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ABSTRACT

The helicity formalism and the technique to compute amplitudes for interac-
tion processes involving leptons, quarks, photons and gluons are reviewed. Explicit
calculations and examples of exploitation of symmetry properties are shown. The
formalism is then applied to the discussion of several hadronic processes and spin
effects: the experimental data, when related to the properties of the elementary
constituent interactions, show many not understood features. Also the “nucleon
spin problem” is briefly reviewed.

Key-words: Spin; Helicity formalism; Hadronic processes; Nucleon spin
problem.
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Introduction

In high energy particle physics hadronic interactions should be described in
terms of interactions amongst constituents, quarks and gluons; such interactions
can be computed in the framework of perturbative QCD. Whereas in inclusive
interactions the hadronic cross-sections are obtained by summing the elementary
cross-sections, to describe exclusive processes one must coherently sum the ele-
mentary amplitudes to obtain the hadronic ones. It is then crucial to master a
technique to compute amplitudes for quark and gluon interactions; in fact, to make
physical predictions for each given exclusive process involving composite hadrons
in the high energy region, one must know all contributing amplitudes, including
their relative phases.

In this paper we first review the helicity technique to compute amplitudes
for lepton, quark, photon and gluon interactions; the emphasis will be on explicit
expressions for helicity spinors and polarization vectors, with detailed examples of
computations. The properties of the amplitudes under parity, time-reversal and
crossing transformations will also be discussed and used in particular cases.

We will then present a critical analysis of many recent spin effects in exclusive
hadronic interactions, which pose a severe challenge to all existing theories. We
discuss them in the language of helicity amplitudes, which are written in terms of
the elementary ones, trying to relate the spin effects to the nature of the elementary
constituents and their couplings.

There exist in the literature some excellent review works on spin and spin
physics [1.1-3], but none of them deals with the technical details necessary to
actually compute amplitudes; as a consequence the helicity technique is not widely
known. Also, the majority of elementary particle physicists are not familiar with
the problems encountered when dealing with polarized hadronic interactions and
with the difficulties of explaining most spin effects. We trust that our paper will
fill this gap in the.literature.
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The plan of the work is as follows. In Chapter 1 we recall the helicity formal-
ism and give the explicit expressions of helicity spinors and polarization vectors.
Their relationship with the usual canonical states and some useful formulae are
collected in Appendix A. In Chapter 2 we give an explicit example of amplitude
calculations using the helicity technique and show how to exploit parity, particle
exchange, timc-revFrsal and crossing transformation properties. In Chapter 3, as
an application of the helicity formalism, we discuss many spin effects in exclusive
hadronic interactions; the properties of the constituent amplitudes are shown to be
in apparent contradiction with several observed spin effects. Finally, in Chapter
4, we give a brief review of another spin problem involving a composite hadron,
which is still being much debated, the so called “proton spin problem”.

Throughout the paper we will be using the same metric conventions and the
same Dirac vy matrices representation as in Bjorken& Drell, “Relativistic Quantum

Mechanics™ (McGraw Hill, 1964).

1 -~ Helicity formalism

As we said in the Introduction we often need, when computing high energy
interactions amongst hadrons, to sum all the amplitudes describing the constituent
interactions contributing to the same process. We have then to compute expres-

sions like

¥(p';s")T ¥(p;s) (1.1)

where ¥(p;s) = u(p;s),v(p;s), the Dirac spinors for quarks or antiquarks with
four-momentum p and covariant spin vector s. In such a case we cannot resort to

the familiar trace technique, useful when computing cross-sections

Y [T+ T ¥(p;9)]" [¥(p's6") T ¥(p;s)] =
(1.2)
=Tr [(p£m)P(# £m)T]

where +m refers to quarks and antiquarks of mass m respectively and I = 7“1‘17“.
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Analogously, I' in Eq.(1.1) might contain products of gluon or photon polar-
ization vector components , e*(k,A)e?(k', )'). Again, we cannot exploit the usual
prescription, used when computing unpolarized cross-sections (in the Feynman
gauge) | |

3 ek, N (K, \) = —g* (1.3)
A

One simple way of handling expression like {1.1) is that of using an explicit
particular representation for the spinors and the polarization vectors. The repre-
sentation we will be using is the helicity one [1.4,5], which is particularly suitable
to describe high energy spin 1/2 particle and massless spin 1 bosons.

For a complete definition of helicity states we refer the readers to the original
Jacob and Wick paper [1.4], or, e.g., to Ref.[1.1]. We will be following the same
conventions as in Ref.[1.1]. Let us simply recall here the main points and give, for
practical purposes, the explicit expressions of the helicity spinors and polarization

vectors.

1.1 Helicity Dirac spinors

Let us start from the Dirac spinors for a particle at rest with mass m and

spin quantized along the z axis

1/2 + s,
i1/2,8; >= u,,(m,0) = vV2m 1/ 20‘ 8= (1.1.1)
0

The helicity states can be built from the canonical states at rest in two dif-
ferent ways. One may first rotate the rest states so that the quantization axis is
along the p(8, ) direction and then boost the system along $; or, equivalently, one
may first boost the rest states along the z-axis and then rotate the system to the
p direction. By performing either of the above successions of operations on the
states (1.1.1) one gets the helicity spinors for a spin 1/2 particle moving along $:

i) = 5 (‘3;;5&‘) D2(6,9) x» (1.1.2)
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where p = (E,7),p = p/|p|, and N = +/m + E is the normalization factor such
that tu = 2m. The matrices D/(6,y), showing the transformation properties

under rotations of spin j states, are given explicitly (for § = 1/2 and j = 1) in the

Xx = Ggf:) . (1.1.3)

Appendix. Finally

and the non relativistic states

D2(8,0)xx = 3 DY3(8,0)xa o
- (1.1.4)

[N 4

X

represent spin 1/2 particles with spin projection A along the $(8,¢) direction,
& pxd =208 (1.1.5)
where the 67s are the usual Pauli matrices. It is then immediate to check that

(5 3)ne)=Dun (116)

-
g

showing that, indeed, the helicity spinors are eigenfunctioﬁs of the four-dimensio-

nal helicity operator (spin projection into the direction of motion) with eigenvalues

2X.

It is also easy to see that Eq.(1.1.2) can be written as
_t+m (] 11
‘u.;\(p) = N 0 (1.1.7)

which shows explicitly that the helicity spinors uy(p) are solutions of the Dirac
equation (p — m)u = 0.
The spinors for Dirac antiparticles can be obtained by application of the

charge conjugation operator

ua(p) = iv’u3(p) (1.1.8)
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From Eqs.(1.1.8), (1.1.2) and the identity
o? (xg) = 2xix? , (1.1.9)

one gets the helicity antispinors

ua(p) = % (n(;lil m)) X (1__.;-.10)'

Again, one can check that

ﬁ.( g g)v;(;;):—-ZXv;(p) (1.1.11)

(remember that vx(p) represents a negative energy Dirac particle, with momentum
—7 and, according to Eq.(1.1.11), spin parallel to —2Ap. It then corresponds to a
positive energy state with momentum p and spin parallel to 2)Ap, that is a Dirac

antiparticle with helicity 2)) and Eq.(1.1.10) can be written as

Let us finally recall that Eqs.(1.1.6) and (1.1.11), in the m/E — 0 limit, simply

read

sua(p) = 22ua(p)  sva(p) = —2Ava(p) (1.1.13)

In the Appendix we give the relationship between the helicity spinors and
the canonical ones (spin quantized along the Z direction). We also specialize, for
an easy and convenient use, Eqs.(1.1.2) and (1.1.10) to the particular frequent

kinematical case of 2 — 2 exclusive processes in the center of mass frame.

1.2 Helicity polarization vectors for spin 1 particles

Let us consider first the case of massive spin 1 particles. We start again, as
in the spin 1/2 case, from the expressions of the polarization vectors for particles
at rest and spin quantized along the Z direction

e (m,0) = (_,0 ) (1.2.1)

€,
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with
o=l = —= | 15; (1.2.2a)
2 0
E;.:o = 0 . (1-2-25)

By performing a Lorentz boost and rotating to the ${(0, ) direction we then have

the helicity polarization vectors

0 _
S=11(P) = ( & :ﬂ) (1.2.3a)
=o(P) = % (El_l.’fl 0) (1.2.3)
where
= Dhalb,p)én o (1.24)
by

The full expression of the rotation matrix D*(8,) is given in the Appendix,
Eq.(A.1.9), together with the explicit expressions of €}(p) for particular typical
center of mass scattering momenta.

In the case of massless spin 1 particle we cannot, of course, start from the
rest frame and we do not have the longitudinal polarization vectors, {1.2.2b) and
(1.2.3b). The helicity vectors for spin 1 massless particles are then simply those
given by Eqs.(1.2.3a) and (1.2.4) (with X' = 0 still included in the sum).

Eqs.(1.2.1) and (1.2.2a) represent the helicity vectors for photons or gluons
moving along the z-axis. The helicity formalism is, obviously, natural when dealing
with massless particles for which the spin is always pointing in the direction of the
motion.

Let us finally add that the actual spin four-vector s* can be obtained, for

a spin 1 particle of mass m and four-momentum p, from the polarization vector
| e#(p) using
st = %e““"'a"';pc,I Im(eze,) (1.2.5)
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One can check, for example, that, indeed, the transverse polarization vectors

(1.2.1)-(1.2.2a) correspond to a longitudinal spin pointing along the z direction.

2 - Explicit examples

In this Chapter we explicitly compute some scattering amplitudes for exclu-
sive processes involving two initial and two final Dirac fermions and massless spin
1 particles, as an application of the helicity formalism developed in the previous
Chapter. We also give and exploit the properties of the helicity scattering ampli-
tudes under parity, time reversal and crossing transformations. Let us start from

the two photon annihilation process, vy — e*e™.

2.1 Helicity amplitudes for yy — ete”

At lowest order in perturbative QED the vy — ete™ process is described by

the two Feynman diagrams of Fig.2.1, where we also define the kinematics

P1,A; -P;"\; P A _p;:'\;
ey N A mma e o

Y Y

B, R

P?aA3 ( ) p’,,A; Pz”\z (b) P'za)"
a

Y

Fig.2.1 Lowest order Feynman diagrams contributing to vy — ete”

The corresponding Feynman helicity amplitudes are given by

ie?

H §'{l;;x,,\, = mﬁ;(?'z)f&(?z)(ﬁ: ~ B3 + m}a, (pr)va (py) (2.1.1a)
ie3

——— i (P2 ) (P1)(B2 — £y + m)n(p2)ox (P)) (2.1.1B)

(2) -
HA"X',;AQ;\" 2?’ .pl
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By using the explicit expressions for the Dirac spinors and the polarization
vectors listed in the Appendix A.4 one finds, for the 16 center of mass system
helicity amplitudes of Eq. (2.1.1a):

H(-“-l)-'l (9) = —H-(:l--x—l = e’ sind

g g &2 Bsin8(1 + cos8)

"'_1 ,(0) "+ -1 = 1—Bcosb
By = —H,yy = =ﬁ“;‘i‘},w:‘;”’ (.12
Hi“lm(ﬂ) = H 1oy = —€— (1 + cos 8) B -ll-i ;i:;sﬂ
B00(0) = B,y = =G (1 - cont) S 2L

. . m Bsin®g
H_(H),;]_,(G) = _.). =11 = e’ = E1—fBcosh

(a) (n) 2m _é.f}.l.l_a._
B L @0)=H{, 1= E1- Bcosh

where 8 = p'/E. The above 16 amplitudes are not all independent but satisfy the
usual parity relationships, which, in general, for a process A + B — C + D in the
zz plane, read [1.1j

H_xo-rpi=aa-22(8) = ﬂ(-l)h_"HAcap;hA, (6) _ (2.1.3)
. where
A=As—Ap, g=Ac—Ap, =202 1)eaten-sc—ep (2.1.4)
NANB

with #; the intrinsic parity of particle { with spin s; ({ = A, B, C, D).

The helicity amplitudes corresponding to the Feynman diagram (b) in Fig.2.1
can be derived from those of diagram (a): in fact the two diagrams only differ by
the exchange of the initial photons. In general, under the exchange of two identical
particles A and B of spin s in the A + B — C + D process, we have, always for
¢ =0 [L1}:

Hjoopirars(8) = (—1)2‘3“00 _AD)HXG apirsan(r — 0) (2.1.5)
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and a similar relation holds in case of C — D (if they are identical particles).

Then we can immediately write
b Y
H s oun(8) = (CINTRHE, o (r - 6) (2.1.6)

On summing H(®) and H®) we obtain the full set of Feynman helicity ampli-

tudes for the vy — et e~ process (at lowest order perturbative QED)

Hizn(0) = —Hzy;-1-1(0) =0

P sin (1 & cos
Higa-1(8) = ~Hzz-11(6) = —2¢"—— ﬁ('J" cos? f :
m B+l (2.1.7)
His1(8) = Hyzya-1(6) = —2¢* E1-pf%cos? 0
m Bsin’8
Hin-1(0) = Hyp;-n(0) = 232};’ 1= B2 cos? §

2.2 Helicity amplitudes for ete™ — v

The helicity amplitudes for the process et e~ — 4 can be obtained directly by
exploiting the properties of the helicity amplitudes under a time-reversal transfor-
mation. Again, in general, the helicity amplitudes Hj_x,;2,2,(9) for the process
A+B — C+Dand H),_.,_»,(9) for the process C + D — A + B are related
by [1.1]

H;\.‘An;ko)\n (9) = (_1)2(03 _w)(__l)l-”ﬂlclp;k.d; (9) (2_2_1)
with A and g as in Eq.(2.1.4).

In our case (keeping the helicity indices as in Fig.2.1)

Hapy(ete™ o 77;0) = —(—1)0=20-0i=00 gy (v — etes6)

\ (2.2.2)
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2.3 Helicity amplitudes for the Compton scattering ye~ — ye™

We can still make explicit use of yet another property of the helicity ampli-
tudes, the “crossing relations”. .
The amplitudes for the two reactions
A+B-C+D s-channel
D+B—-C+4A t-channel
are related by the £ — s crossing relation which, in the limit in which we neglect

the masses of the particles compared to their energies, reads [1.1]

Hycapirars(AB — CD;0) = dy2, (0)d,° , (m)d;4,, (m)d;3 5 (0)x

_ - (2.3.1)
X Hycpainpus (DB — CA;0)

We refer the reader to Ref.[1.1] for a complete treatment of the crossing relations.

When A,C = v and B,D = e~ Eq.(2.3.1) allows us to write immediately
the helicity amplitudes for the Compton scattering , ye~ — ~e™, in terms of
those for the process e*e~ — 77, which, in turns, are related by Eq.(2.2.2) to
the helicity amplitudes for the two photon annihilation process vy — e*e™, given
in Eq.(2.1.7). The d matrices needed are shown in Appendix A.1. We then find,
in the m/E — 0, § — 1 limit, that the only non zero center of mass helicity

amplitudes for the Compton scattering ye~ — e~ are

Hiypa4(0) = Hoyoyoy-(0) = ﬁ (2.3.2)

Hy_3-(8) = H_14;-14(8) = 2¢* cos(8/2)

Of course, the same results could have been obtained by computing the Feyn-

man amplitudes corresponding to the sum of the Feynman diagrams of Fig.2.2.

2.4 Cross-sections

We have now explicitly computed the full sets of independent helicity am-

-+

plitudes contributing to y9 — ete™,e*e™ — 5y and ye~ — e~ scatterings.
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Fig.2.2 Lowest order Feynman diagrams which contribute to Compton scatiering,
~e< - ye
We have both applied the helicity techniques explained in Chapter 1 and recalled
the symmetry properties of the helicity amplitudes under parity, time-reversal,
crossing and identical particle exchange transformations, showing how to exploit
them.

For any given process, once we know the full set of independent helicity am-
plitudes, all related physical observables can be computed. For example, for all of
the above processes, the unpolarized center of mass cross-section is given by

do 1 r1

= 2
d(cos8) ~ 32x(E; + E2)® p 4 g [ x)(6)]

(2.4.1)

where we have used the same kinematical notations as in Appendix A.4.
In particular, in the case of Compton scattering, Eqs.(2.4.1) and (2.3.2) give
the usual large energy c.m. result

do  =xa’® 1+ cos*(6/2)
d(cos8) ~ 4E? cos?(8/2)

(2.4.2)

Although we have considered in details here only QED processes, the same
techniques apply, with only minor modifications, to the computation of processes
involving quarks and gluons; these minor modifications are simply the extra colour

factors and the additional gluon-gluon couplings, Lat the general procedure is not
modified.
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We are now well equipped {0 compute, at the tree level, any helicity amplitude
for a process involving spin 1/2 Dirac fermions (quarks or leptons) and spin 1
particles (photons, gluons or massive ones). We can then turn to our discussion

of many spin effects in hadronic reactions.

3 - Spin effects in hadronic exclusive reactions

Let us now consider hadronic interactions at high energy and large momentum
transfer, that is in the kinematical region where one expects the constituents to
play a direct active role in the process.

Exclusive hadronic interactions are usually described in terms of the inter-
actions among constituents by the Brodsky-Farrar-Lepage (BFL) scheme [3.1],
according to which the A+ B — C + D high energy and large angle center of mass
helicity scattering amplitudes are given by

Bosoaos®= Y ] [sd¥e(e)vple

b dida  Ap A, hg 8 (3-1)
X Haagnan(Zas 25, 2e, 245 6) ¥ 4(2a ) ¥ B(2s)
Each hadron I is seen as a collection of ny constituents, each carrying a fraction

z;; of its four-momentum, so that

[dz] = [] de:;6(0 - ) 2:5) (3.2)

=1 j
(i = a,b,¢,d when I = A, B,C, D, respectively; by z; we simply denote the whole
set of 2;; four-momentum fractions)

In £q.(3.1) Hx_x,;a,,{6) is the helicity amplitude describing the “elementary”
constituent interaction, a + b — ¢ + d. The ¥(z;) are the spin, momentum and
colour hadronic wave functions in terms of the constituents.

The BFL scheme, Eq.(3.1), with quarks and gluons as constituents, is sup-
posed to be correct in the large momentum transfer limit, @* — oo, where the

strong coupling constant is small, «,(Q?) — 0, and all masses can be neglected.
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In such a case the elementary ¢ + ¥ — ¢ + d process can be computed in pertur-
bative QCD, and the leading hadronic configurations are those with a minimum
number of constituents, in most cases the valence quarks only (see the comments
after Eq.{3.1.2)). We have not explicitiy written here the Q? dependence of the
hadronic wave functions coming from QCD evolution (3.1}, For a rigorous, general
treatment of exclusive reactions in the framework of perturbative QCD, leading
to the scheme of Eq.(3.1), see also Refs.[3.2,3].

Eq.(3.1) relates the A + B — C + D scattering amplitude to the elemen-
tary ones; of course, all the different elementary amplitudes contributing to the
same final states, must be taken into account and summed, as explicitly shown in
Eq.(3.1). It is then clear that it is crucial to know the elementary helicity ampli-
tudes, including their relative phases. Delicate interference effects might in fact

take place between amplitudes with relative phases.

3.1 Dimensional counting rules and helicity selection rule

The actual computation of the scattering amplitudes for a physical process
A+ B — C + D according to Eq.(3.1), has been carried out in some simple cases
like vy — 7w, pp [3.4,5], vp — vp [3.6], ¥*N — N (nucleon electromagnetic form
factors) [3.7] and some heavy meson decays J/¥ — pp, xo,2 — 7, pp [3.5,8,9].

For other processes, like proton-proton elastic scattering, instead, such a task
might become prohibitive, due to the enormous number of elementary diagrams
which have to be summed {3.5,10]. However, some definite conclusions can already
be drawn from the scheme of Eq.(3.1).

Let us consider, for example, a typical diagram describing the elementary
interaction contributing to, say, meson-baryon elastic scattering, Fig.3.1.

By simple dimensional arguments it is easy to see that the fixed angle (¢) and

large energy (1/8)} c.m. elastic cross section

de 1 - '
PRt ZH{A} (3.1.1)
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=14~
- >
. e
> —>
B e 4 p———— D
, "

Fig.3.1 One of the many Feynman diagrams contribuling to the elementary pro-
cesses involved in meson-baryon elastic scattering
will behave, in general, like
Z ~ fO) (3.1.2)

where 7 is the total number of elementary constituents taking part in the elemen-
tary interactions, » = n4 + ng + ng + np. Eq.(3.1.2) reproduces the so called
“dimensional counting rules” [3.11]. We have neglected here, because they are ir-
relevant for the subsequent discussions, the extra logarithmic s dependence coming
from the strong coupling constant and the hadronic wave function QCD evolution
[3.1]. Eq.(3.1.2) also justifies our previous statement that only the configurations
with a minimum number of constituents do contribute: each extra quark or gluon
would in fact add a factor s™? to the r.h.s. of Eq.(3.1.2).

There is another simple and remarkable consequence of Eq.(3.1) concerning
its helicity structure. Each fermion line in the elementary Feynman diagrams (see,

e.g., Fig.3.1) contributes a factor like
@, (¢ APus (¢ = TP (3.1.3)
with the product of an odd number of 4 matrices between two fermion spinors.

Remembering the expressions of the helicity projection operators, see Eq.(1.1.13),
one has, in the m,//s — 0 limit (759 = —7%vs)

I Y W 14X
Te-f = @, 21 s _,,am,{a : q'Ys us,

1
=2, (1~ Aem)(1 + A7 M. vPus,
= by 2, TP (3.1.4)
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that is, helicity is conserved along each fermion line (the same conclusion, of course,
still holds true when the u spinors are replaced by v antispinors). If, furthermore,
one assumes that the hadron helicity equals the sum of the constituent helicities
(as it is natural for constituents all moving parallel to the parent hadron), then
for each A + B — C + D exclusive reaction the sum of the initial helicities equals
the sum of the final ones {3.1]:

AatAg=Ac+2p (3.1.5)

(we cannot deduce Ay = Ag,Ap = Ap, due to diagrams where, say, a quark
initially in particle A ends up in D, and one in B ends up in C).

The “helicity conservation rule”, Eq.(3.1.5), might only be broken by terms
proportional to mg/E, (which allow helicity flips) and terms proportional to the
intrinsic k) of the quarks inside the hadrons (in which case it is not obvious any
more that the sum of the constituent helicities equals the hadron helicity).

Eq.(3.1.2) and the dimensional counting rules are in good agreement with the
experimental data [3.12]. Eq.(3.1.5), the helicity conservation rule, instead, seems
to be a source of constant troubles when comparing its theoretical consequences
with the existing experimental information on spin effects in hadronic exclusive

reactions. We now turn to a detailed analysis of these cases.

Proton-proton elastic scattering

Let us consider first proton-proton elastic scattering, pp — pp. In such a
case we have, for any center of mass scattering angle 8, five independent helicity

amplitudes [1.1]
®,(0) = Hi,,,,(0)
$,(6)= H{,,._(0)
o3(8) = HS_.,_(6) (3.2.1)
B,(6) = HS_._,(6)
®5(0) = HY 4 _(6)
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_16_

All other amplitudes (for a total of 16) can be obtained from Eqs.(3.2.1) by
using the parity relations {2.1.3), the time reversal ones (2.2.1) and the identical
particle exchange property (2.1.5); the apex S in Egs.(3.2.1) reminds in fact that all
amplitudes have already been correctly symmetrized in order to take into account
the possible exchange of the identical particles both in the initial and the final
states (what we did, in the case of 44 — e*e™ annihilation process, by summing

diagrams (a) and (b) of Fig.2.1). This leads to the relations

Hi, , (8)=—H, _,(9)
H_, (0)=-Hi__,(r-0) (3.2.2)
Hiy(8)=-H{\\ (7-6)
which imply
B3(7/2) = —P((7/2)
(3.2.3)
&y5(n/2) =0
As we said, the knowledge of the five independent helicity amplitudes ®; (i =
1,..,5) allows to compute any observable quantity, in pp elastic scattering. Let us
first define the spin observables for which we have some experimental data. The

proton analyzing power A is given by
AsS ———— (3.2.4)

where do'(}) is the cross section for the elastic scattering of an unpolarized proton
off a proton polarized perpendicularly to the scattering plane; if (zz) is the scat-
tering plane, then T ({) means parallel (antiparallel) to . The final proton spins
are not observed. By time reversal, such a quantity is the same as the analogous
one in which the observed spin is that of the scattered proton, that is the proton
polarizing power or, simply, the scattered proton polarization.

The double spin asymmetry Any is defined by

det — doT!

ANN = do'T + do 1t (3:2.5)
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where, now, both initial protons are polarized in the direction normal (N) to the
scattering plane, as explained for 4.

Analogously to Aypn, one can define the double spin asymmetries Ass and
Agp which only differ from Ay by the direction along which the initial protons
are polarized: the § direction is the £ direction, always choosing (zz) as the
scattering plane, and the L direction is along Z. The analogous of A, Eq.(3.2.4),
with the spin in the § or L direction, is zero by parity invariance.

The expressions of A, Ayn, Ags and Ay in terms of the helicity amplitudes
(3.2.1) are [1.1]

A=X"m[®} (D, ~ &, — ; — )] (3.2.6a)
Any = X" 'Re[®, 8] — 8,8 + 2|®5|] (3.2.6b)
Ags = X 'Re[®,%] + &, ;] (3.2.6¢)
Arp = X7 (85 + 184" — (8 ~ 2] (3.2.6d)
where
= S8 + 18, + (83 4 [2,]7 + 4] (3:2.7)

From Eqs.(3.2.3), (3.2.6) and (3.2.7) we have, at # = /2,
Ann(r/2) — Ass(n/2) — Apr(n/2) =1 (3.2.8)

Let us now go back to our Eq.(3.1.5), the helicity conservation rule found to be
valid in the perturbative QCD, BFL scheme for exclusive reactions. It immediately
gives

$2(0) = 25(0) =0 (3.2.8)
which implies

A(8)=0 (3.2.9a)
Ann(8) = —Ass(8) (3.2.9b)
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Fig.3.2 The proton analyzing power A as a function of p? , from Ref.[3.13]

and

2Ann(r/2) — ApL(n/2) =1 (3.2.10)

How do these results, Eqs.(3.2.9,10), compare with experiment? The mea-
sured proton analyzing power is plotted as a function of p? [3.13] in Fig.3.2. It,
very surprisingly, shows a large increase of A at large values of p? , a trend opposite
to what one would expect according to Eq.(3.2.9a), which should be valid exactly
at large values of Q2.

Analogously we plot in Fig.3.3 the measured values of Axyy and Az vs. py,
at & = v/2 [3.14]. The large energy (pras = 11.75 GeV/c) results read

Ann{x/2) = 0.58 + 0.04
Arp(r/2) = -0.12+0.16

(3.2.11)

from which
~ 2AnN(n/2) - App(nf2) =1.28 £ 0.18 (3.2.12)
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Fig.3.3 The proton double spin asymmetries ANn(0) and Api(e} as a function
of pL
to be compared with Eq.(3.2.10).

Again, we see that, although the experimental errors are still very large,
the theoretical consequences of Eq.(3.1.5) are not in good agreement with the
experimental information we have.

Before discussing the possible reasons for the apparent failure of the helicity
sum rule let us consider some more cases in which such a failure shows up. We
only stress, for the moment, that getting a non zero value for the analyzing power
A, Eq.(3.2.6a), is highly non trivial: not only the single helicity flip amplitude $5
must be different from zero, but it also must have a non zero phase relatively to,

at least, one of the other amplitudes.

3.3 p polarization in xp — pp reactions

Another challenging piece of experimental information comes from the 7~p —
p~ p process, with the measurement of the final p~ vector particle helicity density

matrix elements.
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Let us recall that the helicity density matrix of a particle C, produced in the
A+ B — C + D reaction is given, in the case of unpolarized initial A and B
particles, by [1.1]

1

Plc-\'c,(c)= N; ‘\Z‘\ Hlo»\p;l\allH;‘c,pr\‘,Ag (3'3'1)
A1ABVAD

with N = ¥,y |H(»y/?, so that Trp =1.

Such helicity density matrix is just the ordinary, non relativistic spin density
matrix for particle C, if we observe C in its helicity rest frame (that is the frame
which, seen from the c.m. system, has its z-axis moving along the direction of
particle C with its same speed; see, e.g., Ref.[1.1] for a precise definition). The
helicity density matrix, Eq.(3.3.1), then tells us how particle C, produced via
the A+ B — C + D reaction described by the corresponding helicity amplitudes
Hyoxpiaargs is polarized. If particle C decays, its decay angular distribution will
reflect its spin orientation, and will then depend on the elements of p(C).

In the ¥~ p — p~p interaction we have

- 1
px(pT) =5 3. Hynpin B3 3o, (3.3.2)
Ay ohp

and this helicity density matrix can be studied through the angular distribution

of the 7~ as it emerges from the decay of the p~,p~ — 7w~ =", in its helicity rest

frame:

W(cos ©,®) = %[Poo c0s® © + (p11 — p1—1)sin* © cos® &+

(3.3.3)
+ (p11 + p1-1) sin? O 5in® & — v2(Repyo) sin 20 cos 8]
or, by integration over d® and d(cos ©)
3 >
W(cos©) = §[p°° + (P11 — Poa) sin’ O]
(3.3.4)

1 .
wW(®)= g[l —2p1-1 +4p1-1 5in’ O]
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The reported values, for the production of p~ at # = n/2 in the c.m. system, are

[3.15)
p11 = 0.44 £ 0.15

poo = 0.12 £ 0.30
(3.3.5)
P1-1 = 0.32+0.10

Repyg = —0.01 £+ 0.05
The surprising result is the sizeable, non zero value of the non diagonal element
pi—1. In fact the helicity conservation rule, Eq.(3.1.5), reads in this case A, + Ay =
Ap, always implying, see Eq.(3.3.2)

o =0 A#FN (3.3.6)

3.4 5. decay into proton-antiproton, 5. — pp

Another simple and drastic example of the failure of the helicity conserva-
tion rule comes from the 5. decay into proton-antiproton, decay which has been
observed and measured [3.16].

Let us consider a typical Feynman diagram contributing to the elementary

interactions underlying the c.m. 5. — pp decay, Fig.3.4.

4;11

- -+

144

Fig.3.4 One of the Feynman dicgrams contribuling to a heavy meson decay inio
baryon-antibaryon
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Analogously to the argument of Section 3.1, each final quark line contributes

a factor
- o - _ a8
@, (q)7 ...‘y‘_av;'(q) =T (3.4.1)

with an odd number of Dirac gamma matrices. Then, from Eqs.(1.1.13), one sees

that, in the large energy limit (Ey *» my)

™*f =g 1= Ay %P 1-M7s '—: 15 U,

M s (3.4.2)
— 6A"_x'fum

that is, quarks and antiquarks emitted in pairs via gluons (or photons) always
ha.we, when neglecting their masses, opposite helicities.

‘We then conclude, again assuming the final proton (F) helicity to be the sum
of the quark (§) helicities, that diagrams like those of Fig.3.4 would give

Ap = —Ag (3.4.3)

On the other hand the quantum number of the decaying 5., J PC — 0—+, and
the obvious requests of parity and total angular momentum conservation force the
final pp system to be in a L = § = 0 state; this contradicts Eq.(3.4.3) which
implies, for the pjp system, a spin component along the final c.m. proton direction
S5 = 2),. The . — pp decay is then forbidden in the BFL scheme, contrary to

experimental observation.

3.5 Discussion and comments

We have then to face the problem that, far from being actually able to com-
pute all exclusive hadronic processes in the realm of perturbative QCD, already
at the simple, immediate conclusion of Eq.(3.1.5), the helicity selection rule, the
cxpeﬁmental indications are not at all encouraging. On the other hand, one must
not forget that the similar, general conclusion of Eq.(3.1.2), the dimensional count-

ing rules, is well satisfied by experiment; also, some cross sections for very simple
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exclusive reactions have been successfully computed [3.4-9]. What could be the
reason for all that?

It might well be that, simply, the BFL perturbative QCD scheme of Eq.(3.1)
is not adequate to describe hadronic exclusive processes; the factorization between
the elementary “hard” interactions and the “soft” hadronization processes, hid-
den in the wave functions, might not be justified [3.17). Or, more optimistically,
the Q* and energy ranges involved in the experimental processes feasable at the
moment are still too small and do not allow yet a meaningful comparison with the
theoretical predictions, strictly valid only when Q? — oo [3.18].

If such is the case, most spin effects, like the proton polarization in pp elastic
scattering and the non diagonal helicity density matrix elements of p’s produced
in mp — pp, should disappear, could we perform the same experiments at higher
energies. In general spin effects should give results in agreement with Eq.(3.1.5).

The actual Q? values involved in the processes described in the previous Sec-
tions are of the order of few (GeV)?, up to ~ 10(GeV ). Even if for the same values
of Q* in the deep inelastic scattering we do probe the nucleon internal structure,
in the more complicated case of exclusive processes, where scattered constituents
have to recombine into the observed hadrons, these values of Q? might not be
large enough as to really observe the multibody free constituents elementary in-
teractions.

Non perturbative, higher twist, mass and/or intrinsic k1 effects might still be
non negligible. We must not forget, for example, that one of the most intriguing
experimental result, the proton polarization in pp elastic scattering (see Fig.3.2),

gives (at p? = 6.5(GeV/¢)?) the value [3.13]
A=02410.08 (3.5.1)

Such a value, at the energy at which the experiment has been performed, /s =~
v/54, is still compatible with the value

my/V/3 ~0.13 (3.5.2)
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That is, it might still be a genuine (proton) mass effect, which will disappear in
the true large energy limit m,/+/s — 0.

Let us finally notice that the main source of problems, towards a satisfactory
QCD description of exclusive processes, is the helicity selection rule, Eq.(3.1.5),
rather than the dimensional counting rules, Eq.(3.1.2). This, once more, empha-
sizes the specialness of spin effects. The reason is clear from a look at Eqs.(3.2.6,7):
while unpolarized experiments only test a theory at the 3. |H;|? level, spin mea-
surements are sensible to quantities like H;H; (i # j), involving not only moduli
but also relative phases. This makes spin measurements a much more severe test

of any theory than simple unpolarized cross section measurements.

3.6 Alternatives and modifications to the BFL scheme

Although it is outside the scope of this paper - that of presenting some tech-
nical tools and some unsolved problems whose treatment and (hopefully) solution
requires using those tools - we will briefly mention here some attempts of escaping
the difficulties encountered in this chapter.

A different perturbative QCD approach to the description of elastic scatterings
was introduced in Ref.[3.19]. It leads to a power law behaviour of the fixed large
angle cross sections do/dt different from that given in Eq.(3.1.2). Still, it suffers
the same disease as the BFL scheme, namely the helicity selection rule.

Two models based essentially on a different way of combining the quark spins
to obtain the hadron spins are discussed in Refs.[3.20-23]. The first [3.20,21],
the end point model, in which the whole contribution to the scattering comes
from leading (z — 1) quarks, only succeeds in describing, among the spin effects,
the pp double spin asymmetry Ayy. The second [3.22,23] considers partonic
configurations in which one of the quarks (the scattered, leading one) recombines
with the other quarks (the spectators), at a large angle with it, to form the observed
hadrons: in such a recombination each quark conserves its spin, so that the hadron

helicity is not at all the sum of the constituent helicities. Such a model describes
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well the double pp spin asymmetries Ayn{(r/2) and ApL(w/2} [3.14] and the non
diagonal values of p(p~) [3.15). Preliminary results indicate, however, that it does
not predict correctly the analogous value of p(p*) in #¥p — p¥p reactions [3.24].

Also in the model of Ref.[3.25], not a QCD perturbative model, which in
general we do not discuss here, the spin rather than the helicity is conserved in
the hadronization mechanism.

None of the above models can explain the large value of the proton analyzing
power A, Eqs.(3.2.4) and (3.2.6a), in that none of them can reproduce amplitudes
with relative complex phases.

Finally, a generalization of the BFL scheme which introduces the presence of
diquarks, bound states of two quarks, as constituents, has been used in Refs.[3.26-
28]. Such a scheme allows the description of the 5. — pp decay [3.28] and, in
principle [3.26], should be able to obtain, for pp elastic scattering, a non zero
single helicity flip amplitude, &5, and relative phases. A complete calculation is,
however, extremely complicated, due to the large number of diagrams contributing
and to the (unknown) couplings of two or more gluons to diquarks.

Needless to say, many unsolved spin problems arise also in hadronic inclusive
interactions. We do not review them here as their description in perturbative QCD
does not necessarily require summing elementary amplitudes, but rather elemen-
tary cross sections. Moreover, they have been discussed in the literature much
more extensively than the exclusive reactions [1.3], [3.29]. We only stress that,
even in inclusive cases, a correct, full treatment of the problem at the amplitude
level, might allow a deeper insight into the elementary interaction properties [3.30].

As the only exception we will dedicate the next Chapter to a discussion of
the deep inelastic scattering of polarized muons off polarized protons, pup — pX.
In fact, very recent experimental data on such a process have, once more, caused
great surprise and drastically changed our usual picture of polarized nucleons in
terms of polarized constituents. We then feel that, dealing with spin problems, we

cannot avoid discussing this last argument, the so called “nucleon spin crisis”.
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The spin problem in the proton

The deep inelastic scattering (DIS) of leptons on nucleons, at large momentum
transfer @?. probes the internal struct;u'e of protons and neutrons. The unpolar-
ized cross section for such a process, IN — lX, can be written, at the one photon
exchange order, in terms of two structure functions:

der _ 4a*(E')
ddE ~ Q4

(2W; sin? g + W; cos? g) (4.1)

Analogously, in case of longitudinally polarized leptons () on longitudinally po-

larized nucleons (1}), one has

dot! 3 dot? _4a2E'
d0dE  d0dE' ~ OQE

[(E + E' cos 8)mnG, - Q*Ga) (4.2)

The unpolarized structure functions W, 2(Q?,v) together with the polarized
ones Gy 2(Q?,v) describe the nucleon internal structure and it is well known that
they can be expressed in terms of quark distribution functions. All variables which
appear in the above Eqs.(4.1,2) and which will be used in this Chapter are the
usual ones in DIS [4.1]. |

Recently the EMC group measured the proton polarized structure functions
[4.2,3]; such data, also confirmed by SLAC data [4.4], are the ones which caused in
the last two years a great amount of theoretical activity, in a variety of attempts

aimed at explaining the somewhat unexpected results.

4.1 The experimental data

Let us briefly recall what the EMC measurements are. In the DIS of longi-
tudinally polarized muons on longitudinally polarized protons the EMC measure

the asymmetry A,
do™ — del!

A= T dot (4.1.1)
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which, using Eqgs.(4.1,2) can be expressed as
Q® (E+E'cos®)MG, + ¢*G,

A=2EF 2W, sin®(8/2) + W3 cos?(8/2) (41.2)
In the Bjorken limit (¢, Q* — oo, Q%/(2mpyv) = ) one has
MG, (Q,v) = gi(z)
(4.1.3)

MV'Ga(Q*,v) = gi(z)
where we have not indicated, in g, 7, the usual QCD In Q? scale breaking.
From the experimental measurements and Eqs.(4.1.2,3) we now try to get
some information on g;,g9;. We show here a more direct analysis [4.5] than that
actually followed by the EMC, although completely equivalent.

Using (4.1.2) and the expression for the unpolarized differential cross-section,
Eq.(4.1), we define [4.5]

2 o MvQ*E _ds
6, Q%E) = o B+ B cosd) d0dE (4.1.4)
. 2= M '
=0 E+ E'cost f
zM (4.1.5)

X} T m 92
The RHS of (4.1.4) can be constructed directly from experiment.

In principle g, can be separated in (4.1.5) by a study of the F dependence of
G. However, for the EMC data, the errors do not permit a statistically significant
result. Following the approximation used by the EMC, the values of gy(z) are
extracted neglecting the term in g, in (4.1.5); it has been shown that such a
neglect leads to insignificant errors {4.5].

By measuring g1(z) for different values of (0.015 < z < 0.466), combining
their results with previous values of g;(z) given by SLAC [4.4], and extrapolating
to the values of z not covered by the experiment(*), the EMC give the final result
[4.3]

1
r,= f g1(2)dz = 0.126  0.010  0.015 (4.1.6)
0

(*) Some criticism on the extrapolation to small T values, answered in Ref. [4.3], has been raised in
Ref. [4.6].
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4.2 What is the proton spin problem?

Let us now see why the experimental result (4.1.6) is (or looks) surprising.
In the framework of the Operator Product Expansion (OPE), and including

perturbative QCD corrections, I'y can be written as [4.7)

T, = /: gi{z)de = % {[l - %] [aa + —1‘/-563] + 2‘/g [1 - ;—;] ao} (4.2.1)

where the a; are related to the matrix elements of the quark SU(3) axial vector

currents taken between proton states with covariant spin vector §¥:
< P,S|A;—‘|P,S >=2Ma;S5* (4.2.2)
with
A} = Tytas(X;/2)¥ (4.2.3)

wherein the A; (j = 1,..,8) are the usual Gell-Mann SU(3) matrices and ), is
proportional to the unit matrix.

By explicitely inserting A3, Ag and A¢ into Eqs.(4.2.3) and (4.2.2) we have

a3 = Au' — Ad' (4.2.4)
ag = —I—E(Au' + Ad' — 2A4") (4.2.5)
Gy = @(Aa' + Ad' + As') (4.2.6)
where
< P, S|gv*vsq| P, § >=2MA4' S* (4.2.7)

(g = u,d, s; throughout the paper by ¢ we always mean quarks and antiquarks of
flavour gq).
Some of the matrix elements (4.2.4-6) are known from § decays. From the

neutron f decay one has [4.8]

as = g4 = 1.254 + 0.006 (4.2.8)
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Furthermore, if SU(3)r is a good symmetry of the strong interactions then all the
f3-decays of the members of the baryon octet can be expressed in terms of just two
parameters F and D, and one then has [4.9]

g = —

T V3

It is then clear that the EMC measurement of 'y, Eq.(4.2.1), together with

Eqs.(4.2.8-9) and (4.2.4-6) allows the determination of the separate values of the
Agq', Eq.(4.2.7). By using F/D = 0.631 [4.10] and F + D = g4, one gets [4.3]

(3F-D) ; ay=F+D (4.2.9)

Av' = 0.782 £ 0.032 £ 0.046
Ad' = —0.472 + 0.032 + 0.046 (4.2.10)
As' = —0.190 £ 0.032 + 0.046

In the naive parton model, where the quarks are supposed to be free, non
interacting constituents, the quark operators are treated as free operators. In such

Ad = Bg= f dz [g4(z) + 8+ (2) — 9—() — 4-(2)] (4.2.11)

where ¢.(g4+) are the number densities of quarks (antiquarks) with helicities +3
in a proton with helicity +7. We have then that, inside a proton with S, = 2, the
total amount of spin carried by the quarks is, from Eqs. (4.2.6) and (4.2.10-11)

'uarh_l
S? =3 E, Ag (4.2.12)
—12 A"—"l\/§ = 0.060 £ 0.047 + 0.069 (4.2.13)
—2 - g = ) 2(!0-—- . N : . vie

This is the surprising result: the total amount of spin carried by the quarks, far
from being } as we would expect in the naive parton model, is only a tiny fraction
of the proton spin. Hence the proton spin crisis.

The result (4.2.13) seems to be very reliable. Some criticism may be cast

on the numerical choices of F and D, which are still debated in the literature.
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However, different values [4.11,12] lead again to the same result, 2., Ad =0
[4.3,13]. Even an analysis of the experimental data which makes use of Eq.(4.2.8),
only based on isospin invariance, but does not use Eq.(4.2.9), allowing for large

SU(6) violations, again finds - Ag' to be compatible with zero [4.14].

4.3 The gluon contribution to T',,

It appears from Eqs.(4.2.12-13) that the total amount of spin carried by the
quarks is almost zero. Is such a conclusion really unavoidable?

The point is that quarks are not free, at least for finite values of @2, and they
can interact with other constituents, like the gluons. In other words, one should

add to the naive parton model prescription

do#?~+X = N~ g(z)dae—He (4.3.1)
T

also higher order (in a,) corrections, like the gluon contribution

do2?~mX = g(z)do*s—rel (4.3.2)

If it happens, by some miracle, that the a, of the higher order elementary
interaction is canceled by a term proportional to ]!, coming from the QCD
evolution of the distribution function, then we get a correction which is of O(1)
rather than O(a,). This is indeed the case for the gluon contribution to I';, [4.15-
18]. '

By computing the contribution of the elementary 4*g — ¢§ scattering to T,
we have [4.16-18] (*)

.(Q )

Tp(gluon) = ——S22f < ? > Ag (4.3.3)

(*) The QCD corrections already given in Eq.(4.2.1), different from the gluon contribution computed
here, should also apply to Pp(gluon). We neglect them here as they are irrelevant for the subsequent

discussion.
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where < ¢? >= —}Eq e3,f is the number of flavours (here f = 3,< ¢® >= 2) and

8g= [ dzlgs(z) - 9-(2)) = 5t (4.3.9)

The same result, obtained above iﬁ the framework of the parton model, can
be derived in the OPE formalism. Let us start by writing the matrix element of
the SU(3) flavour singlet axial vector current which corresponds to (4.2.13)

D 2MAGS* = 2M(AW + Ad' + As')S* = Y < P,Slgv*vselP, S > (4.3.5)
g v

As it was first noticed in Ref. [4.15], because of the anomaly [4.19,20] associated

with the current

8
o
W=D ar"rg, Jt= ,f Y €uvpo FIYFE7, (4.3.6)
T i=1

8

Eq.{(4.3.5) does not measure quark spins alone, but it gets an extra contribution
from the anomaly triangle diagram. This extra contribution can be interpreted as

the gluon contribution and one has [4.16,17]
< P, S|gv*vsq|P, S >= 2MS*(Aq — ;—;Ag) (4.3.7)
thus leading to the identification (Eq.(4.2.7) and (4.3.7))
"= Ag— M Ag= Lgr_ Zegg
Aqd' = Ag 2ﬂ_Ag == 25’2 2,“_5: (4.3.8)

Eq.(4.3.8), combined with Eqs.(4.2.4-6) and used in Eq.(4.2.1), gives the gluon
contribution to 'y shown in Eq.(4.3.3).

It i1s then clear that what the EMC measure, the matrix element between
proton states of the flavour singlet quark axial vector current, does not represent
the total spin carried by the quarks, but rather the combination }_ (57 — {+57).
The experimental results {4.2.10) can be written as

44

Au = 0.782 £ 0.032 + 0.046 + -2;‘Ag
Ad = —0.472 £ 0.032 + 0.046 + :—;Ag (4.3.9)

As = —0.190 + 0.032 = 0.046 + %Ag
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and

S =0.120+0.094 +0.138 + 3:—;Ag (4.3.10)

g

The point is now: how big can the higher order term, («,/27)Ag, be? From
the Altarelli-Parisi QCD evolution equations [4.21], one can obtain [4.22-24] that
the large Q? behaviours of Aq and Ag are, to leading order

Ag(Q%) = Ag(QF)

ag(@?) = 24%) [A @)+ ):Aq] (4811
Q%)

Notice that Ag does not evolve with Q? and that Ag(Q?) will grow with @?
even if the starting evolution value Ag(Q3) is zero, provided E, Ag # 0. This
simply reflects the fact that polarized quarks emit polarized gluons.

The second important remark concerning Eq.(4.3.11) is that a,{Q%)Ag(Q?)
is not O{c,) but O(1). This is the miracle we were hoping for at the beginning of
this Section and it makes the correction terms (a,/27)Ag not negligible a priori,
as a higher order one.

Let us also notice that, from the obvious sum rule
ol Ag+Ag+L (4.3.12)
2 TSI EIT A

where L, is the orbital angular momentum contribution to the spin of the proton,

and from Eqs.(4.3.11) we have

8 8
50729 = ~gale (4.3.13)

that is the gluon contribution to the proton spin must be compensated by orbital
angular momentum [4.23-25]
When analysing the experimental results, Egs.(4.3.9-10), one has now an extra

degree of freedom, the amount of spin carried by the gluons. It is then possible,

for example, to find values of Ag such that As = 0 [4.26] or such that ) Bg~1
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In the latter, extreme case, one finds that, at the EMC experiment average Q2

value:

Ag(Q* ~10GeV?) =7 (4.3.14)

Polarized gluon distribution functions g, (z) and g_(z) can be found in the litera-
ture [4.22,27}.

This solution of the spin problem, which assigns to the gluons a large amount
of spin so that one gets nearer the naive expectation 3 ¢ 89 > 1, has been criticized
on various grounds.

It has been noted that the values needed for Ag are too big and cannot be
obtained using the gluon distribution functions accepted as reasonable prior to
the EMC measurement [4.28]; the distribution functions given in the literature
[4.22,27] get most of their contribution to I'y from the small z region not probed
by the EMC experiment[4.29]; also, the [g;(z) — g-(z)] contribution to g;(z),
rather than I'y, appears to have the wrong z dependance [4.28].

We leave this problem open and turn to discuss the non perturbative contri-
butions to I';. Let us only add that demanding Eq Ag ~ 1 might be unrealistic.
In fact, assuming As = 0, from the experimental value of a we have[4.11]

V3as = Au' + Ad' —2As' = Au+ Ad~ 0.6+ 0.7 (4.3.15)

A value, at Q? = 10GeV?, of Ag =~ 4 would give 3 =~ 0.6 and As ~ 0. Such
a value of Ag, when extrapolated by the Altarelli-Parisi evolution equations to
values of Q% ~ 1GeV?2, implies a value of L, ~ 1.5, which is not in contradiction
with the experimental indications about the average k), value of the quarks in a
nucleon [4.5,26]. Also, taking into account higher twist (1/Q?) corrections, leads
to an asymptotic value of T'p, to be used in partonic formulae, somewhat higher

than the EMC result (4.1.6), [4.3.11]. This, in turn, requires smaller values of Ag.
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4.4 Non perturbative interpretations of the EMC data

We discuss in this Section some other attempts of interpreting the EMC mea-
surement and solving the spin problem, not based on perturbative QCD. We start
from the non perturbative contribution to Ag' discussed in Refs.[4.31,32]

Let us say again that the flavour singlet axial vector current
=) ar"ng (4.4.1)
. q '
is not conserved due to the anomaly
a,f s |
a“J;‘ -_— ._8-:‘-_ z e“ppg-F"va"Pa, (4.4.2)
i=1

where F#¥ is the gluon field strength.

As a consequence the expectation value of the associated axial charge operator

1
—_ _ =0 —
<Qs >=<P,5IQsIP,S >= Y < P, 517" 16q1P, S > 57 = E' Ag (4.4.3)

is not conserved. Notice that in the case of free quarks (a, = 0) Eq.(4.4.3) would
give Aq = Aq’ and the R.H.S. of Eq.(4.4.2) is zero. If quarks are not free, however,
by quantizing the fermion fields in the presence of background fields to which they
are coupled, one gets [4.31,33]

Qs = Qs +Q5" (4-4.4)

where

< P,S|QP¥|P,S >=< Q¥ >=)_Ag (4.4.5)
e

The second term in Eq.(4.4.4), the anomalous contribution, can be computed

explicitely if the quarks are coupled minimally to the gluon potential A* [4.31,32]

2 "
"= f?-r—-z- /daz Tr ¢'7* (A,-Q,'Ak + ggAiAjAk) (4.4.6)
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Taking as background fields hard free gluons one has
en a. 3 ijk o,
<Qi">=f< gl? Pz Tre?* (A:8;Ar) g >= —f-é—;Ag (4.4.7)

thus recovering the perturbative QCD result, Eq.(4.3.7).

However, there might be also non perturbative, confining, soft gluons inside
a proton. By decomposing the gluon background field in the sum of a hard part
and a soft one, one obtains an additional contribution to < Q§" >, that is one has
[4.32] 1
209 7
The soft gluon contribution, < Q4 >, could, in principle, be measured through
the sum rule (4.3.12), which, using Eq.(4.4.8), reads

1 1 3a, 1 on
E;Aq'+Ag+L,=--——Ag---2-<Qd > (4.4.9)

Ad = Ag - < Q> (4.4.8)

2 ir

provided we could measure Ag and L,. Explicit calculations of the non perturba-
tive contribution to < Q8™ > can be attempted in the case of a classical instanton
field [4.31].

A somewhat similar conclusion, that a measurement of ag, due to the anomaly,
cannot be simply related to a combination of quark and gluon spins, is reached in
Ref. [4.34], where a different interpretation of 3 q Aq' is proposed.

A suitable extension of the Goldberger-Treiman relation gives [4.34]

Y A= (2%) G(nONN)VE (4.4.10)

where G(ngo)N N) is the coupling to the nucleons of qgo), the flavour singlet
Nambu-Goldstone boson associated with the OZI-conserving limit of massless
QCD. Eq.(4.4.10) holds for the measured value of }° Ag' and includes OZI-
violations for G(qgo)N N).

From the knowledge of the OZI-conserving coupling G(©) (qgo)N N} and the
experimental result (4.2.13), one then simply deduces that G(qgo)N N) must have

a large OZI-violating contribution. There is no reason to talk about a spin crisis.
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4.5 Alternative models

Let us finally consider the interpretation of the EMC data in the framework
of some other models. We start from the Skyrme model.

In Skyrme models there are no quarks and baryons correspond to solitons
of an effective chiral lagrangian which is written in terms of meson fields. One
can, however, introduce an effective operator that corresponds to Eq g7 vsg =
J£. Detailed numerical results for the expectation value of this operator between
proton states depend on what version of the Skyrme model is chosen. Such results

can be summarized by {4.35-37]

'l Age 1
;Aq . Ag=0 Lyx3 (4.5.1)

in the large N, himit.

In such models the spin is mostly due to orbital angular momentum and the
experimental result (4.2.13) comes as no surprise. Some criticism has been raised
in Ref. [4.38], arguing that, when properly incorporating the physics of the U/(1)
anomaly in the model, one should get for Eq Agq' a result of order unity in a —n}:
expansion.

To avoid the extreme cases of the pure Skyrme model (N, — o0,A¢ = Ag =
0,L: = 1/2) and the naive quark model (Au+ Ad=1,As = Ag = L, = (), some
authors use hybrid chiral bag models, which interpolate between the two [4.13,
4.39-40]. In general, by adjusting their parameters, they can reproduce the EMC
results.

The main concern about the Skyrme or skyrmion-like models is how much we
can trust the large N, limit results. For example, it has been noted [4.11] that the
Skyrme model predicts also, at leading order in N,

M, _
??’ ~N73% g,~N, (4.5.2)

far from the experimental values.
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Let us conclude by mentioning that in the framework of the Massive Quark
Model and Quantum Geometro Dynamics {MQM/QGD) a prediction for the spin
asymmetry A, Eq.(4.1.1), was given some time ago [4.41] and it turns out to be in
good agreement with the EMC results [4.42). The MQM/QGD model, however,
also predicts a strong violation of the Bjorken sum rule [4.8], widely believed to be
correct. A test of this sum rule will be crucial in discriminating between different

models.

4.6 Comments and conclusions

Undoubtedly the polarized EMC experiment has prompted a great variety of
theoretical activity with a renewed interest in the structure of the nucleon; once
more, a polarization experiment, by testing at a much subtler level the existing
theories, has led to unexpected and non trivial problems.

We have learned, in the framework of perturbative QCD, that the gluons carry
spin (what we already knew) and that their contribution to T’y is not a higher order
correction as it might appear (what we did not know).

The gluon solution to the “spin problem” might not be a complete one; the
amount of spin carried by the gluons, in order to explain alone the EMC data,
appears to be unconfortably large. Non perturbative effects have also to be taken in
consideration. Both the gluon and the non perturbative contributions are related
to the existence of the axial anomaly, thus linking phenomenological results with
deep field theory properties.

More experimental information is needed. The amount of spin carried by the
gluons should be measured, in order to distinguish between perturbative QCD
solutions, which always imply a certain amount of gluon polarization, and alter-
native models, like the skyrmion ones, which have Ag = 0. Such a measurement,
although difficult, is not impossible in principle (gluon fusion, direct 7 production,
etc. [4.17,27,43-46]).
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The EMC experiment has to be redone, to confirm the existing data; it has
also to be done on neutron targets, in order to fest the fundamental Bjorken sum
rule; proposals already have been presented at CERN and HERA. Let us finally
remind that independent information on the same matrix elements measured by

the EMC can be obtained in low energy elastic vp scattering [4.11].

5 - General conclusions

The main aim of this paper was that of supplying the basic technique necessary
to tackle some difficulties in describing exclusive hadronic interactions in the realm
of perturbative QCD; more than on the conceptual foundations of the underlying
theory we have concentrated our attention on its phenomenological applications.

We have seen how spin effects can represent a further crucial test of many
models, even when they agree with experiment in predicting unpolarized cross
sections or, in general, quantities not involving subtle quantum mechanical effects,
like interference between different amplitudes.

'We have then presented a comprehensive analysis of all the exclusive reactions
for which spin data are available and discussed how they compare with the simplest
predictions of quark perturbative QCD models; this leads, with almost no excep-
tions, to serious problems. The nature of the vector gluon couplings to quarks,
combined to the simple hadronic configurations with collinear constituents, give,
at the moment, predictions in strong disagreement with the experimental infor-
mation.

If such a disagreement should persist at much higher energies, when all non
perturbative and higher order effects should really be negligible, then many of our
ideas about hadronic interactions in terms of constituents, via perturbative QCD
and hadronic wave functions, should be reconsidered.

That our understanding of hadrons and their interactions, at the constituent
level, is far from being completely and definitely clear, has resulted also from our
discussion of the proton spin problem in deep inelastic scattering. Much work,

both theoretical and experimental, has still to be done.
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Appendix A

We collect here for convenience and completeness some useful formulae and
relations which are not fully displaid in the text; we also define the conventions

used throughout the paper and make some comments.

A.1 Rotation matrices

Let us denote by r(a, 3,7) the finite rotation of a physical system with respect
to fixed (z,y, z) coordinate axes, where (@,8,7) are the standard Euler angles.
Such a rotation can be achieved by

(e, 8,7) = ra(@)ry (B)raly) (A.1.1)

corresponding to the rotation of the physical system by v around the z-axis, A
around the y-axis and o around the z-axis, always with respect to the fixed (z,y, z)
coordinate system. The same final result can be reached by the different sequence

of rotations

r(a,ﬁ,7) = T (7)"y'(ﬁ)rs(a) (A12)

corresponding to a rotation by an angle o around the z-axis, by 8 around the
y'-axis (the position of the y-axis after the first rotation) and by 4 around the new
z"-axis. Obviously, the last rotation does not alter the direction achieved after
the first two rotations by a vector originally lying along the z-axis and, if we are

only interested in this new direction, the v rotation is a matter of convention. We
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will choose, for a rotation changing the z-direction into a direction defined by the

polar angles (8,¢),
a=¢p f=6 ~4=0 (A.1.3)

following the convention adopted in Refs.[1.1,2].
To each rotation r{a,f,~) there corresponds a unitary operator U|[r}

Ulr(a,B,9)] = e—iat I8y e".'f"‘ (A.1.4)
which acts on the states |jm > of spin j and z-component m to give
Ulr(e,8,llim >= 3 Drm(esBy7)lim’ > (4.15)
where D7 is the standard rotation matrix [A.1].
DI, (r) = Dlu(@,8,7) =< jm![Ulr(e, B,7)]lim > (4.1.6)
= e, (B
(A.1.7)

and
& o n(B) =< jm’'je= T |jm >
We give here the explicit expressions of D;’;‘.m for j = 1/2 and j = 1, for

rotations specified by the Euler angles given in Eq.(A.1.3)
e~ */2cos 8 e¥/2gin 8
DY%(4,0,0) = D/%(8,0) = ( 902 gin %2 912 oo g) (A.1.8)

e cos? -g —e~ W 7‘; sin@ e % sin® g
D{(p,8,0) = D'(0,p) = :%sinﬂ cos @ —:% sin 8 (4.1.9)
e'® sin? g e 7’; sin @ €' cos? g

A.2 Canonical and helicity spinors

From the usual expression for the canonical spinors

) = 552 (%)

(A.2.1)
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and Eqs.(1.1.7) and (1.1.4) one has the relationship between canonical and helicity

Dirac particle spinors

ur(p) = Y D}/ 3u..(p) (4.2.2)

Analogously one has

v,,(p) = imau; (p) = -’me (—23:1;5_, ) (4.2.3)

and

va(p) = Y D)/ 5v,.(p) (A4.2.9)

Let us notice here that the canonical spinors at rest, when properly using the

charge conjugation operator (1.1.8), are given, from Eqs.(A.2.1,3), by

oy
u;(m,0)= \0) u_;(m,0)= _\0

(g\ ('00 (A.2.5)
v;(m,ﬁ)z g v_*(m,6)= _01
\1/ \ o

The {-) sign in v_yis usually dropped in the literature: it is actually irrelevant
when computing most observables but it becomes crucial when dealing with more

subtle quantities involving relative phases or charge conjugation properties.

A.3 Canonical and helicity polarization vectors

The relations (A.2.2) and (A.2.4) between canonical and helicity spinors hold
in general between canonical |js, > and helicity |jA > spin states. In the case of

massive spin 1 particles we have

ex(p) =Y DL(6,0)e (p) (4.3.1)



CBPF-NF—-045/90

Y-

We have not explicitly written in the text the canonical polarization vectors

e# (p). They can be obtained either by inversion of Eq.(A.3.1)
e (p) = > Din(0,¢)ei(p) (4.3.2)
A

or by directly applying a Lorentz boost along the direction p(8,¢) to the polar-

ization vectors at rest (1.2.1,2):

et (p) = A¥, &, (m, D) (4.3.3)
where
¥ Bsecy Byses, Bres
an = | Breecy 1He5ci(1=1)  sfepsp(v—1) secoc, (v =1)'| (434

Bysesp, shcos,(v—1) 14 "3": (v—=1) secesp(v—1)
Byce sgcoc, (v —1) s9ces,(7—1) 1+cz(v—1)

with v = E/m, 87 = p/m, s(c)e = sin(cos)d and s{c), = sin(cos)@.

A .4 Particular cases of helicity spinors and polarization vectors

Let us consider the most common case of a 2 —+ 2 scattering process involving

spin 1/2 and spin 1 particles only, in the center of mass frame:
pl(Elvﬁ.; AIl) + p2(E21 _I-’.; A?) - P;(E:ruf'"; A;) + plz(E;& _5'; '2) (A'4‘1)

Let us choose xz as the scattering plane, so that the polar angles of the
four particles are given by $1(0,0), pa(w, ), }(8,¢) and p3(r — 8,9 + 7). The
corresponding helicity spinors are then given by, from Egs.(1.1.2-4), (1.1.10) and
(A.1.8):

1 Ey +my
uxn(p1) = Fl 2 X

t (E;+m;
RA;(P2)=F2 apr, ) X
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ux (p)) = N (E' T'\',"‘) D'/(8,0)xx;
ux (Ph) = 3}; ( T;,"’) D/2(6,0)x -,
1
va(p1) = }'v'I (2A1(E; +m1)) X =y (4.4.1)
(e = 3y (2'\2(E2 +mz)) X
v (p}) = = (2,\' (B} + )D’ 2(6,0)x-x,

Vay ('Pz) N2 (2A5(E;p 2)) Dl!z(aso)x}f,

where p = |§|,p' = |7'| and the N’s are the normalization factors N; = /m; + E;

(if we normalize as %u = 2m,vv = —2m). We have also used the relationship
D3 (x — 8,1 + ¢)xa = iDV?(8,0)x-» (A.4.2)

Analogously, the helicity polarization vectors are given by, from Eqs.(1.2.3-4)
and (A.1.9)

(9 (P
Somialpr) =% | iatpr) = | o
A=+11P1 V2 \54\1 A =0lP1 ey \ 0
0 E,
“ — Aa ( 2 # 1 { g A
Aa=t1(P2) = —E —i)g e, =o{P2) = ™ \ 0 (4.4.3)
0 E,
Al 00 1 ( P 9
' cos E: sin
f;'l::j:](pl) = __\/_li lA' e;;=o(P;) = ;; ! 0
\ - sm8 \Ei cosé
% [ co 1 (B eins
: cos§ | —E;sin
ex -:[:1(1’2) = "'_\/_..:, _ix; f;;=o(P'2) = "m"g 20
—sind \—E’; cos §

For massless spin 1 particles the A = 0 helicity polarization vectors are absent

and the others are unchanged.
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