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- Abstract

We present a Hamiltonian treatment of the Landau theory of
phase transitions. In this formulation we are based on the analogy
between the order parameter space and the ordinary coordinate
space of a particle moving in two dimensions. As an application,

we consider the ferroelectric smectic liquid crystals.

Key—words: Ginzburg-Tandau theory; Ferrocelectric liquj.d crystals; Hamiltonian

Dynamics; Poincaré section.
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1) Alternative Formulation

Recently some authors [1,2] have discussed analogies between
the Landau theory of Phase Transitions and Lagrangian mechanics.
We aim at to developing those ideas using a Hamiltonian formu-
lation in this work. At first, we construct an alternative dyna-
mical theory which allows to study the "time" evolution of the
order parameter components in the Landau theory. For this we
correlate, at the beginning, the usual configuration space
(ql,qz,...,q_), with the one of the order parameter components
(n‘,nz,...,n_). We can write the Hamiltonian density # in terms of

the free energy density F as

¥ = np - F . (1)

Where p is the canonical momentum conjugated to n. We have
employed in (1) and hereafter the summation convention in the
repeated indices and p, are the canonical momenta.

The Hamilton’s equations for the order parameters take the

form

a X a N
n, = — ; p, =-—— (2)
ap‘ & n

Sections 2 and 3 present the basic procedures for the

analysis of a Hamiltonian system in the Ginzburg-Landau theory.
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2) Application of the Poincaré Section in the Ginzburg-Landau

Theory

We will study in this work the evolution of order parameter
components and the corresponding commensurate and incommensurate
frequency regime of the dynamical system, analysing the Poincaré
section [3] of the two-dimensional torus embedded in the phase
space (n, p ).

As we have already stressed before (see eq.l) the evolution of
our dynamical system is described in terms of the free enerqgy
density F, considering now the degeneracy parameter N = 2 {2,4].
This thermodynamical potential has been used for the particular
case of ferroelectric smectic liquid crystals in the presence of

an external magnetic field (H) [S5], such that

F =Ccn° +c_n° +Ccn®+n°)+3 dnxz+ i’ (3)
1 x 2 y 3( x y 2 az_ az_

where we define in this case:

c,= s((a-xH) , ¢c, = (4)

1

oo e
L

A and 03 =

being % the diamagnetic anisotropy; the Landau parameter A is
dependent linearly upon temperature; and n = (nx, ny) is the
molecular director of the pitch and the last part is the elastic
term.

This expression (eq.3) can be applied to the three smectic
liquid crystal phases A (prototype), c* and ¢ . These systems have

been intensively studied and it is very established that in a
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smectic C 1liquid crystal rod-like molecules are arranged in
parallel layers, within which they have the character of a
two-dimensional 1liquid. There is & tilt angle & between the
molecular director and the layer normal, being the same within all
layers. In the case of chiral molecules (non centro symmetrical),
in addition to the smectic C phase there is the chiral smectic c*
phase, whose basic property is that it is modulated in the layer
normal direction in the form of a helix [6,7). This last
characteristic arises from the presence of the Lifshitz invariant
term (3). So a characteristic potential (Fig. 1) of the system and

the Hamiltonian density (1) are

= 2 2 2 2.2 5
W Clnx+czny+c3(nx+ny) (3)

’ = %(pi+p:)-ﬂ (6)

Fig.1 a) A tree dimensional view of the W potencial and
b} is a tep view of the same potential.

We assume no Lifshitz invariant texm in eq.3 in this note. The

most general problem which contains this invariant will be studied
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in the near future. In the present case the equations of motion

ares
. 8 N
n = = p (7&)
x a px X
. I | a
YT T, TR | )
) 4
a K
. o 2 2
P, 5 2C1 n + 403 (nx + ny) n_ (7c)
n .
8 M
hd = - 2 2
P, . 2C2 n + 4C3 (n + ny) n, (7d)

In this case, despite the phase space be a four-dimensional
one, meanwhile it reduces to three dimensions because our system
is not dissipative (constant energy). The existence of second
conserved quantity implicates in the reduction of the phase space
to two-dimensional torus. The determination of the invariant torus
has been done from Poincaré section analysis. This section is de-
fined by the intersection points of orbits with the (ny = 0 P>
0) -plane.

We have used a numerical algorithm based on the Runge-Kutta
method in order to integrate the Hamilton'’s equation and to
construct the Poincaré sections. The analysis of the Poincaré
gection results enable us in clearly discussing the commensurate
frequencies regime from the incommensurate one. In the former case
the orbits along the torus are: closéd such that the Poincaré

section presents a finite number of points. In the incommensurate
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case this section is established by a dense set of points meaning
that the orbits are quasiperiodic (see Fig. 2 and 3 of the Poincaré
section and Fourier analysis). We have used the KAOS package [8] in

order to obtain the figures 2 to 4.
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Fig.2 Polincare’ section. The used paramsters: Cl= -1.125,
€, = 0.625, C,= 0.25, Energy = 1.333, X = -3.15,

P 0.18 = 0.0, P .
xi' ! yl * ¥i = 0.0

The periodic and quasiperiodic motions will give rise more
complex motions (chaotic) when there is not a second constant of
integration. The Poincaré section is showed in this case as a set
of points that cannot be orderly connected with the evolution of
parameter z. A more accurate analysis of these cases will be done
in the next note.

The numerical analysis of this problem (see Fig. 2) shows
that the order parameter components n..,n and their canonical
momenta P, P, are quasi-periodic and the order parameter space

frequencies are incommensurable ones (see Fig. 3 ). This
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incommensurability arises from the disturbance (one-directional)

due to the magnetic field H (see eq.3).

log (A3)

Fig. 23 Power spectral by a Fast Fourier Transform (FFT) with
period two. The vertical axis represents logaritm of
the sun of the squared Fourler amplitudes (A) of that
frequency and the horizontal axis is the frequency .

From Landau point of view the prototype phase n = n = 0
corresponds to the smectic A phase. In the second part of this work
w? can also think in terms of the soliton-like picture. There, we
will study the behaviour of the angle ¢(z) between the position
vector of the particle and horizontal axis, considering the
presence of the Lifshitz term’s parameter. In the present case we
have the situation where there is no variation of that parameter
and in the Ginzburg-Landau theory this situation corresponds to
the smectic C phase, where the angle ¢(z) is more-or-less constant

for a determined range z.

3) The Trajectory Analysis in the Order Parameter Phase Space

Another important feature of this alternative formulation is

that it allows to describe the stability of the system from a
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simple and general manner within a linear approximation.

The stability notion arises when a system, in the equilibrium
position, is softly disturbed. When we look for the formal concept
of stability of an orbit, in general we say that the motion is
stable if we can understand the time evolution from an interval
[(O,to) to (0,«}]. We must to remember that the orbit denoted here
are defined within a 2m-dimensional phase space (m = 2). Then a
trajectory is stable if for each € >0 (arbitrarily small) there is

5{€) > 0 such that

|l x - a ] < &(e) (8)
and
P X(x,t;t) - X(a,t;t) | < e , for all t =t
The stability analysis of a dynamical system can be treated

within a linear approximation, by equation

X = AX (9)

which in the case of our potential W has the explicit form

(A, ) (0 o0 1 0 ] (o, ] (P, ]
Ty =10 0o o 1 ol = | B (10)
8 2. 0 0 0 . 2Cyn,

| Py | L 0 2c, o o y | |2C.0,

We must find the eigenvalues of the following characteristic

equation in this linear approximation

"
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det(x I -m) = a'-2(c +c)a® +4cC, =0 (11)
Making the change of variable A = A° we have
..} -
AT - 2(C +C)X +4CcC, =0 (12)
and the solution is
A, =+V (A-x H) = -2, (13)
A, =+Va = -, (14)
In order do make clear this theoretical background we present
below some phase space trajectories (see Fig. 4).
ff'
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Flg. 4 Represents some trajectories in phase space
have used the same parameoters as in Fig. 2

1.

In the numerical analysis we have used standard parameters
In this case the eigenvalues

values [2] A = -1.25 and x H
are pure imaginary numbers and the singularity is called vortex
point or centre, because the A - matrix is real.
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4) Conclusion

We have developed the first part of the Hamiltonian formalism
of the Ginzburg- Landau theory of phase transitions in the case of
ferroelectric liquid crystals, considering no contribution of the

Lifshitz invariant. In this case the minimum value of the free
dn dn

energy corresponds to a uniform solution, dzx = dzy = 0 and

minimum W. For A - xaﬂz < 0 (eqs.4 and 5) W has a relative

maximum at the origin, and if we consider nx-axis, the equilibrium
configuration is one of minimum W. Similarly if we consider
ny—axis, we get a saddle point, as sketched in Fig. 1 a,b. Typical
contour lines of W are showed in Fig. 1b . In this analogy with
the mechanics of a particle moving in two dimensions we have put z
E t (time) and (nx,n;) = (x,y) is the particle position such that
the elastic term in (3) becomes the kinetic energy. However, in
order to write the free energy density as a Lagrangian we must put
W= -v[1].

From mechanical point of view the stability analogies of this
system shows that when the eigenvalues are pure imaginary numbers
the singularity is called vortex point or centre . The
trajectories in the (nx,ny)-plane are ellipses or circles and all
orbits are periodic around the A point (see Fig. 4 ).

We will present the complete Hamiltonian treatment of £he
Ginzburg-Landau theory of phase transitions in the next part of
thie work . In this system we will consider the contribution of
the Lifshitz invariant term which favors the smectic C* phase, as

well as the arising of solitons.
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