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ABSTRACT

By means of some reasonable rules we define the operators that can
represent arbitrary powers of the D‘Alembertian and their corresponding Green
functions. We find which powers lead to the validity of Huygens‘ Principle.

We discuss the specially interesting case of powers that are half an odd
integer in spaces of odd dimensionality, they obey Huygens‘ Principle and can
be expressed as iterated D'Alembertians of the retarded potential.

We also discuss arbitrary powers of the Laplacian operator as well as

their corresponding Green functions.

Key-words: Fleld theory; Pseudo differential operators; Bosonlzation; Wave

equations. Distributlons.
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§1 Introduction

The ordlnary wave equation, as well as its relation to the Huygens’
principle (HP), has recelved considerable attention and has also been the
object of some beautiful works., We would like to mention the classical book

on the subject by B.B. Baker and E.T. Copson“J, and the elegant analytic

21 " 1t is well known that HP is valld for the

continuation method of M. Riesz
usual wave equation when the number n of space-time dimensions is even, but
not when it is odd.

Nowadays some physicists are not happy living in a world of only four
dimensiens. Furthermore, second order wave equations are no longer mandatory
for the description of the evolution of physlcal particles or fields. For
example, In gravitational theorles, terms quadratic In the curvature tensor
are some times introduced in the lagrangian. Then, in some approximation the
iterated D’Alembertian (o®) is found to operate on the field®. There are

.also examples, In particular for the bosonization in 2 + 1“], in which the

equation of motion involves the square root of the D. Alembertlian (@*’®.

The observations lead us to conslder the general problem of constructing
arbitrary powers of the Lorentz invariant differential operator o, and then of
finding, in any number of dimensions, their relation to a general HP which we
are golng to specify later.

In §2, with the aid of some reasonable rules, we find the general form of
o® which although dependent somewhat on the boundary conditions, it is almost
completely specified,

In §3 we define the Green functions G'®’ and find some of their
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propertles.

In §4 we introduce the Huygens' principle. In §5 we study the analytic
distribution Q:. In §6, the relations of G‘“) with HP are expressed in terms
of the propertles found in previous paragraphs. In §7 we study in particular
the interesting and less known case of space-time with odd dimensionality
(n = odd)}. Finally, in §8, we Introduce and discuss arbitrary powers of the
laplacian operator and thelr Green functions.

In an appendix we show how to evaluate the Fourier tranform of Riesz'‘'s

classical retarded Green-function.

§2. Definition of o*

We suppose that space-time has d + 1 = n dimensions, d belng the number
of euclidean space dimensions.

The D' Alembertian operator is:

d
n=32—):82=82-n (1)

For the operator o" (s = positive integer) the Fourier transform will be:

& = Flo"y = (-1)%] + & (2)

where in general:



we now define o" (any @) to be such that

8% = F{o"} = £()X] + K¥ , with f(s) = (-1)%,

and impose the condition:

which is equivalent to:

~ ~8  ~atf
0.0 =0

But: K¢ =k ; K% =" ; 5 = 0.

> -

So that, for (6’) to hold we must impose:
f(@)f(B) = fla+B) - fla) =

And, due to (5), we must have:

o
* = [kz - kz] if kz > k%, zero otherwise

2
K" [k2 - k2] if kz < ka, zero otherwise

o
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(3)

(4)

(5)

(6)

(6*)
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Imew

fla) = e

where £ is + 1 or -1.
It is now easy to see that there are essentially four Lorentz-invariant

solutions for p*, namely:

5t = oM 4+ g S
- + -

tinn, sgk
ar = e K* + K (8)
3 * -

Where in (8) sgko s Lorenrz-invariant as K: is 2zero outside the
light-one (cf. (3)).
If we compare {7) with the definition for (K + 1o0)* given in ref. [5] we

find that

K: + e?ltuK«] - etitu(K 3 10)“ (9)

So that E: is the causal D’Alembertian already discussed in ref. [6].

From (7) and (8) is easy to see that we have the relations.

~0 ~
9[ko)|:|R + 9[-ko)u‘ (10)

~a ~a
B(ko)u‘ + 9(-k°)l:|R {11)
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6(x) being Heaviside’s step function.

o

; are then not independent of o>. They can be contructed

The operators o

by taking the positive frequency part of n: [Resp u:] and the negative
frequency part of u: (Resp u:].

For the explicit form of n; we take the anti-Fourier transform of (7) or
(9), by using the results of ref. [5].

(12)

where  is the quadratic form

In the Appendix we show how to evaluate the anti-Fourier transform of

" (8). The result is:

2.4%Q 2 e(%t)
o = hd (13)
] n
A E-l n
x F(l-a—i)rt-ul

This s the operator found by M. Rlesz by a generalization of the
Rieman-Liouville complex integral (cf. ref. [2]).
Note that the by taking half the sum of the retarded plus the advanced

solutions (13}, we obtaln an operator whose Fourier transform ls
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- &
o + =0 = cosmeK  + K*

-4
H

(14)

(s ]
+
(=}
"

1
+ 2 -

N =
o
N =
-
Nl =~

which for « = s = integer coincides with (2) but does not satisfy (6).
We will show below that for « = s = positive integer {12) and {13) reduce

to

L
=0

a*3(x) (15)

Hw»
>

So that in a convolution o" acts effectively as a differential operator

when a = s:

u“*f|u=s = o' (x) = o"f(x) s = positive integer.

53 The Green Function ¢’

The Green function for the operator o" is the fundamental solution of the

equation:

o *f (16)

"
0q
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o*G*! = a(x) - an
By taking Fourier transform we find:
Eu ﬁ(«.) =1
So that
& = g™ (18)
we have then {cf. (7), (8))
ﬁu = e:ltux-u + K-et. (19)
* * -
o Fixxsgk — —
GR =e K + K (20)
And of course (cf. (12) and (13)):
n
™ 1“‘[%"‘] (M}; r[%—u] “'g
GY =12 le {Q t 10) (21)
= 2* (o)
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2.47%q 2 a(3t)
6 = — b (22)

" r[r«:—% r(a)

(o)

If we take into account {10) and (11), we can write G* in terms of G’

as:

where

5% = Flets k) (24)

So that the G;u) Green functions propagate the positive (negative)
frenquencies with the retarded G;“) Green function and the negative (positive)
frequencles with the advanced one.

For the ordinary wave equation (x = 1) in four dimensions (n = 4), eq.

{21) gives the massless Feynman propagator in coordinate space.

Gi = % gtio (n = 4) (25)

while eq. (22) gives the usual retarded (advanced) potential (see below §5)
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_9_
y _ 1 3(r £ t)
GAR = 5n S(Q)o(Ft) = ~Imr N (n=4) (26)

The Fourier transform of (25) is given by (9) with ¢ = ~ 1.

{n = 4) (27)

The Fourier transform of (26) can be found from (8) if care is taken with

the poles of K; at « = - 1 (see below). The result is:
A — (n = 4) (28)
A K* sgkoio

84 The Huygens' Principle

The equation corresponding to the pseudo-differential operators

introduced in paragraph 2 are of the form

o'f = g (29)

The solution f can be found by using the Green function G(") defined by

(17): see also [7]
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£ = G(“)“‘g (30)

Note that (29) and (30) are dual of each other as ¢ is the operator

-

o , and {30) can be considered to be an equation for the determination of g,
if £ is given.

There are several statements which can be considered to represent the
principle that Huygens introduced to describe the propagation of light waves
(See ref. [1] for a discussion of this point). We are going to adopt the
following statement:

-. The solution (30) of eq. (29) is sald to obey Huygens' Princlple (HP) if

)

the Green function ¢ has its support on the surface of the light - cone:-

This HP implies that the signals generated by the source propagate with

cone sharp velocity, that of the light.

(o}

Due to eq. (23), we see that the propertles of G~ can be deduced from

those of G;“). In fact G:“) propagates the positive frenquencies of the
A
source by means of G;“) and the negative frequencles by means of G{“l. In

)

this sense we can say that Gia) obeys HP 1f G;G) and G;“ do so. It is then

enough to examine G;“’ (G:u)

is similar) to find out when Hp is satisfled.
From (26) we see immedlately that G;u) obey HP in n = 4, as 3(Q) has its
support on the light-cone Q = 0. For n = odd number, it follows from (22) for

d =1 that

which 1s well defined and zero outside the light-cone (cf. (3)) but it is
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different from zero everywhere inside the light-cone and so as lis
well-known, the solutions of the ordinary wave equation obey HP for n = 4
{n = even) but do not obey HP for n = odd.

In the general case we have to examine the slngularities of the functions

on which G;“’

depends {(cf. (22)). The positions and residues of the poles, of
Eulers I' functions are well known. For Q:, as analytic function of A, we

transcribe the results found in ref. [5]).

5§ The analytic distribution Q

In the next paragraph it will be evident that the structure of the
singularities of Q: determine the relation of the Green function G;“’ with HP.
We are considering only one time and d space coordinates in the quadratic

2

form Q = t° - r2, then according to ref. [5)], the distributlon Q: is an

.analytlc function of A which:

a) -fon n = add has simple poles at A =-1, - 2,..., -k,... and at A = - g,
n n n
—E-l. -1, “'2'-2, ey -E-k'
The residues are:
A (_l)k-lalk-ll )
l:sz Q‘. - r(k] (Q) [k 1,2,-.0] (31]
4=
2,2 k
Res. Q) = (-1)*ua"5(x) k = 0,1,2,...) (32)
Az=z-k

k n
5 4 F(k+1)r[§+k]
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b) -fon n = esen has simple poles at A =-1, - 2,...,2 - %' 1 - % and doubie
= _n_ _n_
poles at A = > 5 1,..., 5 k,...
k-1

A {-1) {k-1) n
Res Q" = S Q) [k =1,2,....5 — 1] (33)

N= ok * (k) 2

Near A = - % - k, the double poles have the form
23! . -

o S D 0 8(x) , (k = 0,1,2,...) (34)

+

4‘r(k+1}r{§+k] [A+%*k]z o

We now cobserve that Q: has the types of singularities that present the

product F(1+A]F[h + gj. In fact, when n = odd, this product has simple poles

at A = - k (k = positive integer), and at A = - g - k (k = positive integer or

zero), Jjust as in 3). Further, when n = even {as in E), the product presents

“ simple poles for A = - k [o <k < g]. and double poles for A = - k, if k = g.

For these reasons, 1f we divide Q: by that product, we obtain

A

Q+

Q) = — .
"“""”'[i + A].

(35)

And Q' {A) is an entire analytic function of A.
Furthermore, Q' (A) has the followlng propertles:

a') For n = odd and A = - k {k = positive integer)
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1
-k

Q' (k) = 3™ q) (36)

Fiz

For n = odd and A = - g -k (k =0,1,2,...)

q-[-g—k] =T of3(x) | (an

b') For n= even and A

1
|
-~
T
]
[
IS
T
1
e

Q (k) = sV Q) (38)
rf® - x
2
For n = even and A = - % -k (k=0,1,...)
n II?1 k
Q’ ["’ “2— "k] = _k o &(x) (39)
4

)

§6 The G;“ that obey HP

()

We first observe that D: (eq. (13)) and Gh (eq. (22)) can be expressed

in terms of Q' (A) (eq. (35)) as:

« Q 2 o(-t)

o = ; = == Q’[-a - qu{-t) (40)
R %—1 r(-u)r[x -« - %] 2. 2
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_14_
and

@ e 2,47

Q'[u - EJO{-t) (41)
2 3
T[2
As a consequence of the propertles of Q' (A} pointed out in §5, we have
that u: and of course G;“, are entire analytic functions of a. See also (7].
For any n and «a = - k (k = 0,1,2...), it follows from (37), (39) and

(41) that
6™ = ok = a0 (k = 0,1,2...) (42)

Where, due to the presence of the factor G(-t); the contribution of the
retarted cone is only a half of the quoted value in (37) and (39).

It is now easy to see when the Green function G;u) obeys HP. The only
‘cases for which Q' (A) has its support on the light-cone are those for which
(36) and (38) are valid, i.e. for a = % - k.

From (41) we then obtain:

®-1)(9) (x = positive integer) (43)

when n is even the values of k are restricted to be less than % [k < %], but

for n = odd, k ls an unrestricted positive integer.
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For n = 4 we have the usual retarded potential (26). Further, this kind

of potential holds in any number of dimensions for k = 1:

(1) |
24 LY :
(am)? r[‘z‘-1] (am)® T g - 1].r |
2-1 (2—:)
D *GR = &{x) (45)

Eqs. (44) and (45) are true for any n (even or odd),
The usual wave equation of = g 1= the only one whose solution obeys HP in

any even number of dimensions {n > 2).

The once iterated D‘Alembertian equation:

oof = uzf

"
m

does not okey HP in four dimensions, but it does satisfy that principle for

n==6,810,...,

In general for of =g to obey HP it is necessary that

n=2(s+k) 2z 2(s + 1) (k =1,2,....). See §5 and 41.
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§7 The case n = odd

The results found 1n §6, eq. (43) do not seem to be well known for
n = odd, and they are interesting enough to deserve explicit mention, at least
for low values of n. See also [8). For any odd n there are an Iinflnite

number of convolution operators whose Green function obeys HP. They are

—— -2 —k
2 2 2
o » O R - | sane (46}

From (36) and (40) we get:

n n—k
i 2.4° (nek=1)
o, = —n-————— a(-t)s Q) , k<n (47)
2
n
% z (-t) (48)
2 _ 2.4 o{-t k-n 48
% = n_ e & k=0
n
i I‘[k - E]
For k < n, we can also write:
n n n n
—k n-k-141-— 1= (=—1)
o =g 2o gtklg 2. gtRlg 2 (49)
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where an is the usual restarded potential given by (44). With the aid of

n
—k

(49) we can compute the action of the operator u: on a function f, as:

o of =" %2 o =xc? ", (k<n (50)
R R R
x
In this way the action of ui on f 1s represented by the retarded

potential produced by o" *7'f.

For example' in n = 3, we have

1

2 _ . ..2. - : = E -
o” = - = e(-t)s’ (Q) = 6(-t)8(Q) (51)
A
2 1
o "z e(-t)3(Q) (52)
3
2 _1 -
o = 3= e(-t)e(qQ) (53)
S
2 _ 1 _
Ua = m a( t}Q‘ (54)

2 =p?g (55)
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n .
(—1)
where use has been made of (49) and an is proportional to %6(r+t) for any

n.
The Green functions corresponding to the operators (46) can also be

expressed in terms of the retarded potential (44):
G =0 “=pnp o "=0 G (56)

(compare with (49)).

So that the causal solution of

is
:[‘=G2 !g:G LJn) -4 (57)

(Compare with (50)).

§8 Arbitrary powers of the Laplacian

Just as for the D‘Alembertian, we can define arbitrary powers of the
Laplacian operator A. See also [7].

For the d-dimensional euclidean space we define:



For s = positive integer:

F{a*} = 3* = (-1)%"
We generalize this formula to:

F{a%} = B = ™"

This definition satisfies:

e+ f

a%epf = A . a2 = 8(x)

and gives for A the expression (see ref. [51)

e"“4“r[§ + 9] -u-g
2 R 2

A" =

a
mr(-a)

The Green function corresponding or A% is

CBPF-NF-048/91

(58)

(59)

(60)

(61)

(62)

(63)
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o (o)

ATG = &(x)

AL (64)

e-itul.. g -« d
() _ 2 _ Ru—i

d
4%T°r ()

G (65)

According to ref. ([5)], the distribution R* has simple poles for

A=-8 - % (s =0,1,2,...) with residues

d
2.8
Res R = 1 83(x) (66)
A=-8-2 4'r{s+1)r[s + i]
So that, from (63) and (66) we obtain:
A%sf = A'S(x)ef = A°f (s =0,1,2,..) (67)

d
[

In the expression (65), the poles of R 2 are compensated or neutralized
by the poles of I'(a).

However, the Green function G(“) has simple poles for o = % + 5
(s =0,1,2,...), which are due to the presence of F[% - ]. The residues of

()

G at these poles are proportional to R* (a polynopial in xf] and they are

solutions of the homogeneous equation:
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-21=

d )
—

2% «R* = 0 (68)

This is trivial for d = even, but it 1s also true for d = odd, as can be

proved by computing R™*%*R®. See [5] p. 361.

For this reason we can drop the poles of Gt“) and define, for « = % + 8.
(g+s)
2 _ () =4 _d _ {«)
G = PfG a de {[a 2 s]G } a (69)
ﬂ';*l Ym—in
{—+s) -1'5 » :
G2 = e R &R (s = 0,1,2,...) (70)

d
—

42 ITZI‘(sﬂ)F[s + %]

where we have droped terms proportional to R*. (Residues)
In particular for d = 2, and s = 0 we have the well-known logarlthmic

potential:

G = - {(71)

As a matter of facts, the logarithmic potential 1s the Green functlion
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9
corresponding to the operator 2% 1n any number of dimenslons:

d
A%*mR = &(x)

In four dimensions for example (d = 4), the iterated Laplacian has a

logarithmic potential as a fundamental solution

2)

AAG = &8(x)
¢ = 4nR (d = 4) (72)
2
i6n

We may ask in general, which is the operator whlch has a potential of the

form R* in a d-dimensional euclidean space. The answer 1s given by (63) and

.(65). See ref. [7].

For the Green function to be proportional to RF, we must have a - % =B,
so that the operator is
d d
d Ix(fe=) Bo—
B 2
A 2=8 _ 4 zl"(&ld) RA- (73)

a4

and
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d -ix (!t—)
{B+—I _
G e 2 B)

Ty

The logarithmic potential corresponds to g8 = 0.

(74)

1

For the newtonian potential r'=R?% g=- % and (73), (74) give:

4" = R (75)

M
[
fea

=1 e - (76)

For odd dimensional spaces, (75) is Just the laplaclian lterated 951

times. In d = 3 it is the usual laplacian A. In d = 5 it is A% = AA, etc.

For even dimensional spaces (70) gives an exponent which is half an odd

integer.
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Appendix

To evaluate the Fourler transform of G;" (eq. (22)) we start with:

2> 3 .-r -ik_t '
F{Q:B(-t}} = I d"lx 5T I dt (t3-r*)*e ° (A.1)
Cow

and use the table of Integral Transforms (Bateman project Vel. 1, p.11 and p.

69) to write:

1,2 ael

: 1
-r -1k t 2 2 2 Isgk (A+)x
de(t?ryte © 2 T2 _TORI {e P (k|0
~m A -
1 2 2
senl[k + i]lkoi
-3 1(|ko|r} (A.2)

A
2

We must also take into account that the angular integral in (A.1) glves:

J' agel*reose - 21 ;) (A.3)
n3 “n-3
2

)

We now need integrals of the form
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[+]

P
r dr r° J _a{kr}J (kx.r) (A.4)
o :t(:u-il

-]
ol

which are found in a table of integrals (Ref. [9] p. 692).

Replacing now in (A.1) we obtain

) n
—1
z"”“"‘"r[g + A]l"(?u-i)ﬂz

F{Q"et-t)} =
+ 1
simt[h + -2-]
1 n n n-1 n
in [:\-ls]sqko -—k—-2~ n -3-5 = -.;;-E 1
{e K‘ sin[-z— + h]u - K‘_ sinfl + K s.‘ml'[[?l + 5]} (A.5)

Now we wright

n|_ _ n-1 1 1 n-1
sin[h + —2-]1: = senl'[[T] cosﬂ[}l + E] + sinT[[?t + z]cosl‘[ T]

-1 (Jul)lqk
]u =e

1 0 1
cos[h + 5 + 1sgk°sin[?« + i]u

and using these equalities in (A.S):

Nonet 2 lu[:ug] sgk, -A—> A
F{Q’:e[-t)} = 2?*mip? r[-'zl + h]l“[?u-l){e %k Z+x (A.6)



CBPF-NF-048/91

-26-

So we have for M. Rierz Green function (eq. (22)):

ixusgk _ _
F{G“‘} = e % + k™ (A.7)
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