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ABSTRACT

We suggest that the Fourier-analysis of the elastic
vibrations in fractals can be very en1ightenﬁhg for'undeg

standing the vibrational underlying fractal geometry.
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The elastic dynamics of random systems like percolation
clusters, polymers, rubbers, gels has been comsidered by Alarony
et allll, These systems behave like continuous media for length
scales L >> § £ correlation length (we shall refer to this as the

euclidean regime), and present a fractal geometry for L < & (non
cuclidean regime). Consistently, the density N(w) of low frequency

vibrational states ( where low frequency refers to ® << Wpepye)

crosses over from N (w) ~ wd-1 for extremely Jow frequencies to
N (w) ~ @d=1 for the rest of the low frequency region. For future
purposes, let us recall that, for the systems under analysis, it is
quite generically d = fracton dimensionality < D £  fractal
dimensionality < d = euclidean dimensionality (mass ~ LD for L < E).

Aharony et al argue that if only one characteristic length
(namely the ‘fracton localization length Ap) describes the fracton
regime, then d = 43 (Alexander-Orbach conjecture)., However,
although the numerical usefulness of this conjecture is well known
for a large class of systems, its strict validity breaks down. Indeed,

Aharony et al mention some counterexamples (6 - € expansion,

lattice animals). We shall include in the present analysis non-
random fractals like the Sierpinski gaskets, carpets, eic. Indeed,
these systems can be herein treated on equal footing with the
random ones focused by Abharony et al, by just considering the
particular case § — oo (their euclidean regime is reduced to the v = 0
mode, which corresponds to uniform translation). The standard
Sierpinski gasket 'yields[” d = In 9ln 5= 1.36 (and
D = In3/ln2%1.58 ) and, in the  present context, it can also be
considered as a counterexample to the d = 4/3 value. Since d is in
general . not strictly 4/3 |, and assuming the validity of the
connection established by Aharony et al, there must be more than
ene characteristic length in the non-euclidean regime. We present
in this Comment a plavsible picture for understanding (essentially
4Gn multifractal terms) this plurality of characteristic lengths.

- Let us first consider a periodic d-dimensional Bravais lattice
(sitic invariant under crystalline translation) with N sites. The
wave vector K is a good labeling of the dynamic states and yields,

in the first Brillouin zone (whose (reciprocal) volume is given by

(1/a)d, a being the microscopic_  length of the lattice), a set of
uniformly spaced poiuts. In the thermodynamic limit (N — o0), this
set becomes uniformly dense, thus providing , as the support of the
dynamic states of the system, an euclidean space whose

dimensionality is d (conmsistently, the density p (k) of states in the
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Tc’-spacc is constant; we recall that N(w)d o =p (f) dd k, hence N(w) ~
wd-1 jn the w — O limit as already mentioned).
If we consider now a d-dimensional amorphous substance

like glass (statistically i xanam under translation ), K no more can

label the modes. llowever, in some sense (which can be precised in
terms of the dynamical structure function S (k, w) ) this quantity
still can be useful, and the image of the yniformly spaced points in
the "Brillouin zone"” can be retained by attributing an appropriate
width (in k - space) to' each of these points. Oncemore, in the
N — <o limit, we obtain as support of the states a d-dimensional
euclidean space (hence p (f) = constant), .

But if we consider now a fractal structure (either strictly or
statistically scale invariant for NUD > L >> a) it seems reasonable to
us that the “uniformly spaced” image will break down, and we will
have, as support of the dynamical states, an hierarchical (in both
the location and the width of the points) set in the "Brillouin zone".
This set would become, in the N — oo limit, a kind of multifractal
exhibiting a highly non uniform dengity. We believe that the stan-
dard relation between N{w) and p (k ) would be replaced by some-
thing of the type N(w)d w = p (k) dD k with p (k) ~ kde-D (O<k 5 1/a),
dr being a k-dependent fractal dimensionality like that indicated in
Fig. 1. Let wus stress that, as presented, tuese relations are
implicitely assuming that in some course grain sense we can still
speak of a dispersion relation w = w(k) ( it seems reasonable to
consider such an approximation at least in the case where D is very
close to d in the sense that we specify later on). Notice also that, if
we assume in this same sense that @ o k (0 << Opebye)s then we
recover, for k satisfying 1/ <k€k* <1/a, N(w) ~ wd-1 as desired. We
see in Fig. 1 that the non-euclidean regime would be composed by
two distinct regions, the well known fracton regime (1/ & < k << k*)
and the pseudo-independent oscillator regime (k* << k< l/a),
'named so because, for translationally invariant systems, that region
corresponds to almost vanishing group velocities. The quantity k*
reflects the existence of at least one additional relevant
chliracteristic length (k* would not necessarily scale as At of

Aharony et al), and might be of the order of 1/a (e.g., we expect for
a translationally invariant system 1/ E~k*Xi/a, the fracton
region thus shrinking to zero) or much smaller ( we expect, for sys-
tems exhibiting fair amounts of localization due to fractality,
k* << 1/a thus being consistent with the intuition that localization
can be seen as an enlargement of the number of degiees of freedom
essentially associated with almost vanishing group velocities). The
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assumption dgp (k< 1/a)=D can be understood from the fact that , in
that region, the only thing we expect to matter is just the number
of degrees of freedom (we recall mass ~ LD).

Let us now address a crucial question; is it possible to
conciliate a continuous dependency of dy on I3 (like that of Fig. 1)

with the knownl2?} existence of important gaps in the w -spectrum of
fractal systems? The answer is yes if important gaps can be present
in the k -support of that. spectrum. Let us illustrate this possibility
with a d=1 mathematical construction which generalizes the
standard Cantor set.First we define a covering ratior (0sr< 1)
which gives the proportion (symetrically distributed on both sides
of the center of the interval) to be covered through successive
iterations:see Fig. 2. Whatever be the definition we adopt for the
fractal dimensionality dg, it will have to monotonously increase
from O to 1 when r increases from 0 to 1 , and also satisfy
de(r=2/3) = In 2/lp 3 . We now allow 1 to depend (quite arbitra-
rily) on ka and construct the generalized Cantor set as indicated in
Fig. 3 : we pass fromn generation (0) to (1) by using the covering
ratio r(1/2); from (1) to (2) by using the covering ratio ¢(r(1/2)/4)
for the left segment and r(l-r(1/2)/4) for the right segment, and so
on. We see that, after infinite iterations, we shall obtain a
multifractal dust whose density will be non uniform (in Fig. 3, df
would monotonously increase with ka) and which will exhibit the
desired gaps | Of course, when r does not depend on ka we recover
the type of cases presented in Fig. 2 .

Let us finally consider fractals which are increasingly "closer”
to a Bravais lattice. For example, instead of the standard Sierpinski
gasket in which we iteratively eliminate 1 triangle out of 4, we
might eliminate 4 (central) triangles out of 16 ( hence
D =1In 12/ In 4 ~ 1.79), or 1 (ceniral) triangle out of 16 (hence -
D =1In 15/ In 421.95 ) and so on, the last element of such a family
being the triangular lattice (D=d=2). Within such a family we expect
-'-d,— of Flg 1 to gradually approach d for all values of k (hence both D

- and d<D would tend to d). It is in this manner that the crossover

ffamm scale invariant systems (o translationally invariant ones
would appear in the present picture,

The detailed study of the Fourier transforms of the
amplitudes associated to the normal dynamical modes of fractals
should clarify whether the present ideas are not only plausible, but
correct. It would not be the least benefit the fact that we would
then gain a direct and purely geometrical interpretation of d |

We have benefited from interesting discussions with C. di
Castro, C. Castellani and R. Bourbonnais; we are particularly

indebted with A. Coniglio and E. Akkermans (concerning Fig. 1) and
with L. Peliti (concerning Fig. 3).



CBRF-NF~-044/87

dep (a)

a
s
A
8

\

(§ > o)

FIG. 1 | , Ly




I":2/3

CBPF-NF-044/87

(a)
(03 0 (ka) 1
(1) —
(2) — — —_— —
{b) r=172
(0) 0 (ka) 1
(1)
(2) — — —

FIG. 2



CBPF-NF-044 /87

1
(r)i
0
0 (ka)
(0)
(1)
(2) - -

FIG.3




CBPF-RE-044/87

REFERENCES
(1] A. Aharony, S. Alexander. O. Entin-Wohlman and R. Orbach,

Phys: Rev. Lett. 58 ,132 (1987

[2] E. Domany, S. Alexander, D. Bensimon and L. P. Kadanoff, Phys.
Rev, Lett. 28 , 3110 (1983) ; R. Rammal, J. Physique 45, 191
(1984).

(No captions for figures).



