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ABSTRACT

Using a real space renormalisation group method, we calculate
the thermal dependence of the susceptibility of the g-state Potts
model (ferro-and antiferromagnet) on.self-dual Wheatstone-bridge-
-like hierarchical lattices. The influence of external fields .on

the antiferromagmetic phase diagram is discussed as well,

Key-words: Potts model; Hierarchical lattices; Renormalisation

group; Thermal susceptibility.
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I INTRODUCTION

Real 5phce renormalisation group (RG) methods have bealuﬁdbly
used to study critical propertieél(phase diagrams and . critical
exponents among others) of various systems. In particular, some
RG formalisms[:1’2] enable the calculation of the ‘relevant thsrqg
dynamic energy for arbitrary values of external pafameters such
as temperature and magnetic field. Through appropriate derivatives of
this energy we can obtain the equation of states, specific heat,
susceptibility,etc. It has been fecently i.n.troducec:l[:3’-l':I a new
RG procedure which enables the direct calculation of the equa-
tion of states in the absence of external fields.

Following along the lines of Caride and . Tsallis[:aj, we
extend here the above direct procedure in order to include .the
case where external fields are present. We apply this formalism
to the study of the g-state Potts model in (self-dual Wheatstone~
-bridge-like)1hierarchica1 lattices. In particular, we study the
susceptibilify (and its related critical exponent y) associated
with both ferro (arbitrary values of q) and antiferraemagnetic: (q=2)
Cases, as well as the phase diagram corresponding to the q = 2
antiferromagnetic case, with 'special emphasis given to the role
played by the weights through which the external field is taken
into account. |

In Section II we present the RG formalism and its applitation
to the Potts model; in Section III, we préséent the results, and

finally conclude in Section IV,
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II MODEL AND FORMALISM

Let us first consider a d-dimensional hypercubic lattice of
linear size L, whose first-neighbouring sites interact (say fer-
romagnetically) theough a  diménsionless::. coupling  .¢onstant
K = J/kBT, The order parameter M can be defined as M- = NL(K)/Ld
in the thermodynamical limit L + «, where NL(K) is the thermal
canonical average number of’'sites whose spin is pointing in the
easy magnetisation direction (e.g,,one of the q states of the
Potts model, say the state o, = 0) minus those whose . Spin  is
pointing in any other possible direction.

Following Kadanoff we divide -the system of 19 sites into a system
of 1'% cells of linear size B - L/L' > 1, Through reécaling, the total
magnetic momentum of the system must be preserved since it is an
extensive quantity. Then, by associating an -elementary dimensionléss

magneton p with each site of the'lattice, we have
' [ '
Ny (K)u N, (K (1)
where K' and u' denote the renormalised variables, Dividing now

both sides of Eq. (1) by L¢ and performing n iterations we obtain,

in the limit n » @,

| (=), (n) - |
M(K(o)) = £im M_K Jp . , (2)
: poo Bnd
where we have arbitrarily chosen u(o) = 1. This formula has to

be used together with the (standard) RG recurrence for the cou-
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pling constant, namely

K' = £(K) (3)

This recursive relation normally admits three fixed points, namely
Li) K

(ii) K = «, which characterizes the ferromagnetic phase;

L}

0, which characterizes the paramagnetic phase;

(iii) K = K., unstable fixed point indicating the critical point. .
In general, when K < Kc, K(w2 vanishes hence M(K(m)) = 0.
This leads, fhrough Eq. (2), to_M(K(o)) = 0 as desired. On the
other hand, when K 3 Kc, K(m) diverges hence M(K(Q)) =1 I(gon—
ventional value for T = 0), and consequently -
o o () |
MKy = ﬁif.} -;iﬂ— (4
This formula provides the thermal dependence of the order para-
meter in the non-trivial region (i.e., T <_Tc).as spon as we
have established a recursive relation for p. In what = - follows
we describe how to establish such relation by asing, as an gl=
lustration, the transformation indicated in Fig. 1(a) = (which
generates the Wheatstone-bridge hierarchical lattice).
The procedure follows along two steps, namely
(i) In order to establish the equation for thé order parameter,
we shall bfeak the symmetry. To do so,.ﬁe impose . ‘that
the spin of say terminal 1 (of both small and large graphs
of Fig. 1(a)) be along the easy magnetisation .direction,

while the rest of the spins (all the internal spins as
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well as.that of terminal 2) are left free to take all pos-
sible orientations (g states for the Potts model); |

(ii) Since an hierarchical lattice is not tramslationally in-
variant an inhomogeneity must be present in the Gibbs pro-
bability distribution[:sj. It seems very reasonable to
us that the order parameter is inhomogeneous too[zaj. In
fact these inhomogeneities have been recently eXkﬁﬁted[:6]
on this type of hierarchical lattices. Here we assume the-
order parameter to be propo;tional-to the coordination num-
ber at any given site. Although this is not stricthrtrueE6],
it seems to be a good approximation {in fact, it might be
strictly true in averagé).' Also, we shall consistently as
sume that the relevant (inhomogeneous) external field is

proportional to the coordination number as well.

To implement the calculation each cluster configuration is
weighted by the corresponding Boltzmann factor and is associated
with a value for the cluster magnetic momentum m (each spin con-
tributes, to m, proportionally to its coordination number), We

then impose (analogously to what we did in Eq. (1))

<m> = <p>
M emall - large _ (5)
cluster cluster
where <...> denotes thermal canonical average. This equation

has the form

u(K)p' = v(K)u (6)
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where u{K') and v(K) are the explicit functions that appear.when
we impose Eq. (5)-

The recurrence relation between K and K' is established in a
standagrd way namely by ﬁreserving the correlation function be-
tween the roots [terminals-l and 2 of Fig. 1) of both graphs. In

-other words, we impose (say for Fig. 1(a))

’ﬁapiz ' "“Bd$;234

€ =‘{U§fo4}‘e | (7).

where M i'z and J'r?1234 are the Hamiltonians respectively as-
sociated with the small and large clusters. This equation:yields.
the recurrence we were looking for, namely Eq. {(3).
Summing up, Eqs. (6) and (3) give the renormalisation in the (K,u) space,
which in turn -enables the calculation of the magnetisation through
Eq. (4).

For clarification, let us illustraté_bngfig;,lfé) various
relevant quantities appearing in the calculation. The chemical

distances between the terminals of the large and small  graphs

are respectively b = 2 and b’ 1, hence the scaling factor is.
given by B = b/b' = 2. The intrinsic fractal dimeénsionality of
the hierarchical lattice.~ is given (see [[7] - and - réferences
therein).by-df= £n.5/£n 2, consequently the denominator ap-
pearing in Eq. (4) is given'by_qu= 5.

The extension of the above procedure to non vanishing ex-
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ternal field is straightforward. Eq. (6) is generalised into
S uK' HDW' = v(K,H)u (8)

and Eq. (3) is generalised into

K' = £(K,H) _4[9)

H' = g(K,H) (10)

where the dimensionless field H is given by H = gh (h = extermal

field). We can verify of course that u(K',0) = u(K'), v(K,0) =
v(K}, £(K,0) = £{(K) and g(X,0) = 0. Eqs. (8), (9) and  (10)
together with Eq. (4) yield the equation of states M(K,H).
Through derivation with respect to H we stfaightforwardlycmtahl
the isothermal susceptibility x,

Let us now return to Fig. 1(a). The dimensionless .Hamil-

- tonians are given by

L 2 qac£,0'1
- - t . t E . [ - -
sdh"u K %1"’2 +H i£1 2K (11)
i f f ¥y p07t
-8 =gk § 6. + H]) ¢ —2tg— (12)
2234 <i,j>=1 Gi,oj j=1 1 Q.

where o, = 0,1,...,9-1, K; is an additive constant  (necessary
to satisfy Eq. (7)) and {Ci}-are the coordination numbers \(Cl =

Cz = 2 63 = €, = 3). We have introduced, in Eqs. (11) and (12),
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the random variables which lead to the Potts model order param-
eter (q <50_0>—1)/(q-1). The functions u(K',H') and v(K,H) are
determined in Table 1. Egs. (9) and (10) become

YETRTTN
K' = 1 £n I_ﬂo _11 : (13)
4 oL
- and
‘R
. q-1 00
H' = 4 £n

o 2 (14)

11

where
_ c.s'
5qK+2(C.+€.)H 2qR+(2C +Cy ~—7)H -
Ryp 3 @ R PT v 2(g - De Poeoart *
3
| L | 26, ~—7)E
+ {q -1)|:qu+‘51"2}3 1 oe-t (15.a)
QR+ (0 +28, -—L) S R
B qK+(C,+2&, ~——x)H (€46 =ommr = —2=)H
Ry, = e 1. 37971 zEqu+(q_2)eqﬁ]e 17%3 q=1 " q-1
2¢,

e + 302265 + (@ -22( -nle VI sy
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-8~
26 2, ¢,
qR¥E (= —=F+2C ) B 7+ &)
Ry = e 3 ﬂl}zqk,,q_z]e q-1 q-1 73
=28
—(C.+C.)
N |}5‘4K + 2(q-2)e?ek +(q-2)e% £ 4 (q42) (q- 3)] S

(13'53-0)

Before closing this section, let us go back to the general
case and establish an useful formula for the exponent y. By using

Eqs. (4) and (8) we obtain

MK - 7%y (16)

where

LH) 5 STETE g an

Differentiating Eq. (18) with respect to H and then taking H =0

we obtain

K') _ pd

ztx,u)%ﬂﬂ

X (18)

In the neighbourhood of the critical point K, we have

K’ Kt - Kc Y
1 (= (9)

Since (K -_K_c,)/ (\K-Kc) = I:B‘f"tl( ,0) /31(] we have

Kc
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- 1Y d
[afa;x’o ] o= = (20)
» ‘T : )
R px . 005f

hence

y = BS | (21)

tn afgx,ogl

K=K
c

III RESULTS

III.1 Potts ferromagnet

For calculating the susceptibility of the q-state Potts  ferromagnet
we have used the RG transformation indicated in Fig. 1(a), and’
have assumed that the external fields are proportional to the
coordination numbers[k’s’g.]. We present in Fig. 2(a), the
q £2 results (bﬁth ordered and disordered phases) for  typical
values of H, and, in Fiﬁ. 2(b), the H =0 results for. typiéal
values of q; We presents; in Fig. 3, the gq-dependence of y. 1In
partlcular, for q =2, we obtain y =2.31 which reproduces the
value associated by Melrose[: ] with the Wheatstone-bridge hi-
erarchical lattice.

Let us now consider the Rushbrogke scaling law, namely o +
28 +y = 2, whefe o and B are the specific heat and magnetisation

critical exponents: We want to check whether the present calcu
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lation satisfies this scaling relation. We obtain a{q) from the
relation 2 - a(g) = dfv(q) where df = fn5/4n2 and ﬁ(q) has been
calculated in |:4] and references therein. We used B(q) .obtained
in E4] , and y(q) from the present calculation. The results are pre-
sented in Fig. 4. We note, for values of g %Z;a.slight violation of Rushbrooke
equality. The reason for this is not clear but it could be re
lated to the (strictly not true) assumption we have  done . that
the local magnetisations are proportional to : the ‘coordination
numbers. In any case, the present result cannot be considered
as a proof +that the Rushbrooke equality is indeed violated ‘for

hierarchical lattices.

- I1T.2 1sing antiferromagnet

To discuss the q = 2 antiferromagnet we héve used . the RG
transformation indicated in Fig. 1(b)[39‘], ‘Indeed, Fig. 1(a)
does not preserve the ground state of an antiferromagnet (the
chemical distance between the terminals of Fig. 1(a) is an .even
number, whereas that of Fig. 1(b) is an odd one). We present
in Fig. S5 the susceptihility in the paramagnetic phase for ty-
pical values of H. To perfoem the calculations we have used the
T vs.H phase diagram indicated in Fig. 6 [i1]. To .calculate
the susceptibility in the ordered phasé one should know the
associated equation of states, which has not been calculated
herein. If we denote by Tm the temperature at which a  maximum
occurs for the zero field susceptibility, .:.our. results vyield

Tm/Tc % 1.5 which approximately coincides with the square lat-
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tice series result.by Fisher and Sykestjz].

We want now to exhibit the influence of the local :‘wkights
within the present RG procedure. To do this we shall study the
T vs. H phase diagram. We shall attribute the weights (Cl’CZ’Cs)
to the sites of the cluster as indicated in the Fig. 1(b). The
phasé diagram corresﬁonding to the assumption of proportionality
of the local external fields with the coordination numbers (i.e.,
(€;,6,,C5) = {3,2,4)) is shown . in- Fig. 6, .and the phase
diagrams corresponding to other typical choices are shown - in
Fig. 7 together with .their RG flows.

The T = 0 point of the critical line in the T vs.H plane can
be obtiined either through a T + 0 (numerically rough) extrapo=.
lation of the T # 0 line, or through direct evaluation by con-
sidering the energies of the possible ground states., These two
procedures should yield the same value. They do $0 within the
present RG framework, only for (CE’CZ'Cﬁ) = (3,2,4), which is
consistent with the analogous proportionality assumption we have

done for the local magnetisations.

IV CONCLUSION

A real space renormalisation group scheme has been :formulated
-which, for the first time avoiding the calculation of the thermo
dynamical energy, enables a simple study of the magnetic suscep-
tibility (and itStcritical.exponént v}. The method is based on

the inspection of the spin configurations of small clusters. Opera
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tionally speaking,.the calculation is és simple as a mean field
one while providing, for arbitrary temperatures and fields, non-
trivial results which can be systematically improved (by enlarging
the cluster).

We have applied the procedure to the calculation of the sus
ceptibility and vy of the Wheatstone-bridge hierarchical 1lattice
by assuming ferromagnetic q-state Potts interactions. Differently
from the Diamorid hierarchical'iattice case[:13], in this 1lat-
tice the divergence of the suséeptibilit-y occurs only at the critical
temperature. The validity of the Ruéhbrooke equality has  been
focused. For q =2 we recover a value for vy available in the li=
terature, which is considered to be exéct for the < hierarchical
lattice.. _

In addition to that, we have calculatéd the susceptibility
associated with the paramagnetic phase of the q =2 _ antifenr2
magnet as well as the corresponding critical line in the (T,H)
plane. The influence of the wéights of -the local fields has
been exhibited as well.

We acknowledge fruitful discussions with A.Q0. Caride as
well as interesting remarks from E.M,.F.:Curado, A.M.N. Chame, M,
L, Martins, S.A. Cannas and H.F.V. Resende. Furthermore, one
of us (EPS) has benefitted from computational advice from A.O.. Ca

ride ag well as from a CAPES/Brazil Fellowship.
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CAPTION FOR FIGURES AND TABLE -

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Renormalisation group transformation used to calculate:
(a) the susceptibility of the Potts ferromagnet;
(b) the susceptibility for the paramagnetic phase of the

Ising antiferromagnet aswell as phase diagrams.

(a) Behavior of the susceptibility as a function of the
temperature, for decreasing values of field:
(b) The logarithm of the zero field susceptibility as - a

function of the temperature.

The critical exponent y as a function of the number of states.of

of the Potts model. In the limit q =+e,y :tends to Yo k0.4 (dashed line}.

The test- of the Rusbbrooke scaling relation for various
values of . .thesg-state Potts model.
The susceptibility in the paramagnetic phase for typical

values of field, for an Ising antiferromagnet,

Phase diagram. of an Ising antiferromagnettli]. cor-
responding to . the assumption of proportionality of
the .. local . external: fields with the coordination num
bers (i.e., (CI,CZ,CB) = (3,2,4))

Phase  diagrams corresponding to - other typical
choices together with their RG flows. The diagram
corresponding to the . weights-(3,2,3) presents, -pesides
the trivial fixed  point (2.26,0), the new fixed
pqint (1.33,0.68).
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TABLE l-8stablishment of Eq. (5) for the Potts ferromagnet

1
' . : H' (l=wrs) ¥ '
(8) <m>gna11 d<2 L N € 'i%ﬂ (q-1)e 4717 )/ ea® *28
clugter _ '
1
A' (1 -—-T)
+ (q-1)e -
5qK£i(cl+Cs)H
(0) <m>large 2[c1+ci)ue *
cluster
. "'G'S )
- C 2qK+(2C:+C~==—)H
e L 3 _ “1° 73 q=1 .
+ (2g, *c, -ﬁ:x)uZ(q 1)¢ A+ owee W
(0 +Cq)H 2qK+(2 3,
5qk+2(€.,+Cy)H qK+(2C05+C-——)H
e +2271°73 + 2(q<D)e _ ;. 3 g-1 . .. .

The symbol * means all the (q-2) possible states different from
"+ and "4,
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TABLE ¢
a) small cluster
configurations weight - "
t
K"' 2Hl
eq 2
-
¢ '
H' - - ,OW
qe 9 K- -g—
‘ 1
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TABLE t (continued)
(b) large .
cluster weight m
configuration
oK+ 2(Cy ¢+ CyH 2(Cy Cy)

¢
zq‘.qu+(zc1+ Cy- -d'{- )M

]
(q‘qu+ q, q2,32(01 q JH

2(C,- Erz")p

c

3qK + (C,- = & 2 G4 )N Cy
2(‘qu‘ qzeqx) . ¢'Cy* C37(Cy* C3)/q) H CyeCs +C )'l

$1%3

3qK K G- ) H ¢ &3

(e q *3q2.q szQ3)--. i q| q1 (ci-T-—a.;’“
{ pa + 2C.)H 2c
+ -
.QK -qT 3 (--q“tzcs,“

N 1T
("% qp). o T, 3+ 0l

C
K—z-qc:— - -az;—'- + c;’l‘

D <P (DD D DD D

(.ﬁqlt v 2q, 02 %+ g, 00 g, q!‘) e"“ct’“s‘*l
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