (b-1)gq, a+b-1
] }pA pB /pO
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(§.d)

(5.e)

(5.1)

{(5.8)

(5.h)

for an arbitrary sequence X containing a A’s and b B’'s

if £ starts wlth A,

(6}

if £ starts with B,

{v(z)} depends on the particular sequence (e.g., AABA, ABAB and
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_8_
BBAA respectively yield {v;m} = (0,0,1/3,1/8), (0,1/2,1/3,2/4) and
(.1,1,2/3,2/4);
{(ii) at time t + O
_ (t) q :
re, = I's P, /po (7.a)
and
_ (t) q . O
Feg = Tg Py /po (7.0)

As we see, at tlmes between (t -1 + 0) and (t - 0), the population Iis

constituted by N:::: = Np;-1 individuals. Then the entire generation dies
and, at time (t + 0), N:::al = Np; individuals appear distributed in 2%

tel
).

regions (i =1,2,...,2 Each region at time (t - 0) provides, at time

(t + 0), two new regions, the left (right) one of which is associated with a
. {t + 1)-locus strip sequence which repreduces the generating seguence and

adds, at the last locus, the wvalue A (B).

Let us now focus the values v;t) and the assocliated occurrence

probabilities g[ "”] at times between [(t - 1) + 0) and (t - 0}). For times

between ¢t =0 and t = 1 - 0 we have vu’ = 0,1 and g[v(”] = p‘,p'; for times

between =1+ 0 and t=2-0 we have vtz’ =0,1/2,1 and

® 2 0,1/t,2/¢,....1

[ (2)] 2‘1 /p ZPAP:/pO' paq/p In general we have v

(t~1lq q/pt

tq t
A Py /po, i.e.,

and g[v"')] = p:q/p;, tp
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G
() ek :
vj = j/t (j =0,1,2,....t) (8.a)
and
{t) t (t-1)q_Jg, t

g[v] ] " [J ]p‘ qp‘ % (8.b)
With this binominal probability law we can easlly calculate, for any

real A,

Jw(t) - §1.941 ¢ (t-3)q_Jgq, t
<e > = JZ; e’ [ 3 ]pA Pg /po

and we obtain

(9)

p

Altat
A {t) P: + P: e
<ev > 8 | —
4]

Through this generating functlion we can easily calculate any average momentum

of v’ just by using Eq. (9) into
r t)
<[v“’]"> =4 > | (r =0,1,2,...) (10)

In particular we have
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q .
P
w'tls = B (11)
Po
and
q. 4
2 2 pp
o2 = <_[vm] 5 - [<v(t.)>] - Aaﬂ% 12)
Po
Consequently we recover the well known binominal result
P.ya/2
- [_*] 1 (t =1,2,...) (13)
p > Py vt - -

For t >> 1, the distribution g[vm] becomes a Gaussian one, centered in

<vm> given by Eq. (11) and with an increasingly narrow width given by Eq

(12).

At time t = 0 the population spreads from x =0 to x = r. + r ; the

B
barlcenter x:O) [x;m] of the A-subpopulation {B-subpopulation) 1s given by

x:m = r‘/Z [x;m =T, * rB/Z]; the overall baricenter R(m is given by
o _ ()] ()
R =SPX, TPy

r
A
=3 * P, 5 (14)
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At time t = 1 - 0 the population spreads from x = 0 to x = r‘[1 + p(0)}] +

rB[1 + p(1)]; the xii'm and xl‘:'m baricenters are respectively glven by
r‘[l + p(0)172 and rA[1 + p(0)] + rali + p(1)1/2; the overall baricenter
R(l-o’ is given by
{1-0) (1-0} (1-0)
R pa\xl * prB
r {1+4p(0)} r {1+p(0)] ¢ r_[14p{1)]
g+ p, N (15)
T ; Ir B . 2 . -
At time t=1+10 the population still spreads from x =10 to
x =r[1+ p(0)] + r [1 + p(1)] in the = following way: the
(1+0) (1+0) _ (1+0) {1+0}
X * Xp Xa and Xop | baricenters are respectively given by T /2,
T + 1"“B /2, Ta + rAB + rBA /2 and rM + r‘B + rBA + rBB /2. The overall

{1+0)

baricenter R is given by

(1+0) _ 2q, 2 q_q 2
R = [p‘ /po]rM /2 + [p‘pa /pO](rM trg72)

* [p:p: /pz] (rM * r:\B * rm\/Z} * [pzq/pz] (rM * rAB * rBA * l-BB /2)

(16)
This equation yields (by using Egs. (3))
q .
(1+0) r‘[1+p(0]] Pg rA[1+p{0)] + r.{1+p(1)]
R = g + E_

o

2 (17)
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By comparing this equation with Eq. (15) we verify that g =1 impliés

R{1*0) _ g1-0)

Generally speaking R“'-O) and R0 (t =2,3,...) are complex functions
of [rA,rB,{p[v;U]}upB,q]. However, for the particular case for which
p[v;t)] = 0 (VJ) we have

(t-0) (teo) _ "a p: T (18)
R =R =2—+— (t=2,3’ n)
P, 2

The result 1is also simple for ancther (and very relevant) particular

case, namely when t >> 1. Indeed, because of Eq. (13), we have

. a .
r p. I +rT t
R0 [21 LB A n] [1 . p[(vm>]] (19)
P, 2 :
or equivalently
3 + ra ts
(t+0) Ta . Pg rA B R (20)
R e T e 20

o

with the following geagnaphic apreading chanactenistic time

_ 1 (21)

R 8nl1 . p <v“’j>]]
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Finally, by using Egs. (1) and {11), we obtain

We can verify, V(q.p‘,pB s 1 - p‘}

TR(QsP‘.Pa) = Tn(‘Q-PBaP‘)

The g-dependence of tR is shown in Fig. 4.

Let us now turn back to the population growth.

)

t
= p N, hence
total [+

(x)
total N
= e

CBPF~-NF-051/91

We have seen that

with the following populational qnmuth'ohafw.cww:uc tUme

1 1

T = =

X £npo tn[p: + p:]

Its q-dependence 1is shown in Fig. 5. Furthermore, Egs. (22) and

(22)

(23)

(24)

(25)

(25)
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paranietrically provide T, as a function of T 4 being the parameter. We ha\?e
exhibited this dependence in Flg. 6. This is a very interesting figure.
Indeed, macroscopically observable quantities (1.'“ and t#) are Intimately
related, the parameters of the relationship belng genetic quantities (pB and

7)} and initial conditions {pB).

3 GENERALIZED MODEL

We have untll now considered genetic characters A and B respectlvely
associated with sedentary and nomadic tendencies. Let us now extend this
situation by associating to A a nomadic tendency towards the negalise x axis,
whereas B still refers to a nomadlic tendency towards the poaitise x axis.
This is an interesting possibility since it is precisely what occurs with the
fascinating "north-seeking" and "south-seeking" magnetotactic bacterlies (see
[6,7]) and references therein). To cover this possibility we generalize Fig. 2

into Fig. 7. Accordingly, the law proposed in Eq. (1) can be generalized into

r Lo 1‘
p 12 iIf vsvp
Al v, o
pv) = 4 v - v '8 (26)
L pn[—l — vo] if v e v,

The model discussed in Section 2 1s recovered here as the v, = 0 particular

case. In this extended version we have five @genetic parameters



CBPF-NF-051/91

-15~

(p‘,§8.7*,73,v0] instead of the previous two (pi,v}. In particular, v, couid
be independent or dependent from (p‘,pa,w‘.zrs). To illustrate the possibllity
of dependency, let us consider the case of arbitrary (p‘,pB) but LA A
(in fact, this particular situation might be more than an academic possibility
since it seems bioclogically reasonable that the 7's have a degree of

universality higher than the p’s in analogy with what occurs in standard

Critical Phenomena). We could have the following law:

ply) = p;l'v - pilr(l - w7 (27)

This law is more general than Eq. (1) and less general than Eq. (26). Indeed,

it preclsely satisflies Eq. (26) with LA AL | and

v = ——* (28)

We see that v, increases from 0 to 1 while (pl/pB] increases from 0 to
infinity. In particular, Eq. (27) (with Eq. (28)) recovers Eq. (1) in the

pl/pB -+ 0 limit. Also, the case P, = Py yields v, = 1/2 and
pv) = p |2v - 1}? (29)

which could be an interesting proposal for specles such as the above
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mentioned magnetotatic bacteries (indeed, it has been found [6,7] that, neaf
the geomagnetic Equator line, about half of them are "north seeking” and
half are "south-seeking").

The time evolution of the genetical (hence geographical) spreadings
associated with Eq. (26) still is qualitatively well represented by Fig. 3
just by assuming that the x =0 position 1s nc more that of the
(time-invariant) extreme left of the figure, but rather would conveniently be
chosen as precisely the point which, at t = 0, separates the A from the B
subpopulations. Let us be more explicit about this point. Eqs. {11) and (21)

remain as they stand for the present general case, p{<v(”>)

being now
calculated through Eq. {26}, Therefore we have to consider now three cases,
namely p:/po > LA (Section 2 belongs to this category since
q

v =0), p/p°<v, and p:/po=v

q
o B o o If pB/po > v, the population spregds,

in average, along the positive x axis (1.e., the bulk of the stationary,
increasing or decreasing population travels, as time goes on, further and
further away to the night of the point separating, at t =0, the A and B
subpopulations). If p:/po < Vys the population spreads, in average, along the
negative x axis, Finally, if p:/po=v

consequently the bulk of the population behaves in a aedentaryy manner,

o’ then p[(v“”>] = p[vo] =0 and

basically remaining at the same place (confined in the Iinitilal (r‘ + rBJ
region and shrinking, as time goes on, onto the point separating, at t = 0,
the A and B subpopulations). The associated phase diagram is depicted in Flg.

8 which eloquently exhibits the relevance of the initial condlitions (l.e.,

pB].
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.As a final and further generalization we can easily take into account Ia
trivial spatlal expansion (or contraction) due to demographic pressure. Let
us first discuss the case for which p(v) = 0 for all values of v. Even in
this case, the populational growth or decrease (controlled by the parameter q)
could result In a space expansion or contraction according to whether we want
to maintaln or vary, along successive generations, the populational densities.
This effect is independent of the genetic strips of the individuales, and can
be easily taken intoe account by introducing, at every birth of a new
generation, a spatial expansion factor p: conmon to all distances of the model
(the demognaphic pressune index o can be any real number). Let us be more
precise and illustrate the situation at t =1 + 0 for instance: distances

T,.' Tag* Toa and Tp given by Eqs. (3) will respectively become

ol -4 ol o _
Pofus PoTae’ Polaa and Polpp- Analogously, at t =2 + 0, the distances
o - 3
1‘mul . r“B, ..., and Topn (given by Eqs. (5)) will become por“‘, porMB, eees
and pur . The populaticnal densities 8 =N /r , 8 =N _/r ,
O BBB AA AR AA AB AE  AB

8 =N /r and &8 =N /r_ will be glven, at t =1 + 0, by
BA BA  BA BB BE BB

q-1
P,
BM = 6‘3 =— 6‘ . (30.a}
Pg
-1
Py
BA 635 — an (30.b)
Py

In general at time (t + 0) with t =1,2,..., we will have
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[ - 10 |3 if £ starts with A
Py Py Pgl® '
{1-x)t|_gq-1
k P, [pB /pO]GB if ¥ starts with B,

If « vanishes we recover the situation basically considered in this and
preceding Sections, l.e., =1, q <! and q > 1 respectively correspond to
stationary, increasing and decreasing populational densities (we recall we are
now analysing the case p(v) =0, V¥v). If a =1, the densities remain
stationary for all values of g; the same occurs, for all values of «, if
q=1. Summarizing, the densities are staticnary, increase or decrease

according to whether p;b“)

E 1, or equivalently to whether (1 - «){1 - q) is
respectively zero, positive or negative.

The above discussion becomes more complex if the v-dependence of p is
taken into account. However, in the particular case for which only v's close
to <v“')> are relevant (i.e., t >> 1), the entire theory remains essentially

unchanged, Eq. (19) is generalized into

o A

r
RO [ii .

'UI'B

r +r . %
il - ol ]l) =
0

and Eq. {21) is generalized into

T = 1 ' (33)

B amn p, * tnl1 + p(<v(t)>)1
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Consequently, two different contributions appear in I/Tn, one of them is
intimately related to the genetic evolution of the population and is always
positive, whereas the other contribution is related to demographic pressure
and its sign depends on whether p: E 1 {i.e., it is positive, zero or negative

1f (1l - q) is positive, zero or negative respectively); Fig. 6 remains as it

is excepting for an additive term a/r".

4 CONCLUSION

We have presented a biparental procreation model exhibiting the
possibility of using geographical spreading of populations as a tool for
genetlical studies.

The model presents several simplifications (maybe even over-
simplifications!). Among them let us mention: (i) there is no coexistence of
generations, since all the individuals of one generation die simultaneously,
and all the Individuals of the next generation appear simultanecusly; (ii) no
discussion has been undertaken of the case in which procreation 1is possible
only among 1individuals of diffenent sex; (1ii) time is discrete; (iv) the
model is not Mendellan in what concerns the slize of the relevant genetic
strips since it is not fixed, but rather increases (without fluctuations)
arithmetically along time; (v) no fluctuations are permitted for the space
occupancy of different genetic strips since it follows a strictly

deterministic dynamics (depicted in Fig. 3). On the other hand, the model
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presénts some advantages. Let us mention: (1) it is exaclly solvable, aﬁd
enables consequently a careful analysis of the connections between
macroscoplically observable quantities (such as Ty and TR} and genetic
quantities (such as p, and 7) as well as initial conditions (such as Py (11)
it presents some plausibility for primitive populations, for which the fuli
Mendellan-like genetic mechanlsm could have not yet been achieved (after all,
since varlous real genotypes of living species are associated to strips whose
length is 10° - 10* units, place is left, at least as a relatively long
transient, for a phlilogenetic mechanism like the one assumed herein); (1ii)
the overall dynamics of geographical spreading strongly reminds that of
existing magnetotactic bacterieslm?l; (iv) it appears as a possible prototype
for other types of spreadings (not necessarily the geographical one, but say
the spreading of sizes or welghts or any other one related to long-sized
genetic strips); (v} it enables, in a very simple way, to take into account
demographic pressure effects.

Let us flnally add that microscopic genetic justification for the
(blending-like} law proposed in Eq. (1) (or Egq. {(26) in its generalized
version), as well as identification of specific real biological examples
(either 1living nowadays or having lived at some primitive stage) presenting
some similarity with the present theoretical model would be very welcome.

Also, the mathematical formulation and solution, along the present lines, of a

Mendellian-like populational model would be of great interest.
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CAPTION FOR FIGURES AND TABLES

Fig. 1 -

- Fig. 2 -

Fig. 3 -

Typical examples of possible genetic strip growth for n =2
bi-parental procreation; A and B are the possible va;ues for
binary variables. (a) The possible genotypes of the next generation
are constructed by associating with each locus a value randomly
chosen among the actual values of the parents ai the same lacus;
(b) Among the varlous possible types of arithmetic growth we assume
here the following one: the possible genotypes of the next
generation are constructed by adding al the night of the genotype
of one of the parents a single value randomly chosen among the
values appearing at any locus of the other parent; (c} Among the
variocus possible types of geometric growth we assume here the
following one: the possible genotypes of thé next generation are
constructed by Just puting oaide B8y oide the genotypes of the
parents (hence, if the parents have the same genotype, only one
genotype is possible for thelr "child"; 1if the parents have
different genotypes, only two genotypes are possible for their
"child").

Migratory strength p as a function of v {proportion of B's in the
strip sequence): baslic model.

Time evolution of the genetic strip sequences and their spatlal

distribution along the positive ® axis - for



Fig. 4 -
Fig. 5 -
Fig. 6 ~
Fig. 7 -
Fig. 8 -
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a typical case (r /r, = 4/3, ¥ = 1, p(0) = 0, p(1) = p_ = 0.5, q = 1,
o =0 and pA=pB=0.5); polp:+p:.
gq-dependence of the geographic spreading characteristic time
TR (g =1,9g<1 and q > 1 respectively correspond to stationary,
increasing and decreasing population). For this partlcular example
we have used p = 0.25, ¥y =1, @ =0, p = 174 (for p, > pB) and
Py = 374 (for pA<pB].
g-dependence of the pepulational growth characteristic time
T, (g=1, g<1 and g > 1 respectively correspond to statlionary
increasing and decreasing population). For this particular example we
have used P, = i74 (for P, > pB) and Py = 374 (for P, < pB)_
Inverse geographical spread characteristic time as a function of the
inverse populational growth characteristic time. 1/1“ zero, positive
and negative respectively correspond to stationary, growing and
decreasing population; 1/':R zero and much 1larger than unity
respectively correspond to no geographical spread and quickly
spreading population. For thlis particular example we have wused

p. =025, y=1, a = 0, P, = 174 (for P, > pa] and P, = 3/4 (for

B
P, < Pyl

Migratory strength p as a function of v (proportion of B's in the
strip sequence): generalized model.

Phase diagram in the {vo, p: /po) space for a =0. If
v. =0 (v. =1) the extreme left (right) position of the entire

[ o
population remains ficed {fon all salues of i: see Fig. 3. If
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vo = p:/po, the frontier separating the A-starting strip and

the B-starting strip subpopulations remains fixzed fon all walues

aof &.

Table 1 - Relevant values of T, a5 2 function of q.
Table 2 - Relevant values of T, 35 2 function of q.

Table 3 - Relevant values of 1/"1:R as a function of 1/1:“.
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(Y >1)
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invariant extreme-right

: rd
(X< 0 migration)
Yo .
favariant
{A-B frontier
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1/1:a
=p, vq in(1 + 98/2_71
> py q->~w a1 + p)
q=0 i1 + p s27)
= 7
q=1 .ﬂln(l + P,PB)
q> ~py (p /)Y
<Py 92>~ = "pn(pa/pn]lql’
q=0 (1 + p /2%) |
- ¥
q=1 In(1 + poAl
In(1 + pn]

TABLE 1
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p, =p = 1 Vé - (1 - q)!nzl
A B 2 L "~
| P, * P, qr-w ~q In ~[inf{p‘.pn}]
q=20 in 2
q=1 “~la-1)(p,tn p, + pytn p))|
q-o> o ~q in [sup(pA.pB}]

TABLE 2
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1/1:n
cp = e n
P, =P 172 | __Vl/ti_ (1l + p./Z )
1 | ¥én p_/p )
1 -0 | ma+ppy
T, ¥ PgPy
1 _ v
;; =¢n 2| 1+ pg/2 )
Lé- - &n(1 + p )
T B
]
< 1L, s in(t + p_)
Pg < Py , Py
l. 0 n(l + p p’)
T B B
n .
%- =tn2 | ta(t+ Py 72%)
]
1 tn(p /p ]
=3 ~p exp[1 ]
N

TABLE 3
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