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ABSTRACT

We discuss the possibility that the motion of elementary par
ticles be described hy higher order differential equations in-
duced by supersymmetry in higher dimensional space=time. = We

take the specific example of six dimensions writing the cor=

responding Lagrangian and equations of motion.

Key-words: Fiéld theory; Supersymmetry; Higher order equations.
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One of the main sources of ideas and discussions in the last
twenty years or so, has been supersymmetry. Specilally since the
proof of the Haag, Lopurzanski, Sohnius - theorem[:lj. In..par-
ticular the Wess-Zumino model[:zj has served as a basis for the
construction of "relativistid“ lagrangian theories that could
describe the physical world. |

The usual rule for writing a.supersjmmetric Lagrangian for a
chiral superfield[z3], for examble, is'to take

- .%eaﬁ
$(0,8,x) = e ¢,(0,%) (1)

and write the kinetic lagrangian as:
oL, | (2)

where ( )D_means the highest component (maximum possible number
of Grassmann variables).
We have
- - 1636

¢ = ¢ e

o ¢0 + total divergence

¥}

. =, 8 .
s=0 * '

¢o
Now, the Grassmann variable ed is a Weyl spinor having

Vv
=1
w = 2% _- (4)
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independent components in v dimensions. (In what follows we
will only congider v = even number:).

The sum over S in eq. (3)nrins then between S =0 and §=uw.

In four dimensions S runs from zero to two and this leads us
to Lagrangians which implies at most, second order - wave equa-
tions. But this is not:so for higher number of dimensions. In
fact the same construction leads again to expression (3) . but
now in six dimensions, for example where w = 4, the equations of
motion are of the fourth order and of even greater order for.
v > 6. The mass term is introduced via a Lagrangian which is

proportional te the square of the chiral field (3).
= 2 )
‘I:m °¢o.{F- + he (5)

where F means the coefficient of the maximum number of 8-varia-

bles.
It is easy to see that by defining the components wa d
1... S
as:
o o
1
9= 1 groet.e . (x (6)
. S-o » 1..' S
the mass Lagrangian is given by:
L.-c
L, =C L Sy + he (7)
% | S-O QI..-GS. ﬂs_'_l...dw . . )

(2) and (5) {ox (7)) leads, for each component X to an equation

of motion E“J
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w : .
(Efz - nﬂ) X =0 (&)

where C, for dimensional reasons, has been substituted by m”.
In four dimensions, (8) is the Klein-Gordon equation, and

in six, for example, we have:
(02 -m")X =0 (0O =m?) (O +n%)X = o (9)

The massive propagator is of course:

Iw' and - ——-Eﬁ—-for massless particles. (10)

(pz)'f_m&i (FZ)E

The Fourier transforms for the massless case have the form . {see

Ref.[ 4] }.
6= for v=4 or w=6 (11)
RZ
G = £nR v =28 (12)
G = RatnB with o =w =-v &0 _for v > 8- (13)

we see that due to the fact that o > 0 for v > 8 the.convolution
of two of these functions has not ultraviolet divergences. The
same happens for the massive cases ag forp * « the mass term has

no importance.
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In this case (massive particle) there is no infrared diver-
gences, neither . Tiifs absence. of singularities is due to the fact that
in a convolution befween two Green-functions . the number of"inf
tegration variables grows .linearly with the number ¢f ‘dimen-
sions while the denominators grow exponeﬁtially (see (10)), so
that the power of p in the démaﬁxﬂtor outnumber those in the nu
merator (for v > 8). For | example,, while in edight di-
mensions -We have w=v =8, in ten dimensions we
have w = 16 (v = 10). (not to speak of v =26!). ‘These facts
show that it is worth our while to look carefully info theoriles
containing higher order egquations such as thét_given by eq. (9).

However, it is well known that this kind of eguations pre-
sents considerable difficulties. both of a mathematical nature
and of physical interpretaéion {(see Hawking [5] ). It is advisable .
then to study first higher order-equation in the case of only
one significative 'variable, where it is possible to address the -question
of unitarity in a controlled way, describing the scattering data
in a precise mathematical language[:6’7] and looking at the
physical implications of the scattering processes.

The general linear differential equation for only one sig-

nificative variable takes the form:

n n-2¢ .
S04 q , S0+ o tqd =2 (14)
ax™® n-2 dxn— o o]
i dn—1¢ .
Wwhere a possible g . has been eliminated by means of a
n-1 dxnfl

transformation y » fy.

This equation has n - 1 independent potentials'qi, Lo

0...n -2) when they are well-behaved they tend to zero sufficiently
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¥apid for X + % =; go that ésymptotically (15) tend to

2
8o = gm0 (15)
dx
whose solution are:
O. 2
¢ = et (16)

with ug-= 1, o, being thus a nth root of unity.

Eq. (15) of course, has n independent solutions that can be
- expressed in terms of a set of basic linearly independent solu-
tions defined by corditions on x = & ®, |

We define the first Jost function fl(md_as the sb;upiqn of
(15) with the greatest rate of decrease for X -+ -,

The second Jost functiocon fz(zx}. is -that solution - "of (14)
which, for %+ -« has the second rate of decrease (and ‘' . for
x + o has the second rate of increase), etc., etc. See Ref.
Cs].

In other words.

a.2X
fj(zx) + e ] (17

where the roots are ordered in such a way that

Real 6.2 > Real a

2 2> ... > Real a2z {18)

2

~

It is clear that (18) divides the z-plane in 2n regions,

within each region the inequality (18) is well defined but as
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argZ is varied, there are lines for which Real a,% = Real a, .z
and this defines a ray on which the order of roots is ill _de-
fined. There are 2n rays dividing the Z-plane in regions with
an angle %% = % . In particular for fourth order differential
equations, the Z-plane is divided in efght “"octants” . each one
with an angle of %.radiahs[:gj.

The Jost functions have discontinuities at those ;ays' and
furthermore they can have poles with corresponding residues.
The set of all discontinuities, including poles ' and:. résidues;
form the so célled "scattering daﬁa? of the differential equa-
tion (14). It is shown by mathematicians that the knowledge of
the scattering data is equivalent to the knowledge of the dif-
ferential equation. In other words the set of'«discontinﬁities
(including poles and feéi&ues) determines the n -1 potentials
- qy of the eqguation.
However from the point of view of a physicist, not all the

scattering data.are'physical. For instance, in a fourth order

differential equation, only the real and imaginary axis corres-

pond to physical data (i.e., a plane wave doing to plane wave).
{see vef. 9). The other rays at% and * %11 correspond to scattering
of waves that grow exponentially (or decréase) for

X + t », These are unphysical data. Therefore in order that
the equation be a physical one, the Jost functions must not pre-
sent discontinuities on these rays. This imply relations to
be satisfied by the potentials of equation (1l4) in order fdr it
to be physically acceptable.

Summarizing: Any higher order equation of motion can not
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in principle be thought as having physical sginificance unless
some specific relations exist among the coefficienté. One hopes
that supersymmetric theories may provide the clue to:physically
meaningfull higher order equations. Any way, we want to mention
that by using the method v + = of reference [[10] 'in a higher
order equation, we get the static limit in leading approximation
ahd, as a second approximation a second order equation is obtained.
The higher order derivatives appear ih the following approximaticns
(in a \)—1 development). In this sense we can say that a higher order
equation has a second order equation as an approximation.

With these motivating ideas we start looking for a supersym-
metric theory in six dimensions which is the sinplest higher oxder
case. In this fespect we like to point out that a more .'realF
istic theory that the one'we are presenting here can be found
in works by P. FayetEll].

We want to find the coupling between the chiral superfield,

equation (1), and a gauge superfield[:lzj.

PRPY SRR S
B,tiz aloo d4 al.._at :

where we have chosen the Wess-Zumino gauge. (Sece [:12]).

A chiral superfield strength for this field is given by
b, D, .V (20)

and the corresponding Lagrangian is



CBPF-NF-044 /89

-8-
o 6.a,.0,0
J: =e 2 3%y W +ho
Rl %1% %39,
By reducing the spinor components of the gauge superfield "de-

fined by (20), using Elie Cartan's reduction recipes, we - found

the following tensor components.

A(uv)3 (Gravitoh field) (v} means symmetric part and the

gauge transformation with parameters lu are:

Al =R, %3 A + 3% -n_ 8% (21
A(uu) A(uv) au v thu nuva Aa ( )
This gauge transformation can be used toé simplify .the

Lagrangian by choosing the De Donder gauge in “which

Vo oaaY .
auAv = 23 A(uv)’ In this gauge:

J:zz =D0ag,0a,, (22)

antisymmetric part) .has the gauge transforma-

CRACw] (Cwv]-

tion

+ P (23)

"Ll T A Cw]

kpuv = self dqual and completely antisymmetric three-
Vector. The corresponding Lagrangian cnly contains

the divergence of this tensor, which is gauge-inwariant

"oz M Py alov]
o[zz apa A[:w]a ?UA 124)
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(gravitino field}. TUnder a gauge transformation ‘it

transforms as.

VO 0 =\ 0B ' _
At = Al + (Cﬁyua) Ag (25) ;

where )\B is a spinor parameter , which can be aljusted.

s0 as to have a "zero gamma trace" gauge.

[
Q -

(YuCluB AE (C = transposition matrix)
In this gauge, the Lagrangilan is:

.5 aHa%ad fG= 26
0[2’3 3137A 133, AY +iA3 ap {26)

a V&

Complex gauge invariaht.vector field. 1Its . Lagran-

glan is:
=984y aVgp - BH 27
£2’4 2873 9B, B._Dau (27)
real vector field with gauge transformation
= 28
A, + 38 (28)

and the Maxwell type Lagrangian.

T VL n _ _
o£33 = p EyiF o, = 3 A 3 A (29)
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=10-

A‘Nup real gauge invariant self-dual three-vector field..
The Lagrangian is:
" = u\’ T 4 o= p
33 G Gf.w'a TRY 9 Apcr)\
B%: photino field. A complex gauge’invariant .spinor
field with Lagrangian
~ snOa& =
a£3'4 iB aa B&
Finally: an auxiliary gauge invariant scalar field
D with Lagrangian
_ = 2
a[ 4 ~ D7
Q0f course, for a more realistic theory .it is necessary to
work with non-abelian gauge group,' in particular Yahg-Mills

type theories for the standard model and also introducing super
gravity; but our aim is not so much to construct .a realistic
theory, but rather to show the plausibility of using highexr.

order equations in a theory that couldh renormalizable and unitary.
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