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We show the exact power series solution at the origin
for the classical SUC2) Skyrme model lagrangean with a hedgehog
ansatz. We consider also the analogous solution at infinity, and
exhibit the dependence of the chiral angle on two dimensionless
variables (a consequence of having two completely arbitrary
parameters) The classical Skyrme model soliton turns out Lo be as
unstable as the pure non-linear sigma model. When the Skyrme
parameter is fixed, breaking the scale invariance on both
variables, the mass of the soliton has a stable minlmum.

PACS numbers: 11.10 Lm, 11.30 Rd, 11.40 Fy

Key~words: Chiral soliton; Skyrme model; Non~linear sigma model; Nu
eleon.
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The pioneering work by Skyr me*’on fermionic soluti ons
for a classical non-linear bosonic lagrangean led in this decade
to interesting devel opments‘z'a *4  As is known, it is argued that
a pure non-linear sigma model lagrangean has no stabl é classlcal
solution whereas the addition of a Skyrme term quadrilinear in
the unjtary field (essentially, the communator of left-invariant
Maurer~Cartan forms) brings stability for the solutions, while
preserving the essential properties a chiral lagrangean should

have in agreement with current algebra‘z’.

Using a *“hedgehog"
ansatz in 3SUC2) it was suggested that the classical stable
sclitons of | such a model could provide an approximate
description of the lowest baryon states®and in a sense
establishing a link with Qe A lot of applications of this
idea, more or less succesful, followed.

Recently‘mwe found the exact classical solution as a
power series at the origin for the classical SW2) non linear
sigma model with the "hedgehog" for the unitary field. Starting
from

x
L, =- 4%, Sd’x' Tr [(2,U%)(2* 1] , 1>
U = expLifa? F(n)] @
with: r o= (X4 Yl"’ z‘)"'
?‘l = 'I"/r‘
¥ the three Paull spin matrices
{. : the plon decay constant

we found that near the origin, the chiral angle is given by a

power series in terms of a dimensionsless variable™?.

F(n
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The dimensional parameter X"(0) is completely undetermined from

the Euler-lLagrange equation resulting from €1D and (2):
) csd

X =-12—|- , Xiny=rF(n) céd

—

a
d Xy _ 2 gin( X0
dxt X X

The singularity at the origin determines the form of Eq. ¢3) and
the undeterminacy of X"C0). The function X{s) can be written as a

power series with known coefficients'®

oy

Xisy= ) c,s* &p)
n10
The solution of Eq. (85) at infinity has been also
established®®and as it should be depends alzo on a dimensional
undetermined parameter.
The problem of stabllity for the solution of the
non-linear sigma model with an SUW2) hedgehog can be written in
terms any of these paramet.ersm’; for instance:

|

x
2xws. A a e

a = g: ds’ {s"‘(_g.;;.[s' )(!.s")])z +8 s'm"( % Xls'))} o

M

This results from the scale invariance of the solution,
a property emphasized originally by Carlson®for the complete
Skyrme model. As anocther byproduct, we found that after
quantization through collective coordinates, the theory with only
a non-linear sigma model term has a minimum in the energy in
terms of X"CO)(?’N.

We have recently studied the case of the SUC2) hedgehog
for the complete Skyrme model ‘@, This amounts to consider the
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Lagrangean:
o = L, - 39.11e de E Te [UYOGW, U (3,0)] UM

where € is a pure number (the "Skyrme parameter'),

The Euler-Lagrange equation is .0,

e 4 2 ey dFem g dFe A dF‘r)
(4r + T Sin F(r)_dr‘ +..ir - + xYE sin 2F(r)

€112

- AandFe - D sin*F(r)sin2F(0) = O
4 -

Using a Frobenius-like procedure, we have tLhat

-3
solution may be expressed as a power series near the origin:
= 4 i : :
F(r)—E+Fr+2,F ‘+~3-!-F,r'+--~ €12
with the coefficlents being obt.ain%d. order by order:
F, = n% (n.eZ)
3
0 =:*ir,-i.zﬁ ,P(Fz 2F’)
F, =0 (neZ)
F, =-4p5} 129"
5 1+8¢*
24 o5 1+ B+ FF 4+ 4 e
Fs = TE

14 24¢" +192¢*+ 512¢°

¢ = F‘I

efy
Notice the cancellation intervening in the second

expresslion, separately for the terms coming from each term of
Eq.(102. That means that,

as for the non-linear sigma model, the
dimensional coefficient F'1 is not determined,
written as Eq. (3D,

The sclution may be
but now the coefficlents in the series will
depend on the parameter¢ Cor, in other terms, on F re).
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The limit e—>00 reproduces, of course, the case we considered
above.

In BEgq. Ci2>, it 15 not more useful tLthe dimensionless
variable s (Eq. (433, instead it seems natrural to use:

m=zF v C13d

such that:

Fir) = Fim,8) = nT + n Gin,¢) €14)

As before, the solution turns ocut to be scale invarianﬁap{

At infinity, the solut;on of Eq. (113 can be written as

a power series in the inverse of r, ¢ =1l/r. The series is
o .
4 ¢!
Flod = I iy e 19
j=1 (2.”! }
with:
K : undetermined
]
K, =0
- _ 303
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K, = - 449280 (K] — 42040 —%-93‘")
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. That is, we find the same features as in the sigma
model: a dimensional undetermined coefficient., and a @‘ behaviour.

The difference 1s that new derivatives (proportional to powers of
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0D appear here.

Coming back now to the problem of stabllity for the mass
of the soliten, the expression is now.

Msn = 4y S:‘é.:-_-:"'" {"I (dF(n ﬂ) + 2 sin* F{n.¢) +

4

a [ 1 i ,- i ‘F '|
+ 8¢ [sm"F(n.gi)(d_F;(;:.,d!) § 3 q}:‘ 2] ] C16)
2 E N
My = 327k 29 4 2nh = gclg) €17
4 *
Notice that a.céb and cCﬁ) are positive definlite
numbers. A minimum for the mass of the classical =soliton for the

Skyrme model using the hedgehog for the unitary SUC2) fleld should
be obtalned from:

M =0 C18a)
aF,
FeFe ez e
2 M =0 €18b)
e

LA ARET

where Ff and eo are the values of F1 and e at the minimum,.

From both equations, we get:

F_:‘_ d [ a(d) » ¢¢° c(¢°)] O C19a)

5 a(¢?) + ¢ c(¢)] =0 C19bd

The only possible solution for Eq. (19b2 1is Ff—eco .
which simultaneously satisfy Eq. (19a32. Notice that, again, the
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result for the pure non-linear sigma model comes from taking
e o first.

This results tells us that the complete Skyrme model,
when the hedgehog is introduced for the unitary SUC2) field, has
no lowest finite bound for the classical mass of the soliton, as
t.he non linear sigma model. This may be the consequence of the
scale invarlance property of the solution of the Euler-Lagrange
equations in both cases (Egqs. (11> e (B5) regpectively) for the
hedgehog SUCE> ansatz. This features may have been inferred from
the fact that the second functional derivative of the action is
" not positive definite, as shown in Ref. (80,

In practice, however, the Skyrme term is not a dynamical

addition, its function being only to provide stabilization for the

chiral soliton. That 1s, e is not a free parameter, but one
chosen to set some kind of equilibrium condition. In our
solution, this means that the scale invariance in is necessarily

broken, keeping only F“ as a freely varying parameter.

Coming back to the above Equations <18a3, (18b) the
argument is equivalent to discard Eq. C18bd. Then, a true
minimun for F‘1 appears, since Eq.(18a) is now:

“Ariad) ¢ gre(d) A d Tta@ v c(@]=0 cam
I?,‘[""n b ]+99‘ﬁ"¢[1 ¢ ]

and a minimum will appear for

— — i a b 5
.5.:96 = L3265 +dc@d ] c2Ld

ef, 4 1t :
L@ des)] \¢=6

The particular value of @ at which it is interesting to
locate the minimum F‘t should be found from some outside criterium.
It is commonly used™to fix the mass of the soliton, after
quantization, as the proton mass (for angular momentum 1./23.

There is, however, no care in general to check whether this

happens at a minimum for F{
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This brings us to the problem of quantization. For the
pure non-linearsigma model., the scale invariance develops a
minimum for the quantized energy. It i=s likely that the same
happens for the complete Skyrme model, and we are currently
exploring this aspect.

To conclude, it may be worth to reanalyze the previous
work on applications of the Skyrme model at the light of
the developments exposed here.

We wish to acknowledge Prof. F.R.A. Simio for valuable
conversations on this subject. One of us C(JAMD acknowledges
partial support from the CNPq CCoanselho Nacional de
Desenvolvimento Clentifico e Tecnoldglcol, Brasil, during this

work.,
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