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ABSTRACT

The integro-differential equations which describe the diffusion of the
hadronic component in the atmosphere are solved exactly using the successive
approximation method and we derived the numbers of the produced muons and
neutrinos from the hadron fluxes obtained as the solution of the above
equations. The primary cosmic ray spectrum used in our calculation is

presented in a general form G(E).
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INTRODUCTION

Several authors have studlied analitically the diffusion equations of

hadrons in the atmosphere. A, Ohsawa(’)

solved these equations applying a
Laplace Transformation for the depth and a Mellin Transformation for the
energy K. Mackewon, J. Sidhanta and others authors® solved these equations
applying only the Mellin Transformation on the variable E (energy).

If we use the method of Mellin’s Transform we obtain a real solution
represented by a contour integral in the complex domain and, only Iin few
particular cases this integral can be evaluated exactly; in the general cases,
however, we must use some approximate method for estimate 1t, as for example
the saddle point method,

In this paper we used the successive approximation method to solve these
diffusion equations with a boundary condition, Fi(O,E] = G(E), where G(E) is a
continuous, positive and limited function and it represents the primary cosmic
ray enegy spectrum.

We obtain the differential fluxes of hadrons, muons and neutrinos in a
exact and compact form and for the particular case, FN(O,t) = NOE-('+1),

our solutions result in the generally used expressions.

1 - Nucleon Diffusion Equation in the atmosphere

The diffusion of the nucleons in the atmosphere can be represented by the

one-dimensional integro-differential equations,
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BF"[x,E) . Fi(x,E) . Im Fh(x,E’)
Ix Al E }\'

£ g (E-E” JAE” (1.1
where

F"(x,E) is the differential nucleon flux at depth x and at energies
between E and E + dE.

hu is the nucleon interaction mean free path in the atmosphere.

f"N(E,E’} are the energy distributions of the secondary nucleons

and

E’' ,E are respectively the primary and secondary nucleon energy.

If fm(E,E') are homogeneous functions of the variables E.E’,
£ (E,E)E = f (3 = E/E)E (1,2)
NN NN E '

the equations (1.1) take the form

8Fu[x,E] F'[x,E) 1 F {x,E/n)

N
o - = + I S w— f“(ﬂ]d'l‘l/ﬂ (1.3)
| o N

whith the 1limit condition

F(G,E) = G(E)

where G(E)dE is the differential energy spectrum of the nucleons at the top of

the atmosphere. This function is supposed to be continucus, positive and
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bounded (G(E) = M)} in the interval 0 < E;l s E < w. The exlistence of the

integral ImG(E]dE, for E = ELln. must also be stated because it represents the
E

primary integral spectrum.

b 72 Y
To simplify the work we put F}(x,E] = e Nyu(x,E]. So that the

equation (1.3) and the respective initial condition become.

ay“[x,E] 1
— " 5 r ¥, (G E/mE L (n)dn/n (1.4)
N0

with
yh(O,E) = G(E)
Now we make the followings successive approximations

Yn (x,E) = G(E)
o

(1.5)
Y 1 !
N (x,E) = G(E) + — Jx dt y dn
n J\l 0 Iu L (x,E/n]f“ ('n)"---

So, we obtaln successively

1
Y, =
N (x,E} = G(E) + 2/A Io G(E/n,)f_ (0 Yen /n,
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-4
2 (xa)! £ (n)
y, E) = G(E) + +rr G[E ] -
n 1=1 ' 0 o MWy n

(1.6)

The convergence of the solution (1.6} is showed in the apendice A. So,
the nucleon flux at the depth x, and the energy in the interval E and E + dE

is

..---—“—d'n...d'n} ' (1.7)
1 n .

2 - Diffusion equation of secondary hadrons in the atmosphere.

The diffusion of the secondary particles a (where a may represent ut, Ki,

0

D" etc) 1in the atmosphere can be determined by the one-dimensional

differential equation

8F (%,E)
&

b
1 a A ak o
— Fa(x.E}[-i: + ﬂ] + P: (x,E) + Pa {x,E) - {2.1)

with the limit condition
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F (0,E) = 0
F

P:A(X,E) is the rate of production of secondary particles, a originated by the
nucleon-air nuclei interactlions, with energy between E and E + dE at
the depth x.

F:A(x,E) is the r#te of production of secondary particles, a originated by
a-air nulcel Iinteractlions, with energy between E and E + dE at the
depth x.

and are given by the expressions

Eax F,(x,E')

A ’ '
P (x,E) = J' —— £, (E,E’)4E (2.2)
E’ N
min .
Fasx F (x,E")
Ak a » *
PAE) = [ S 1 (EE)E
a - Aa am
nin
with
A = Iinteraction mean free path of the hadron, a, in the atmosphere.

f""(E,E’) and faa(E,E’) are the energy distributions of the secondary
particles, a, originated by the interactlions N-alr nuclel, and a-air nuclei,
respectively.
ba is the decay constant of the secondary particle, a, in the atmosphere.

If fua(E,E’) and faa(E.E’) are homogeneous functions of the varlables E

and E’ the equation (2.1), with the expressions (2.2), takes the form
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_6-—
8F (x,E) 1 F {x, E/‘n)
L = - 1 = dn
e T Fa""E’[a. i I My
1 F.(x.E/n)
+ Io S £, ()dn/n (2.3)
To simplify the work, we put
-b /E
F (%,E) =x * y (x,E) (2.4)
a &
and define the operator R;
. 1
AF (x,E) =I F (x,E/n)f_ (n)dn/n (2.5)
a a ad

So, the quation (2.3) and the respective initial condition become

8y (x,E) -~ ¥y (x,E)
a _ - Tar ba’/E d_n
i - (1 - A) l. + X .[: Fu(x,E/'n)f"a('n}n (2.6)
or
8y (x,E) . y (x,E)
—— =~ (1= A 2 + VPN ,E) (2.6")
X A a

The term Aya(x,E] is unknwon, and to solve the equation (2.6} we will
make the followings successive approximations. Initially we obtain the
approximation of =zero¢ order, Fao(x.E}, where we don't include the second

generation of secondary particles a. After this we put, in the equation
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e

(2.6}, the term ;Fao(x,E] in the place of the exact term RF;(x,E}. We obtain,
then, the first estimative of the contribuition of second generatlon of the
a-particles to the total flux,
After this, we make the successive avallation of the contributlon of the
th th t

3" 4™ | *® generations to the total flux.

This procedure is represented by the following recurrence equations

ay, Y, {x,E)
0 -_-_° + P (x%,E)
ax A a '
& L]
aya Ya {x,E) o
3x1 = - ‘A + F; {x,E) (2.7}
a 1 . :
8ya Y, (x,E)
n n
il 3 + P; (x,E})
a n
where
P (x,E) = x‘”"p:‘(x,l-:)
0
(2.8)
Ay, {(x,E}
P (x,E) = xh”EPf“(x,E) + ‘;’
n a

The scolutions of the linear equations system must satisfy the followlng

boundary condition

Y, (x,E}=0 ; n= Q.i,z\



CBPF~NF-043/92

The functions P‘I {x,E) and F‘_'(x,E). (n=0,1,2...) must be continuous in

n ) n
the domain £ = [0 = x = x; E sEsE ], with E >0 FE > E and
min Bax ain max min

¥ > 0. This is satisfled when;

a) G(E}) contlnuous non-negative and limited function in the Iinterval
I=[E ,w), E > 0.

min min

b) fh('n) and f“('n} continuous and non-negative functlons in the interval

0=xn=x1,

and
1 1

¢) the integral’s, I fh(-n)d-n/-n andI fu('n)dn/n. exist,
0 0

If these condlitlions are satisfied, the unique and compact solution of the

systems (2.7) and (2.8) is

y, (x,E) = ﬁpa (x,E) = r e“"‘"”"P_ (t,E)dt (2.9)

n n 0 n

where the operator B is defined by:

BH(x,E) = r e VA% E)dt (2.10)
Q

Then,

y (x,E) = BP  (x,E) = E&xba"EPm(x.E}
F ] a F-3
0 [4]
y, (x,E) = ﬁp_ (x,E) = B(1 + Rﬁ)?"‘a (x,E)x>VE

1 1
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=9-
~ -~ s b /E HA . .
y, (X,E) = B(1 + AB + ... +(AB)")x * P (x,E) (2.11)

n

The induction of (n + 1)th term is

AMel  an N B /E _
y (x,E) = B[nz (AB) ]x & p*(x,E)
-3 1 -]

n+ 1=0

The n'" approximation, F. (x,E), can be put in the following form,

- ~n A~ b /E
y, (x,E) =B(1 + AB+ ... + AB")x " P:‘(x.E} (2.12)

n

In the apendice B we establish the equality of the equations (2.11) and

(2.12) and we show that the solution, y;(x,E) = %%3 Y, (x,E), exist,

The differential flux of the secondary particles, a, at depth x, and

energy between E and E + dF is
-ba/E [ T13141 A
F (x,E) = x % J A'B P (x, E) (2.13)
1=0 :

3 - Differential muon and neutrino vertical fluxes

We derived from the flux of secondary particles, a, (2.13) the spectra of

muouns and neutrinos, d (g or v) in the following way
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E+
d B.b‘

F (x,E) = J': dtu(t,x,E) L‘ e F(LE)f_(E_,E )dE, (3.1)
d

where

Fd{x,Ed] is the differential flux of d-lepton at depth x and energies between
Ed and Ed + dEd.

The values of E;,E; and the functions f_ (E ,E) are obtalned according to

relativistic kinematics considerations®® of the two and three body decays.

Ba is the branching ratio of secondary particles, a.

and

H(t,x,Ed) is the probability that a muon or a neutrino (d), with energy, E,,

d

produced in a depth t, will survive until the depth x.

4 - Partlicular case

=-(y+1)
*

If the primary energy spectrum of nucleons is F}(O,E) = NoE the

solutions (1.7) and (2.13) will take the simplified expressions as follows.
4-1 - Differential nucleon flux

The multiple integrals

1 1 E ={y+1) dnl...dnn
I = I I No[_] f“(nl)...f“(n Yt —
o Jdo °nm,...m n'm ..

1 n

which appear in the solution (1.7), results in NoE , where



;fgg
! ¥
C"“ = J;n fNN(n)dn

The nucleon flux, then, becomes

which lis equivalent to the usual expression

_ -{y+1) -w/L
FN(X.E) = NOE e N
where

A
N

CBFF-NF-043/92

L = +———, is the absorption mean free path of nucleons in the

N 1 - Cuu

atmosphere.

4-2 - Differentlal flux of secondary particles

The production rate of secondaries, a, from the nucleon-air nucleil

interaction is,

F {x,E)
P:‘(x,l-:] =N ___c

7«" Ka

where
1

- ¥
Cua = L 7 fh(n)dn

(4.2.1)

(4.2.2)
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and the applying the operator B, (n+1) times in the expression xF Pﬁ‘(x,E),

we obtailn

- t ~-{x=t )J/A
B™ 1" EpM (% E) = r dt J' 2at t™E L e 1 A PVENAG B
a o n+l ° 11 a

If we will make the followlng substitution, t1 =x - 1T, and use the
{4)

properties of the iteratives integrals , we obtain
.1
~nel bas -x/L L, * * " b /E xe1) C"
B PM (%,E) = e r e Yoo s T ONeETTT =F
s 0 N
(4.2.3)
Applying the operator R n times in the last equation, we obtaln
~ fn 3 -x/L
A (B LVER (e By | = NoE Y o M
a ' J Na )
3
-3 ..
. r e " Y I x-t)®™EB(c " (4.2.4)
o n: N aa a

where

1
cC = J 2’ £ (n)dy
as o E-F-]

Finally the differential flux of secondary particles, a, is
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dt1 (4.25)

where

La is the absorption mean free path of the secondaries, a, in the atmosphere.
’t.l ba/E
If E >> ba, the expression [x_] is approximately 1 and the sclution

(4.2.6) take the well known form

F, (x.E) = o N & —c (4.2.7)
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APENDICE A
Convergence of the successlon yun(x,E)

If G(E) is a continuous, non-negative and bounded function (G(E) = M)

in the interval I = [E «], E >0, E€ [E ,w] where M is some positive
[ 31 min uin

1
constant, and if the integral .[0 fw(n]ch]/n = A exist with the functions

]
fm(‘n) positives, then the serlies S = Z un(x,E). whose n® partlal sum Sn is
n=0

Yy (x,E), is a series of positive terms. Sn is bounded in any set (T) such

that 0 =x=x X; E <= E=<E . In fact, we have
min mAX
n ¥
_ (/A7) v Ax/A
S’m = y“n(x,E) 5 M.,Zo 5T A < Me .

The uniform convergence of the exponential in the set (T) assures the

uniform convegence of the series S to a function y“(x,E] in (7).
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APENDICE B

Convergence of the succession v, (x,E)
n
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We will show the convergence of the succession Yy, = A"Bm'lP.l {x,E) by

the fellowing steps:

B~1) Convergence of the series BnPa (x,E)
0

0

If G(E) is a continuous, non-negative and limited function (G(E) = M) in

1
the interval 0 < E £ E < o, and 1f the Iintegral J f (n)dn/m = C. exists,
min 0O Na 1

with the functions f“.(n) continuous and non-negative

0 =% =1, then the succession

~ t —(x—t ]/h
BP (x,E) = r dt J' 2. 1 % (¢ Eat
.0 n a 1

0 1] [+]
where

b /E NA
P (x,E) =x° P (x,E}
ao &

can be put in the form

-~ [+
BP, (x,E) =+ } b (EJA _(x)
% N v=o ° v
where
1 E
1] 1 v

in the 1interval

(B.1.1}

(B.1.2)

(B.1.3)
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and
An,V(X) = .I: W e av(x-'r)d‘t (B.1.4)
with
=-{x=T) /2
llAv S v .
a (x-1) = —— [ ] (B.1.5)
v v! 1'

The expression (B.1.2) 1s absolute and wuniformely convergent in

T: (0 s xsX); 0<E 5 E < w), as
nin

MC =%{1/a +1/a )
lla (B)a (x)| —>rl’L?a x).e * " (B.1.6)
- n: 14

h' v I, v

8 asl’1 Ax/A
where Rv[x) is the series Rv{x] =): [h_] 5T which converges to e , and we
v=0* N

assume the convergence of the exponentials that appears in (B.1.5)

B-2) Convergence of the series A“B"Pa (x,E)

-~ a 1 1 £ (n)...f ()
R N
*o N l: 81 en -y
- E
. d'ﬂi. . .d'ﬂn VZO bV [ﬁ]ﬂn.v(X) (B.Z.l)

where, 058151, i=1...n. As b iIs poslitive and contlnuous in
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E =z EIlllm > 0, then bv["_.._.__' E n] is absolute and uniformely convergent in T.
g

Putting

1 n f (n }dn
=J‘ e e [__] (8.2.2)

o
): A (b (B.2.3)
n, v E ...

Assumling the existence of the integrals J: fn(n)i—n = Ca’ the expression

(B.2.2) converge absolute and uniformely. Then AnB"Pa {(x,E)} converges to

AL, °
MC1 x® C: x Ay
ol RV{X) - - € ®* where we assume again the convergence of the
N ha
exponentials.

B-3) Equalities R“ﬁnPa (x,E) = {AB)"P. {x,E) = é"i"?a {(x,E) we have
o 0 (i

n 1 f (11 )d‘n N
[B"P (x, E)] = _.n I I .B“P.o(x.E/nl...nn] (B.3.1)

The expression (B.3.1) can be put in the form
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n 1 dn .
m I :IE‘a (":) ,n—' Pll (x.E/nIJ (B.3.1)

i=1 zi a i [}

B
A

RF[ﬁ"P. (x.E)] = —

n
n
0
a

The equality of the expressions (B.3.1) and (B.3.2) is satisfied for £,
arbitrary and non-negative numbers. 8So, these expresslons are non-negatives
and they converge to the same limit when the numbers eltend to zero, and if we
suppose the existence of this limlt. As we showed in apendice (B.2), the
linit (B.3.1) exists and it is equal to A'B'P_ (x,E). So, the limit of

(1}

(B.3.2) exists and it is equal to ﬁanPa (x,E).
0

The equality of :!iﬂBnPal (x,E) with (AB)"'P" (x,E} is easily verified
o o

because the order of integration in (B.3.1) is irrelevant.

B-4) Convergence of the succession BA“BnPa (x,E)
0

This series is absolute and uniformely convergent, as

LN NN 1

BA"B"P (x,E) =
a n

o AA v
N a

il [~]

A (x)}o (E) (B.4.1)
n, v

n+i, v
o ¥

MC cPxtl A%
1 2 e

xlajtn+1]!

The right side of the expression (B.4.1) is smaller than

The uniform convergence of the exponential iIn T assures the absolute and

uniform convergence of the succession y_(x,E) = BJ\"B"'I"'l (x,E).
n 0

0
Then the sum Zy. (x,E) is uniformely convergent to a function y.(x.E)
n=0 n

in T.
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