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Abstract

Newtonian potential and Huygens’ principle can be simultaneously satisfied by means of
a D’Alambertian (Laplacian) to a certain power for one specific dimension of the space.

This can be of relevance Tor some physical higher derivative Lagrangians.
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1. Introduction

When studying wave propagation there is a general principle, which plays a le"ading role
ir: its physical interpretation. It is the Huygens’ principle (HP)!. It implies a separation
‘between those spaces where a clear cut message can be sent (only the velocity of light is

present) and those where it is not (all velocities up to ¢ are present).

This separation can be obtained by analysing the Green function corresponding to the

wave equation. For the usual D’Alambertian equation, this has been done quite extensively.

However, sometimes physics put forward equations with iterated D*Alambertians, for
instance, generalizations of the theory of gravity with a Lagrangian containing the square
of the curvature tensor and its contractions?. Also in the bosonization in 2+1 dimensions®

- where 0% seems to play an essential role.

It seems then that the power of the D’Alambertian is related to some specific number

of dimensions in order to gain reasonable physical consequences. For instance, HP.

On the other hand, in studying gravitation the Newtonian potential NP (r~') is a
necessary condition to be satisfied in the appropriate limit. For any number of dimensions,
it always exists a certain power of the Laplacian for which the Green function is always
-1

r~*, as will be shown below.

Thinking on both problenis simultaneously i.e. when discussing gravitational waves
in any number of dimensions and also the Newionian limit r~?, it comes up in a natural |
way to try to see, which is the power of the operator which can satisfy both conditions?

This is what we shall intend to do in the next paragraphs. In section 2 we find

the power of the Laplacian operator which has for a specific number of dimensions, the



CBPF-NF-045/91
-2

Green function equal to r~}. In section 3 we see, for a given number of dimensions,
which powers of the D’Alambertian satisfies HP. In section 4 we look for the conditions
to satisfy Huygens’ and Newtonian dynamics. In Section 5 based on the well known
generalizations of the theory of gravity containing quadx.'a.t’ic terms in the curvature tensor,

and its contractions, we discuss the specific example.
L=/—gR, R*" (1.1)

and show that HP and NP are both satisfed only in six dimensions (5+1).
2. Newtonian Potential.

We define
R=Y s}  n=d+1, | (2.1)

- where n is the space-time dimension and d is the number of space dimensions. We are

looking for the solution of an equation of the form
AT+ G@ =5 - . (22)
a non local operator which for integer a has to reduce to
ARG = B =AM - (2.2b)

or, in the Fourier transforms:

~o . (a) '

AG =1 ie ' (2.2¢)

G = 2y (2.2d)
We shall use*

92 +d i) 4 ¢
F(RY) = F(’fi) gy pn (23)
From (2.2a), (2.2b) and (2.3), it follows that
d o—4 '

22ex4T(a)




CBPF-NF-045/91

Changing the sign of a, we have

<o _ T3+ )

2-2074T(—a) (25)
According to Ref. 4, p. 74, R* is an analytical distri_bu.tion in A with residues
Re RMy__4_, = ﬁ—;f-%—z&"é(k) . (2.6)
: 44 EN(E + k)
So that, in particular, when in (2.5) & goes to a positive integer k,
A% v u— A*§(z) xu = Aru | @7

In these cases it is a differential operator while for @ # k it is an integral operator.

‘Now, we want to answer the following question: which is the operator whose Gréen
function is proportional to R*?, defined accordinig to (2.4) and (2.5). In particular, for
the Newtonian potential s'=.-—1§ ( a similar analysis can be performed for s=0, which
cprresponds to the logaritmic potential. There are some differences due to the poles of the

I' functions) we have

d 1 n .-
a_i——z———i_l, - (2'8)
which leads to the operator
A o TR (2.9)
' 2(1-‘”11'31‘(%)
We see that d=odd=2m+1 according to (2.6} we have poles and these poles lead o
—d=1
A 2A™z) .
So, for
d=3 m=1 A
d=5 m=2 AA {2.10)

-9
1
-g
3
[
(4L

AAA, ele.
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For d = even %31 = half integer and we get integral operator

d=2 A?
d=4 NS ' ©(211)
d=16 A}, etc

3. Huygens’ Principle

An elegant discussion of HP for the wave equation can be given using M-Riesz"lmethod

of analytic continuation.!s

Following a parallel idea to the Liouville expression which generalizes the concept
of derivation and iterative integration, Riesz was able to give the solution of the wave
equation

0w u 9?u A
Elﬂ = -é—t-z' — a:?—‘ ,—'673 = f(zla---,zd;t) (31)

(with adequate boundary conditions) The solution will be

U= Gg?z) * f|a=l ) _ | R (32)
where 3 o
(@) _ 2Q% *6(-t) (3.3
Crs = 4o7 3711 + a — ) (a) (_3° )
with
Q4 =Q* Q=t*-R if t*>R
‘ (3.4)
=0 otherwise
B(z)=0 if z<0 6(z)=1 i z>0 .
" For later use we shall define
Q =(-Q) if R>{
(3.5)

=0 otherwise .

According to Riesz
Gl + G = G5 69
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which means that ,

DOrsz = Gprsz
Orsz * G(;s)z =6,

where we have suppressed the bar for simblicity reasons.

(3.7)

From (3.3) we see that if the argument of each one or of both of the I" functions are
not zero or negative integers, HP is not fulfilled as Q4+ # O inside the cone and all vel?cities
are prese;lt. However, when the argument of any or both of the I' functions ;15 2€r0 Or &
negative integer, the only possibility for G(® of being different from zero lies on @ = 0,

the light cone. Only one velocity (that of light) is present.
To be more_precise,- we.rely on the following results of Ref. 4

a) The distribution Q2 has, for n 0dd, simple poles for A = —1,~2,..,—k and A =

—2,—% — 1,... and the respective residues are

1Y% - B
Re Qb= gt@ . (38)

where 6(Q) means

St+r)+6(t~r)

o ()ixite(e) |

T Tk+ )R+ 3) 3.9)

§Q) =

Re Q}l=-2

Observe that in (3.8) the residue has support in the whole cone, while in (3.9) the residue
lies at the vertex of the cone. The first ones are impdrtant in classical t:.heories, while the

second ones in quantum theories.

b) K the number of dimensioﬁs is even Q} has simple poles for A = —1,-2,...,~(3-1)
and double poles for A = —%,—2 —1,... . The residues at the simple poles coincide with
(3.8). Those for the double poles will not be needed Ihere. Now let us look at (3.3) again
and ask for which values of o -integer- HP is valid? For any n and a=k (3.3} is the Grecn
function of 0. For odd n, HP is never satisfied (k=integer). Forevennand -1 < a € 2~1

we have a pole in the denominator a.nd HP is valid. According to (3.8) and (b) Q} has
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also simple poles, with residues proportional to §4-14(Q) which is the expression, up to a
constant, of the Green function.

A slightly more general question can be answered: For which values of o {not neces-

sarily integers) does (3.3) satisfy HP?® If n is odd, this happens according to a) for

o =

—k k=1,2,..etc. (3.10)

|

Observe that a is half an integer.

The residue is proportional to
SN(Q) ~ Re @) in A=-—k . - (3.11)

For even n, according to b) we have poles whose residues obey HP for

n

n . . n
A= —1,—2,...,—(5 — 1), which corresponds to a = 5-—' 1, 2

2,.,2,1  (3.12)

with the same residues as {3.11). Only a finite number of positive a, IObEj.V HP. For n odd

~and a > 0 also only a finite number of half integer pox;vers obey HP. -
" 4. HP and NP |

To satisfy simultaneously HP and NP we must Jook for those valu‘es of a, which satisfy
both requirements,

In order to satisfy NP, according to formula (2.8) a = § — 1.

On the other hand, from (3.10) as a requiremént for HP « = § — k for n=odd a.ﬁd
2 —1,%2-2,...,2,1for n = even. |

We see that only k=1 satisfies both conditions. Observe that for n even the values of

a are integers (iterated D’Alambertians } while for n odd, they are half-integers.

For n=4 only a=1 (ordinary D’Alambertian) obeys HP and NP. In four dimensions if
we have [P neither HP nor NP are satisfied . We showed that one can not have clear cut

signals in such theories.
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Instead, for n=6 the only value allowed is =2 and we can have clear messages and

Newtonian dynamics.
5. R,,R*”  Theory.

Higher derivative generalizations of the theory of gravity are of interest. First, they
appear as effective theories coming from strings’, second they seem to be of relevance in
vonnection with inflation® and third the chances of renormalizability are higherg.- From
these classes of alternative theories it is usual to choose those where the Lagrangian is

quadratic in the curvature tensor and its ordinary contractions.

In the following we want to apply the weak field approximation to the theories just
mentioned and illuslf,réie under which conditions i.e. number of dimensions it will be
possible to satisfy HP and to get as a Green function for the static caée the Newtonian
potential. Instead of considering a linear combination of thé mentioned theories, as is

usually done, and in order to simplify the example, we will choose

L= VToRuR™, (5.1)
where R,w is the usual Ricci tensor. We will show that because the weak field approx-
imation of this theory gives essentially a double D’Alambertian, HP and NP are only
simrultaneously satisfied in this limit in 5+1 dimensions and definitely not in four, accord-
ing to (2.8).

The dynamical equations corresponding to (5.1) are

1 1
G‘u, = R‘.Jﬂ' + 2R”909R90 —0 R”y —_ Eg,,.,l:l R- ERpeRpggﬂv = —kT’w s (52)

following the usual procedure to obtain the weak field aproximations we write for g,
Guv = Nuv + hp.v (53)

where n,, = diag(l,-1,-1,~1,-1,-1), |h,,| < 1. The already known’linearized equa-

tions are

1 1 ' o '
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whose trace is

R |
ODh=SkT . (5.5)

The T, we are considering is that of a point particle located at the origin

T = §56g ME*(z) . (5.6)

In four dimensions the Green function of the corresponding static equation to the bi

D’Alambertian (5.5) is
(5.7) _ : h~r

which is i:hysically unacceptable, since the potential is not of the Newtonian type (in
this case hgg satisfies also a bi Laplacian equation and hgo ~ r). The Green function
corresponding to the scalar eq.(5.5) does not obey HP in four dimensions as has been
discussed in sections 3 and 4 .

Instéad , in 5+1 dimensions the eq. (5.5) dbey NP a.ndIHP and has only one velocity
of propagat.-ion. The condition to satisfy both HP and NP, a = 2 -1 =2 s fulfilled in

this case.

In this way, we see that six dimensions seems to be the appropiate number of dimen-

sions for the considered class of theories {(5.1).
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