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Abstract

The finite temperature phase diagram of the Hubbard model ind = 2 and d = 3 is
calculated for arbitrary values of the parameter /¢ and chemical potential u using a

quantum real space renormalization group. Evidence for a ferromagnetic phase at low

temperatures is presented.
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The Hubbard model [1], as one of the simplest models of many-fermions systems, has
attracted much attention over years in connection with itinerant magnetism {2,3,4] and
more recently with high T, superconductivity [5]. The dimensionless Hubbard Hamiltonian

is defined by

Hy=-—PHy =t Y (c!.oci.o + C}ﬁ“"ﬁ) +3U Z(nm —niy) +u Zni" )
i L

(i.d)e

where 8 = 1/kgT, c}_, creates an electron with spin ¢ =1,] in a Wannier state centered at
the site i of the lattice and n;, = c},oc,", s t, U and u are respectively the dimensionless
hopping constant, intra-site Coulomb interaction and chemical potential; (%, ;) denotes
first-neighboring lattice sites. We consider t > 0 (the ¢ < 0 case is isomorphic to the
¢t > 0 one whenever the lattice can be partitioned into two sublattices, such that all the
first-neighboring sites of an arbitrary site of any sublattice belong to the other sublattice),
U > 0 (i.e., repulsive Coulomb interaction) and u < 0 (¢ < 0 correspopnds to less than
half-filling; g = 0 corresponds to the half-filled band case; the 4 > 0 case is isomorphic to
the g < 0 one).

Since only a few rigorous results for this model are available, several approaches have
been applied in an attempt to understand its general properties, in particular its finite
temperature phase diagram. However, there is no agreement on the general structure
of the phase diagram obtained through different approximate methods; in particular, a
controversy exists about the existence of a ferromagnetic state at either vanishing or finite
temperatures. Self-consistent methods [4,6] predict, for the d = 3 model, the existence of
a ferromagnetic phase at finite temperature for high values of U/t, at least close to near
half-filling. On the other hand, high-temperature expansions [7] in the d — oo limit exhibit
no evidence pf a ferromagnetic phase transition for any value of the electronic density.

Here wecalculate the finite temperature phase diagram of the d = 2 and d = 3 Hubbard
model by means of a quantum real space renormalization group (RG) method (see [9] and

references therein). In the present approximation d-dimensional hipercubic Bravais lattices
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are replaced by diamond-like hierarchical lattices (whose fractal dimensionality equals d),
namely, those generated through infinite iterations of two-terminal clusters like those shown
in Fig. 1. The RG recurrence equations are obtained by computing the partial trace

cxp(H+C)=, T ep(H) @

internal sites

where H denotes the Hamiltonian of the cluster under consideration and H’ denotes the
Hamiltonian of the renormalized two-site cluster (see Fig. 1). The partial trace is calcu-
lated by summing the matrix elements of exp () over the set of occupation numbers {n;,}
associated with the internal sites of the cluster. This procedure neglects, at every RG iter-
ation, the non-commutativity between the Hamiltonians associated with the neighboring
clusters. This approximation is a high temperature one. In fact, it is asymptotically exact
at infinite temperature and believed to be a good approximation even at low tempera-
tures [9]. In particular the relation {2) does not preserve the form of the Hamiltonian (1),
in other words, if  is the standard Hubbard Hamiltonian then the resulting M’ contains
terms that were not present in . In a previous work [8] we derived a generalized Hubbard
Hamiltonian whose form is preserved by the RG transformation (2) and which contains

the Hubbard model as a particular case. This generalized Hamiltonian is given by

My= t Y (et o0)+1 Uz(s*) +p):n.,,

{id)e
- J38.5;- KZ(S')’(S‘) +Y 3 5p;
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where the spin operators are defined by §; = T, 8 c!ﬂ&’,ﬁ ¢ (7 are the Pauli matrices
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and a, 8 =1, }) and the charge operators by

nit+ni—1

i

pi
T = A | : .
pi = 60+ GG
- - {1 .t
plo= —i (C.',rci,1 - c-‘.lci.t)

The Hamiltonian (3) is the minimal one that simultaneously contains the Hubbard Hamil-
tonian as a particular case and remains invariant under the RG transformation.

We then construct the recurrence equations between the set of parameters of Hz and
that of H%' by explicitly computing the partial trace (2). Since the calculation of exp (Mg)
involves the diagonalization of very large matrices, part of the calculations was done nu-
merically. A detailed analysis of the RG procedure and of the structure of the Hamiltonian
(3) is given in Ref. [9]; the RG flow in the 4 = R = E = Y = 0 invariant subspace of the
parameter space (u, K, J,U,I,Y,R,t, D, E) was analyzed for d = 2 and d = 3. The RG
flow in the full parameter space provides a very complex phase diagram; we present here
the K=J=I=Y = R= D = E = 0 section of it (i.e., the phase diagram in the (u, U, ?)
space). The results are presented in terms of the temperature-independent variables U/t,
p/t and the dimensionless temperature 1/t. We only consider here the case of less or equal
than half-filling, i.e., 0 < n < 1, where n = ¥;,n;,/N and N is the number of lattice
sites. As already mentioned, this case corresponds to 4 < 0. The phase diagram for ¢ > 0
is obtained by reflection on the g = 0 axis through the standard particle-hole exchange
transformation.

First of all, we observe that for U > 0, all points in the (u,U,t) parameter space are
driven (after a few RG steps) towards the region U — oo, whereas u + U/2 as well as
K, J1Y, Rﬁ, D and E remain finite. In this limit, the states of the configuration space
with at least one doubly occupied site, (i.e., which satisfy n; n;; = 1), do not contribute
to the energy. In fact, in this U — co limit we obtain that: (3} the only remaining hopping

processes will be those which only connect sites with zero or single occupancy; (i) the
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non-diagonal charge operators p7, p! will not contribute at all. It can be seen that these
two conditions yield, through the RG iterations,

D = E=-i (4)
I = -Y (5)
Finally, n;n; | = 0 for all sites ¢ implies
) = —pi=1-(8) (6)
(S5 = nip+niy ()

Applying the conditions (4)-(7) to the Hamiltonian (3) in the U — oo limit (with fixed
p+U/2) we find that the RG flow is governed by the following effective Hamiltonian (which
acts on the configuration space with no doubly occupied sites):

Hw t 3 (1-ni-) (c:-‘pcj_, + c}.,c.,-',) (1-nj-)
{idhe

— IV S -RY (S (s) +E L i ®)

() . (5.5} R
where, for the hierarchical lattices we are using here,
K = K+2R+I )
= 2I4+4R+1U+p (10)

=l

The Hamiltonian (8) is a generalization of the tJ model, which in turn constitutes a strong
coupling version of the Hubbard model (1) [10,11]. Consequently, all the critical properties
of the Hubbard model will be determined by the RG flow in the (7, K, J, t) parameter space.
We have re(éntly performed [12] the RG analysis of the full phase diagram corresponding
to the Ha.milgonian (8). So, we will not discuss here the general fixed point st.ructﬁre of the
associated phase diagram (which in turn determines the structure of the phase diagram of
the Hubbard model): see [12] for details.
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We now discuss the d = 2 phase diagram. No long-range magnetic order exists in
d = 2, because of the continuous symmetry of the magnetic interactions present in the
Hamiltonian (8). We find that most of the points in the (u,U,t) parameter space are
attracted by one or the other of the following fully-stable fixed points: (7, K, Lt =
(—00,0,0,0) and (+00,0,0,0). The first fixed point is associated with a paramagnetic
hole-rich (Ph) region, i.e., low density of electrons (n « 1), while the second fixed point
is associated with a paramagnetic electron-rick (Pe) region, i.e., high density of electrons
(n = 1). All points located at the frontier of these two sets of points are attracted by the
semi-stable fixed point (7, K, J,t) = (0,0,0,0) [12]. The Linearized recurrence equations
at this fixed point provide eigenvalues which are smaller than unity, excepting one which
equals 14 (I = 3 for the present case). Therefore, no real phase transition exists between the
Ph and Pe regimes; in fact both describe one and the same paramagnetic phase. Indeed,
passing through the above described frontier corresponds to an abrupt, but continuous,
change in the electronic density n. We performed several calculations for a wide range
of the U/t parameter, finding no evidence for a phase transition. The same result was
encountered for the tJ model at low values of J/t {12], where such model is equivalent to
the U/t 3> 1 Hubbard one. The present results suggest that the same behavior occurs for
arbitrary values of U/t. Monte Carlo calculations [13] also support this assumption.

At d = 3 we find two new phases. Besides the above described paramagnetic phase
(Ph or Pe) two long-range magnetically ordered phases appear: an antiferromagnetic (AF)
phase and a ferromagnetic (F) one, respectively governed by the fully stable fixed points
{400, KA, J£,0) and (400,400, —00,0), with J# = 2.475; K = —18.78. Each of these
two magnetic phases undergoes , at finite temperature, a second order phase transition
(we recall tjiat the corresponding phase transitions appearing in the tJ model can be
first order ones [12]) to the paramagnetic phase (in fact, to the Pe region). The AF-P
and F-P critical surfaces are respectively governed by the fixed points (400, K2,J4,0)
and (+o0, KF,JF,0), with JA = 0.353; KA = —0.001; JF = —0.522; KF = 0.328; the
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| corresponding correlation length critical exponents are v4r = 1.241 and vp = 1.522 [12].

As in the d = 2 case we find no evidence for a phase transition between the Pe and
Ph regimes at finite temperatures. In Fig. 2 we show the phase diagram in the (u/t,U/t)
space for typical values of the temperature 1/¢; in Fig. 3 we show the phase diagram in
the (u/t,1/t) space for typical values of U/t. Although strictly spesking no AF-Ph (or
F-Ph) phase transitions exist, these two phases can be extremely close (see figures 2 and 3).
Therefore, these phase transitiona can be followed through a fast decrease in the density n.
In Fig. 2a we see that the F phase disappears for low values of U/t. This result agrees with
the interpretation of ferromagnetism in terms of Nagaoka’s ferromagnetic polarons [2,14].
Consistently, the phase diagram obtained by self-consistent methods like SDA (“spectral-
density-aproach”) [4] at zero temperature presents a critical value of U/t below which there
is no ferromagnetism. Also our low temperature results (see Fig. 2a) exhibit a remarkable
fact, namely, the existence of a paramagnetic region (Pe) between the F and AF phases. It
cannot be excluded that the P region shrinks to zero for 1/t — 0, but we believe this is not
the case. Unfortunately, numerical errors in the diagonalization procedure make extremely
difficult to get accurate results at very low temperatures (1/t < 0.1), so we cannot fully
check the 1/t — 0 limit. In addition to this, such low temperatures are outside the
range where the present approach is reasonably reliable. On the other hand, the general
characteristics of the fixed point associated to the Pe phase (U = +oo0, g = +o0) are
indicative of a high degree of localization. Then, such region could be due to the presence
of disordered local moments in the ground state. Indeed, this assumption is supported by
other approximate results [15).

Let us finally mention that the same RG equations we have used here for the U > 0
region are '?I"erfectly adequate for discussing the U < 0 one; the corresponding phase
diagram is also expected to be a very rich one and deserves a study by itself.

This work was partially supported by grant PID 641/90 and 1707/90 from Consejo

Provincial de Investigaciones Cientificas y Tecnolégicas de Cérdoba (Argentina).
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Figure Captions

Fig. 1: Renormalization group cell transformation. Every two-rooted cluster gen-
erates, through infinite iterations, an hierarchical lattice of intrinsic dimensionality d. L
stands for the set of parameters of the Hamiltonian; o and e respectively denote internal
and terminal sites. (a) d = 2; (b) d =3.

Fig. 2: Phase diagram of the d = 3 Hubbard model for constant 1/t. Solid lines
corresponds to second order phase transitions; dotted lines corresponds to a smooth con-
tinuation between the paramagnetic electron-rich {Pe) and hole-rich (Ph) regions; AF and
F stand respectively for antiferromagnetic and ferromagnetic. {a) 1/t = 0.2; (b) 1/t = 0.5.

Fig. 3: Phase diagram of the d = 3 Hubbard model for constant U/t (see caption of
Fig. 2). (a) U/t =25; (b) U/t =
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