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Abstract

We study a generalized Hubbard Hamiltonian which is closed within the framework
of a Quantum Real Space Renormalization Group, which replaces the d-dimensjonal
hypercubic lattice by a diamond-like lattice. The phase diagram of the generalized
Hubbard Hamiltonian is analyzed for the half-filled band case in d = 2 and d = 3.

Some evidence for superconductivity is presented.
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I Introduction

The Hubbard model [1] describes a single s band in & tight-binding basis, with local (intra-
site) electron-electron interaction. It provides the most simple model to study correlation
effects in narrow energy bands, like metallic magnetism [2] and metal-insulator transition
[3,4]. It has been often used to describe real materials exhibiting such phenomena (5).
Moreover, in the last years there was an increasing interest in this model and other related
ones {6], mainly because of its applications in the study of high T, oxide superconductors
[7]-[14]. In spite of its simplicity, only the one dimensional case has been solved exactly
[15). Above one dimension, different approximate techniques has been applied to obtain
partial information about the behavior of the model, both for zero and finite temperature
and for various occupations of the band. Among other approximate techniques let us
mention mean-field theory [16], Green-function [4], variational approaches [17} and Monte
Carlo calculations [18,19). In particular, for finite temperature, a few works have been
done by using Real Space Renormalization Group (for d = 1 [20,21] and d = 2 [22]).

We have recently reported preliminary results on this model by using a Quantum Real
Space Renormalization Group (RG) method [23]. Here we discuss the approach in detail
and present additional results. Qur approximation consists in replacing Bravais lattices by
diamond-like hierarchical lattices. This method has proved to be a powerful tool to study
critical properties of quantum spin systems [24,25]. In order to apply this RG scheme to
the Hubbard Hamiltonian we derive a new Hamiltonian which generalizes the standard
one in such way that it remains invariant under the RG transformation. The present
procedure is based on an exact calculation performed for a two-terminal cluster whose
iterations yield an hierarchical lattice. It is worthy to stress that the results are not exact
for the hierarchical lattice because of the non-commutativity of the involved operators
[25,26]. Nevertheless, they are asymptotically exact at high temperature, and believed to
be a good approximation for all temperatures. To the best of our knowledge this is the




CBPF-NF-043/91
-2

first calculation of the full d = 2 and d = 3 phase diagram for the half-filled band case.
In Sec. II we briefly review some of the basic properties of the Hubbard Hamiltonian. In
Sec. 111 we discuss the RG formalism and derive the generalized Hamiltonian. A numerical

calculation of the phase diagram for the half-filled generalized Hamiltonian is presented
for d = 2 and 3 in Sec. IV. We finally conclude in Sec. V.

I The Hubbard Model

In this section we review some basic properties of the Hubbard Hamiltonian that will be
used later on. Let us introduce the dimensionless Hubbard Hamiltonian Hj defined as

follows

Hu=—fHup=t 3 (cocis +c}oein) - U 2omianis + B e 1)
§ 5,0

(i)
whex:e B = 1/kgT, c,T“, (€i0) is the creation (annihilation) operator for an electron with
spin ¢ =T,! in a Wannier state centered at the site 1 of the lattice, n;, = c,T',:,c,-,ar is the
corresponding occupation number; ¢, I/ and u are respectively the dimensionless hopping
constant, intra-site electron-electron interaction and chemical potential; (¢,j} runs over
all pairs of first-neighboring sites on a d-dimensional hypercubic lattice (with unitary
crystalline parameter). The half-filled band case (i.e., {N} = A, where A is the number
of sites of the lattice and N = ¥, (n;y + n;)) ) corresponds to 4 = U/2. Then (1) takes
the form

Hy = —-pHy = t(; (c,t,c_,-,, + c}',c,-,,) +1 UZ(n,—J —n)? (2)
WIho H
As usually, we define the spin operators as
oy

]

s+

H

ni1 = iy

CI? +1 c‘!I . - (3)

L a— cf'lcm
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and the charge operators as
/i = nigtng—1
pto= eyl (4)
Pi = Cicia

The fermionic character of the c¢’s operators imposes the following relations

S0+ (o) =1

) rr) ®)
S¢pl =8tpl = 0 (v =2,y,2)
where
Sf = ST+S57 pi= plta ©)
St = -i(st-57) o = ~i(pt-o7) ,
Let us introduce the following unitary transformation [27]
CI.I = exp (1éﬁ,) b, c.?J = bf’ )

ciy = exp(~iQ.R) b8, e bit

where § is the wave vector associated with points which belongs to the corners of the first

Brillouin zone (e.g., Q= {m,m,..., 7)) such that

s, e +1 when ¢ and j belongs to the same sublattice
exp (1Q(R, - R,-)) = {

—~1 when ¢ and j belongs to different sublattices

where the hypercubic lattice has been decomposed into two interpenetrating 1** neigh-
boring hypercubic sublattices. Consequently the spin operators S¥ are transformed as

follows

5f = exp(-iQ.K)pt o
Si = p | o ()]
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where
5t = b,
pi = fg+aig~1 (9)
Ao = bb, (o=11)

Also the charge operators are transformed transformed as follows

ot = exp(iQ.R;) St

pi = S (10)

where
SF = blbi,

5 (11)

Bip — Ny

Applying transformation (7) to the Hamiltonian (2) is easy to see that Hy(t,U) = Hy(t, -U),
where Hy; is obtained from Eq. (2) by replacing the c's operators by the b’s operators. This
relation allows a simple mapping of the U > 0 region of the phase diagram for the half-filled
band case into the U < 0 region. The transformation (7) gives in fact a correspondence
between charge and magnetic order in such regions (this point will be discussed in detail

in Sec. IV-B.

We can verify the following important properties
[Ha,5] = o (12)
[HH &N] =0 (13)

where § = 2,5'. We now introduce a unitary transformation i, defined as follows (see
reference [28)):

U, = [ exp (i:i-5i) (14)
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where the {g;} are arbitrarily chosen unit vectors and the {7} are parameters of the
transformation. If §; = § for every site 1, and § lies in the x-y plane, this transformation
generalizes the particle-hole exchange transformation.

We want to stress the following important symmetries of the Hamiltonian (2)

¢ (a) invariance under I, when §; = ¢ is in the z direction and ; = «4 for all sites ;
in this case U, corresponds to a trivial phase change of the Wannier representation

(p(z) — e%p(x), where ¢(z) is the Wannier orbital located at site i);
¢ (b) rotational invariance associated with Eq. {12);

¢ (c) invariance under i, when §; = ¢ lies in the x-y plane provided that we choose v; =
—~;, where i, j are nearest-neighboring sites (there are cases, for instance frustrated

lattices, for which such a choice is not possible).

In the non-half-filled band case,i.e. u # U/2, the Hamiltonian (1) looses symmetry (¢}, but
it still preserves symmetries (a) and (b). Let us mention here another symmetry (noted

(d)) which is satisfied neither by Hamiltonian (1) nor (2}, but which we shall use later on:

¢ (d) invariance under U, with § in the x-y plane and 4; = « for all sites z .

III The Renormalization Group

In order to study the thermodynamics of the model, at least as far as criticality is con-
cerned, we can use Real Space Renormalization Group approaches. For instance, the lattice
could be divided in two sublattices A and B. Then we can define, by decimating the B

sublattice, a Hamiltonian H' on A which satisfies

exp(H' +C) = Trpexp(H) (15)
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where ‘H is given by (2) and where Trp represents a partial trace over all the degrees of
freedorm associated to sites of the sublattice B. As it is well known, the decimation transfor-
mation defined by Eq. (15) cannot be carried out exactly on a Bravais lattice. This is due
either to the infinite proliferation of couplings constants through successive decimations or
to the non-commutativity among the various terms of the Hamiltonian. In order to avoid
the infinite coupling proliferation we use a quantum Real Space Renormalization Group
(RG) method in which the Bravais lattices are replaced by diamond-like hierarchical lat-
tices, namely those associated with the clusters shown in Fig. 1. Such lattices are defined
through infinite iterations of a two-rooted cluster which consists in an array of b?! strings
in parallel, each string being constituted by b bonds in series. Then the hierarchical lattice
contains an infinite number of clusters such as those of Fig. 1. With each of these clusters
a Hamiltonian (denoted by Hj) can be associated. Consecuently the total Hamiltonian

can be expressed as
H= ZH;, (16)
k

For classical systems it is of course true that exp (H) = [l. exp (M), and therefore, if H;
is exactly tractable, the present approach will enable the exact solution of the hierarchical
lattice. This is not so for a quantum system because of non-commutativity. We then work

within the following approximation:

exp (; 'H;,) b I:Iexp (Hi) (17)

This equation reduces the problem to the proper renormalization of a finite (relatively
small) cluster. It is clear that Eq. (17) becomes asymptotically exact in the T — oo
limit, even if the problem is a quantum one [26] (this fact has already been verified for
the Hubbard model [21] and for spin models {25]). It is of course possible in principle to
work within approximations systematically better than Eq. (17), but this is not the aim
of the present work. It is worthy to mention also that the present procedure is believed ,.
to preserve the two-body correlation function (this is already proved for the classical case
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[29].To perform the renormalization within the present scheme we would like to satisfy

exp(M,+C)=_ Tr exp(Mi) (18)

internal sites

where H; denotes the Hamiltonian associated to the cluster under consideration and M,
denotes the renormalized Hamiltonian of the two-site chain (see Fig. 1). In fact, this is
not possible for the Hamiltonian (2). Indeed, if M, is the standard Hubbard Hamiltonian,
proliferation occurs and the resulting H,’ contains new terms that were not present in HM;;
however, the proliferation does not go indefinitely, and a generalized Hamiltonian exists
which contains a finite number of terms and which ezactly satifies Eq. (18). Therefore we
have to search for a generalization of the Hubbard Hamiltonian (2) which might satisfy
this relation. As we shall see, the form of the new Hamiltonian depends strongly on the
choice of the cluster. Some choices yield a new Hamiltoman which does not reproduces all
the s:ymmetries of the Hubbard Hamiltonian; in such situation, the extended Hamiltonian
will not recover the initial one as a particular case. Therefore our next task is to choose
a suitable cluster. For simplicity let us start by considering the one dimensional case. We
ask for the smallest one-dimensional cluster for which the decimation transformation (18)
preserves all the Hubbard Hamiltonian symmetries we are interested in (namely, symme-
tries (a), (b} and (c) of Sec. II). If a three-site cluster was used, the resulting Hamiltonian
through Eq. (18) would satisfy symmetries (a) and (b) but not (¢); it would instead satisfy
{(d). Clearly this Hamiltonian will net contain the original Hubbard Hamiltonian as a par-
ticular case. In order to avoid this inconvenience we choose a four-site cluster, for which
the resulting Hamiltonian through Eq. {(18) satisfies all symmetries (2), (b) and (c). To be
more explicit, if we attribute alternating y and —v for each site of the chain, the four-site
cluster leaves under decimation v, = ++ and ¥, = —+ for the two-site renormalized cluster
(see Fig. 1a), whereas the three-site cluster yields 4, = v, = ++v. The above argument
not only apply to a linear chain, but to all two-terminal clusters whose topology enables
them to satisfy the invariance property (c). The cluster used by Castellani et ol {28] is
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the three-site one, and consecuently suffers from this inconvenience. This point is rather
subtle and will hopefully become clear through the discussion of a sequence of extensions
of Hamiltonian (1).

The next step is then to find a generalized half-filled band Hamiltonian (denote by
Hs [23]) which extends Hamiltonian (2) while preserving symmetries (2), (b) and (c). By
following along the lines intruduced in Ref. {28] we obtain the structure of He without
explicitly performing the calculations involved in Eq. (18). More precisely, we look for
all the one- and two-site operators which satisfy the just mentioned symmetries: A linear

combination of such terms yields the desired Hamiltonian, namely

Mo=  t 3 (dotie+fotia) +3U IS - T 255,
{ig)o (5.7
- {Z SP(s) -1 Z o707 = (o505 + pteY)]
1.5} .
+ D Y (cotio t c:'.a""-v) (Moo =~ 1j0)’ (19)
{¢d)e

This is the minimael Hamiltonian which satisfies Eq. (18) and contains Hamiltonian (2)
as a particular case. It is worthy to point out here that, although we have followed the
method introduced by Castellani et al, our generalized Hamiltonian is not the same they
found. As already mentioned, this difference is due to the diﬂ'erenﬁ clusters they and we
have used.

We note the following properties:

e For J = K = I = D = 0 we recover the half-filled band Hubbard Hamiltonian (2), -
as expected.

o If we use the transformation (14) with §; = ¢ for all sites ¢, § being along the z-
direction and (v; — 4;) = 7 (i, 7 nearest-neighbor sites) we can show that the grand
partition function Z = Trexp (H%) associated with the Hamiltonian (19) satisfies..
2(t,D) = Z(—t,—-D). This point greatly generalizes the one established in Ref. [28].
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e Using the standard particle-hole exchange transformation it can be shown that

Hamiltonian (19) preserves the half-filled band character of (2).

o Applying the transformation (7) it can be seen that the Hamiltonian (19) is trans-

formed as follows
He(U,K, J,1,1,D) = He (2(z K — 1 U),K,I,J,t, D) (20)

where z equals the coordination number of a Bravais lattice and equals 2 for the
simple hierarchical lattices we are using here; Hg is obtained from Hg by replacing
the c’s operators by the b’s operators (see Eqs. (7)-(11)). Consequently for K = U/2
and J = I the Hamiltonian (19) remains invariant under transformation (7). We can
verify that this symmetry is preserved by the Eq. (18); consequently the subspace
C(K,J) = (U/2,I) is invariant under the RG transformation in the (U, K, J, 1,1, D)

parameters space.

e Fort = D = I = 0 the Hamiltonian (19) becomes a simple JKU model characterized
by the followimg Hamiltonian

Hixo =3 5 5.8 - K Y (82 (1)’ + 2U T (87)? (21)

{in) (i3} i

This Hamiltonian looks like a quantum analog of the BEG (Blume-Emery-Griffiths)

Hamiltonian [30,31]; in fact the situation is more complex than that. This is due

to the fact that the S; operators cannot be interpreted as standard spin-1 operators

(see Ref. [28]). It can be seen that Hjkxy satisfies symmetries (a), (b), (c) and (d)

mentioned above. Therefore it also constitutes an invariant subspace under RG.

¢ The J = 0 case of H xy is isomorphic to the spin-1/2 Ising model in the presence of
an external field. Indeed by defining a new variable [33]

t=2(87P° -1, t;=+1 o (22
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and by taking into account the double degeneracy of the S7 = 0 states, H iy equals
K/4 E(i,j) t.t: + Hg Z" t.‘ where

H=1(1U-K) (23)

J = 0 constitutes an invariant subspace under RG; it contains an even smaller

subspace, namely K = U/2, i.e., H; = 0.

Let us now focus on the case of non half-filled band. As we have seen in Sec. II the
Hamiltonian (1) does not have symmetry (¢). By repeting the procedure which leads us
from Hamiltonian (2) to Hamiltonian (19) we can now generalize Hamiltonian (1) by only

demanding the preservation of symmetries (2) and (b). We obtain:

M=t 3 (dotio+ cfocic) HIUL (S + A D mie

(i)

— I &5 -k (s (s) +Y}_jp. 7
(i) {5.1)

- IX[pir - (eivj + o) +RY [(pf) g+@)e] e

“ (i)

+ D 2 (c 0Cia + € ,ocv'.a) (ni,—o _nj,—o)2

(e

+ E ) (c!',c,-,, +°}.c°t'-c) Bi—oTj—o

{i.d}).0

where ji = u — U/2. This Hamiltonian contains the following models as particular cases:

e For J=K=I=Y =R=D = E = 0 we recover the standard Hubbard model (1).
e For i = R= E =Y = 0 we recover Hamiltonian (19) [23].

eForji=R=1=0; D= —tand E = 2D we precisely recover the Hamiltonian
(here denoted by Hcp) obtained by Castellani, DiCastro et al [28] for the three-site
cluster and half-filled band. Hamiltonian H¢p satisfies symmetries (a), (b) and (d)
(whereas Hamiltonian Hg satisfies symmetries (a)}, (b) and {c)).
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e For K=R=1I=Y =0; D= E = —t and taking the limit U — oo while keeping
¢ finite we obtain the t-J mode! {6,7). A generalized version of this model will be

discussed elsewhere.
e For K =I =Y = R= D = E = 0 we obtain the Hubbard-Heisenberg model [32]

Next, we consider the non-half-filled band model with an external magnetic field B in
the z direction. In this case the symmetry (b} must be replaced by the more restricted one
[Mu,S$*]) = 0. By following the same procedure as before, we obtain that the Hamiltonian

which is invariant under RG is the following one:
HE = HE +Hp (25)

where

Mp=BY 55— 1,3 [578: ~ (5757 + S¥SY)| + R 3 [(s:)‘*' s: +(s3)° S:] (26)
i (i3 () ,

Ifweconsider B=R=Ry=ji=t=D=E=I=Y =0,and U — oo, H4? becomes
the spin-1/2 anisotropic Heisenberg Hamiltonian, which in turns contains, for J; = 0, the
isotropic Heisenberg model as a particular case.

Finally, the most general one- and two-body single band fermionic Hamiltonian H,; can
be obtained as a generalization of the Hamiltonian ’HEB. Such Hamiltonian will satisfy in
principle none of the above mentioned symmetries. The general form of #{, can be obtained
by the same procedure used to generate the sequence of Hamiltonians we have analized.
For instance, the term Y 34 5 pi-0; — T X4 5 [p;?" P — (p‘," pi + pfpf)] in Hamiltonian {24)
will be replaced by the more general one ¥;; » [I o} + Lp?pf + I,pfp}'] . The complete
sequence of symmetries we have analized in this section is summarized in Fig. 2.
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IV The Phase diagram : half-filled band case

In this section we calculate numerically the phase diagram of the generalized Hamiltonian
for the half-filled band case (19). The RG recurrence equations are obtained by explicitly

computing the partial trace

exp(Hg+C)=__ Tt exp(Hg) (27)

internal sites
where Hg denotes the generalized Hamiltonian associated with the cluster being considered
and Hg; denotes the renormalized Hamiltonian of the two-site chain (see Fig.1). Let us
first consider the d = 1 four-site cluster (Fig. 1a). In this case the partial trace (27) is
calculated by summing the matrix elements of exp (M) over the set of occupation numbers
{na¢,n4.}. In order to compute such matrix elements we must diagonalize H¢. The Fock
space |{n;,}) associated with the four-site chain is of dimension 2% in such space Hg is -
represented by a 256 x 256 matrix. As we have seen, the total number of particles and the
z-component of the total spin are good quantum numbers for this problem (Egs. (12) and
(13)). So, using the fact that the basis vectors are simultaneously eigenvectors of N and S,
we can present Mg in a block diagonal structure by simply rearranging the order of these
vectors according to the eigenvalues of N and S* . The largest block (corresponding to the
eigenvalues N = 4, §% = 0) is a 36x 36 matrix. It is possible to further reduce the size of the
blocks by using some supplementary symmetries. However, the blocks do not become small
enough to be analitically tractable. So we have not performed this further reduction and,
excepting for a few special cases, the calculation has been done numerically . Using Eq. (27)
we obtain the recurrence relations between the set of parameters L = (U,K,J,1,t,D) of

H and the set of renormalized parameters L' = (U, J', K", I, ¢!, D') of He:
L' = L)L) (28)

where the subindex 1 stands for d = 1. In order to properly take into account the weights
of the single-site terms, we associated U with every internal site and U/2 with each of the
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two terminal sites.

Now consider a more general diamond-like cluster of the type shown in Figures la,
1b and 1c. The fractal dimensionalities dy of the hierarchical lattices generated by these
clusters respectively are d; = In3/In3 =1, d; = In9/In3 = 2 and d; =In27/In3 = 3,
hence in general d; = d. Every cluster of this kind consists in & parallel array of 3¢-!
four-site chains, so the corresponding Hamiltonian is given by the sum of linear-chain

Hamiltonians. Therefore, within the approximation indicated in Eq. (17) we obtain
I'= L, (L) =" L) (29)

where b = 3 is the length scale of the RG transformation. Using Eq. (29) we analyzed the
RG flow in the parameter space (U, K, J,I,t,D) for d = 1, 2 and 3. This flow provides the
corresponding phase diagram. We have numerically studied the most relevant sections of
this' complex phase diagram. Most of the attractors (fully stable fixed points) and many
of the relevant fixed points (semi-stable or fully unstable) are located at the invariant
subspace ¢t = D = 0, which has been analyzed in subsections IV-A and IV-B. The ¢ #0
region has been explored in subsections IV-C and IV-D. Most of the D # 0 region is
driven, under RG, onto the D = () case; consequently no critical novelties are expected in

the D # 0 region. The few exceptions which are observed are discussed in IV-C and IV-D.

IV-A The JKU model (I =t= D =0)

We now consider the section I =t = D = 0 of the full phase diagram, i.e. we analize the
phase diagram associated with the Hamiltonian (21) (we recall this Hamiltonian is closed
under RG). We are mainly interested in the antiferromagnetic case (J > 0), because its
fixed point structure determines to some extent the Hubbard model phase diagram (see
Subsec. IV-C). The ferromagnetic case (J < 0) presents results which are analogous to
those of the J > 0 one. More precisely, to each fixed point at J > 0 it is associated a
similar one at J < 0 which exhibits the same stability; in fact this is true for the entire RG
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flow topology. Therefore it suffices to consider the J > 0 case. The analogy between the
J > 0 and J < 0 cases is physically expected, and it is correctly reproduced by the present
RG because of the odd number of bonds appearing in all minimal paths between the two
terminals of the clusters we are using. It is worthy mentioning that the RG recurrence
equations for the JKU mode} have been analitically obtained.

First of all we shall treat the invariant subspace J = 0. Note that in this case flipping
any spin (S7 — —S7) does not change the energy of an arbitrary configuration, so the
(spontaneous) magnetization is zero for J = 0. The line K = U/2 corresponds to H; = 0
(see Eq. (23)) and therefore also constitutes an invariant subspace. In some sense it is a
symmetry line of the phase diagram, since the RG flow is topologically equivalent in both
sides of it. The relationship of this symmetry with the complete Hamiltonian (19) was
already pointed out in Eq. (20). The flow diagram in the (U, K') plane is shown in Fig. 3 for
d = 2 (the d = 3 flow diagram is completely analog). Along the line K = U/2 we find two
fully unstable fixed points labeled a, a’ in Fig. 2. We find three fully stable fixed points,
namely: (U, K) = (£00,0) and (U, K) = (+00,+00}|x_y;- Using the magnetic analog
expressed in Eq. (22) we distinguish three phases in the (U, K) plane. The region enclosed
by the line eaf is the basin of attraction of the fixed point (U, K) = (400, +00)|xoy/e-
This fixed point characterizes a phase with antiferromagnetic-like order , s.e. (t;) > 0 for
all sites of one sublattice and {¢;) < 0 for the other one. In other words, the sites of one
sublattice are predominantly in the state S? = 0, whereas the sites of the other are in the
states S7 = +1. Consistently, one sublattice has single electronic occupation while in the
other sublattice each site can be either doubly occupied or not occupied at all with equal
probability. There is no magnetic order in either of these sublattices. So this phase is a
paramagnetic dimerized-charge insulating (PDCI) one.

All points belonging to the region K < U/2 and outside the line eaf are attracted by
the fixed point (4+00,0), which is associated with a phase with (¢;) > 0 for all sites ¢. In
other words, most of the sites are in the S7 = X1 states indistinctly, thus describing a
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paramagnetic uniform-charge insulating phase (PUCI). All points belonging to the region
K > U/2 and outside the line eaf are attracted by the fixed point (~00,0). This fixed
point is associated with a phase with (t;) < 0 for all sites i, or equivalently (see Eq. (22))
most of the sites are in the S? = 0 state. In such situation the electrons are bounded in
pairs and one half of the sites are doubly occupied while the rest of the them are empty.
Such situation corresponds to a paramagnetic metallic phase (PM) in which the carriers
are uncorrelated pairs of electrons.

The line af is a second order transition line between the PUCI and PDCI phases; all
points belonging to this line are attracted by the semi-unstable fixed point d. The line
ae is a second order line between the PUCI and the PM phases; all points belonging to
this line are attracted by the semi-unstable fixed point ¢. Both lines join at the critical
fixed point a. The fixed points ¢ and d are connected through the unitary transformation
(K, H;) — (K, —H,). Therefore the eigenvalues of the linearized recurrence equations in
both fixed points are the same and consequently the correlation length critical exponent
v. = Inb/In ), [34,35] is the same for both transition lines; A, = Ay > 1 is the relevant
eigenvalue at the fixed point ¢ (d). Along the line K = U/2 and K < K, the ground state
of the system is degenerated and we have a first order transition (two-phase coexistence)
between the PM and the PUCI phases. This line ends at the critical point «’. Along
the line aa’ (dashed line in Fig. 2) we have (t;) = 0, i.e., (S7) = 1/2 for all sites ¢. All
points belonging to this line are attracted by the fixed point (0,0). Such line does not
correspond to any phase transition, thus constituting a smooth contimiation between the
PM and the PUCI phases. If we move along the line K = U/2 from the PDCI phase
the system undergoes a second order phase transition at the point a. The correlation
length exponent ¥, = v, in this case is given by v, = Inb/in A, where A{Y is the
eigenvalue of the linearized equations at the point & corresponding to the eigendirection
K = U/2. The crossover exponent is given by ¢, = InA®/In A", where A is the
eigenvalue corresponding to the eigendirection tangential to the line eaf at the point a.
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The values of the critical exponents, as well as the location of the fixed points @, ¢ and d
are listed in Table I for d = 2 and 3.

Let us now consider the case J > 0. We are particularly interested in the limit U — oo
of the phase diagram because, as we shall see later on, it is closely related to the strong
interaction limit of the half-filled band Hubbard model. For U » 1 the recurrence relations
decouple and we find the following asymptotic behaviours

U ~ bty
K' ~ fi(J) (30)
J ~ [

s0, the only nontrivial recurrence equation is that of the exchange coupling J. This fact
can be easily understood if we note that, for U » 1, the states with §7 = +1 for all sites |
i predominate over all the other states. When we restrict the Hamiltonian (21) to this
subspace, the second and third terms become just additive constants which do not affect
further ordering, and the Hamiltonian is equivalent to the following one:

H~ T3 G5 (31)

{ig)

where o7, v = z,y, z, are the Pauli matrices at the site 1. The Hamiltonian (31) describes
a spin-1/2 antiferromagnetic Heisenberg model. The function f,(J) is depicted in Fig. 4
for d = 2 and 3.

For d = 2 the recurrence Eq. (30} only have trivial fixed points. So, the system does
not exhibit any phase transition to an ordered state, as expected from (31). For d = 3
two new fixed points appear, namely: i) a relevant {critical) fixed point at J, = 0.353; i)
a stable fixed point at J;, = 2.457. The critical point J. corresponds to a second order
phase transition from a paramagnetic phase, characterized by the fixed point J = 0, to an
antiferromagnetic ordered phase J > J,, which is mapped into a finite temperature J; fixed
point, instead of a zero temperature {(J = oo) one (usual case). Since this shifted fixed
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point is related to the behaviour of the system at zero temperature, such shift is probably
due to the approximation (17) [36]. At zero temperature such approximation might be a
rough one and therefore spurious results could appear at very temperatures. In fact very
good results have been found in other models for a wide range of temperatures [25,26).

As the dimensionality d decreases, the fixed points J, and J; approach each other and
merge into a marginal fixed point at the lower critical dimension d, & 2.41 (at d = d., f1(J)
becomes tangential to the J' = J). The correlation length exponent for this transition is
given by v, =Inb/In A; where

dfy

V=371,

In table II we compare our d = 3 results for J. and v; with those obtained by high-
temperature series expansions for the antiferromagnetic Heisenberg model in some Bravais.
lattices [37].

For lower values of U the d = 3 phase diagram, is very similar to the RG phase
diagram of the d = 2 ferromagnetic BEG model, with and appropriate change of signs in
the coupling parameters and the magnetic order parameter replaced by the z-component
of the staggered magnetization [31]. Since in the present work we are mainly interested
in those characteristics of the complete phase diagram (U, K, J, I,t, D) related to the ¢ -
hopping term, and since the fixed points which determine such features are those located
in the U » 1 region (see Subsec. IV-C), we will give here only a brief description of the
phase diagram (U, K, J) for intermediate values of U.

We find & second order transition surface from a paramagnetic (PUCI) to an an-
tiferromagnetic insulating (AFI) phase. For U » 1 this surface becomes parallel to
the J = 0 plane at a height J.. This critical surface is associated to the fixed point
(U,K,J) = (+00, K., J.), where K, = fy(J.) = —0.001. For U < 0 the PM and AFI
phases are separated by a first-order transition surface. Such surface with associated to
the first-order fixed point (—co,—00,J1)|x_y/- The relevant eigenvalue for such fixed
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point fulfills the Nienhuis condition A == b? [38]. Both surfaces (first and second ordér)
join smoothly at a line of tricritical points. Such line is associated with the tricritical
fixed point (Ur, K, J7)} = (—2.27,-0.16,0.79) [39]). For this tricritical point we find two
relevant eigenvalues A$ and AP, with A% > A% 5 1, and a third eigenvalue MW <1
The eigendirections associated with )«!ﬁ) and A? ) are tangential to the transition surface,
while the corresponding to ,\}" is transversal to the transition surface. The eigendirec-
tion associated with A is tangential to the tricritical line. The tricritical exponents
are given by [40] vr = Inb/InAY and ¢r = nAP/In A, We find vr = 0.40 and
#r = 0.21 (no other numbers are available in the literature for comparison). Besides these
two magnetic transition surfaces there is a first order surface associated with the fixed
point (U, K,J) = (—00,—00,0)|x_y/;, Which constitutes an extension of the first order
line between the PM and the PUCI phases shown in Fig. 3. This fixed point also satisfies:
the Nienhuis conditions for a first order one. The first order surface between the PM and
PUCI phases ends at an isolated critical line whose points are all attracted by the criti-
cal fixed point a (see Fig. 3). The three transition surfaces join along & critical-end line
associated with the fixed point (U, K, J} = (—00, —00,J;)|x_/,- This fixed point has two
relevant eigenvalues: A, = b*” and A; = b?%. Moreover, the two first-order surfaces have
the same slope at such line. This features provide the RG characterization of critical-end
point behavior. The three critical lines (critical-end, tricritical and isolated critical) join
at a fully unstable multicritical fixed point (U, K, J) = (-2.66, —0.75,0.59).

As an example we show the section of the phase diagram with the X = 0 plane in
Fig. 5. The location of the tricritical point Tp for X = 0 is (U, J) = (—2.22,0.86).

Another feature which appears for K > 0 and U > 0 is the paraboloid-like extension
of the critical line {eaf line) appearing in Fig. 3. Most of the points of this surface are
attracted either by point ¢ or by point d of Fig. 3; at the frontier of these two sets of points
a critical line exists whose points are attracted by point a of Fig. 3.
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"IV-B The IKU model (t=D=J =0)
The Hamiltonian (19) reduces in this case to
Hixu = -1 |pie} = (ofo5 +ot0t)] - K (5P (5] + LU (STP  (32)
{i.5) ) i

By using the canonical transformation (7), the Hamiltonian (32) can be mapped into the
Hamiltonian (21) with a new set of coupling constants, namely (see Eq. (20))
% U -+ 2K- %U
I - J

(33)

Consequently, the phase diagram corresponding to the Hamiltonian (32) can be obtained
from the phase diagram of the JKU model, by means of the transformation (33). This
correspondence between the two phase diagrams is exactly recovered by our recurrence
Eqé. (29). Since (87)* = 1 — (p?)?, the Hamiltonian (32) can be easily expressed only in
terms of charge operators. In particular, for U « —1 electron pair formation is favored
and the Hamiltonian (32) can be seen as a gas of bosons with hard cores and long-range
interactions. Such bosons are (onsite) bounded pairs of electrons. In the limit U — —oo,
which is mapped through (33) into the U — +o00 limit of the JKU model (21), the only
term that contributes in the Hamiltonian (32) is the first one. This term can be obtained
by perturbation theory from the original Hubbard Hamiltonian in the limit U — —oo [41).
From Egs. (10), we see that in this case the antiferromagnetic order in the z direction of

the JKU model is associated with the following nonvanishing order parameter
1 LA 1
7 Ll e (Q.R) = & Yl cziq,) (34)
! Eo

where the sum over ¥ runs over the first Brillouin zone. Such state corresponds to a
charge-density-waves (CDW) ordered phase. A nonvanishing x-y plane antiferromagnetic

order parameter will imply a nonvanishing value for

+ 'z(c,ttcg,l) -1 Tt W . 35)
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which corresponds to singlet-superconductivity (SS). If both order parameters (34) and
(35) are zero then the pairs are completely uncorrelated (PM phase) if U is negative
enough or there is no pairs (PUCI phase) if U is high enough. In the second case the
states with pf = 0 predom:nate, while in the former the states which predominate are the
p* = 1 ones. By using Eq. (33) we obtain for the d = 3 phase diagram corresponding to
the Hamiltonian (32) in the region U < —1 and I > 0, a second order critical surface; one
side of it we have the PM phase, while on the other side we have the mixed CDW/SS phase.
This surface js associated with the fixed point (U, K, I) = (=0, K., I.), where I, = J, and
the correlation length exponent is v; = v; (J. and v; were defined in Subsec. IV -A). The
mixed phase is associated with the fixed point (—oco, K1,11), with I = Ji1, and the PM
phase is associated with the fixed point (—00,0,0). The rest of the phase diagram can be

similarly obtained from the results of Subsec. IV-A.

IV-C The half-filled band Hubbard model

We now consider the section of the phase diagram with the (U,t) plane (which is not
invariant under RG), i.e., I = J = K = D = 0, for both signs of U (see {23]). This case
corresponds to the half-filled band Hubbard model (2).

In d = 1 our RG yields no phase transition for any value of U # 0 as expected
[15]. All points in the (U,t) plane are attracted by the ¢ = 0 line, which is a line of
fixed points. Points with U > 0 are attracted by points in the positive U axis with
U 3 1, which characterizes an insulating phase. Points with U < 0 are attracted by
points in the negative U axis with |U] 3> 1. In this situation, the electrons are bounded
in pairs; for d = 1 there is no correlation between such pairs. So, the system behaves as
a metal whose charge carriers are bounded pairs. All points in the f-axis are attracted

by the fixed point (U, K, J,I1,t,D} = (0,0,0,0,0,0). For U = 0 we have a pure tight-

binding system (free particles), and in this case the rescaling involved in the decimation ..
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procedure reduces, at every RG step the band width (proportional to hopping parameter
t), because it eliminates the short-wavelength states. Consequently ¢ — 0, and the fixed
point (0,0,0,0,0,0) characterizes in this case a normal metallic phase.

Ford > 1 and U > 0 all points are attracted into the parameter subspacet = D=I =0
with U -+ oo. This subspace was already analyzed in Subsec. IV-A and we saw that in
the U — oo limit the thermodynamical properties of the system are entirely determined
by the Heisenberg Hamiltonian (31). Therefore, we conclude that the ground state of the
half-filled band Hubbard mode! is always insulating and a.ntiférromagnetic, t.e., no Mott
transition is observed for the ground state at U # 0. This results satisfy Lieb’s theorem
[42). For d > 1 and U < 0 all points are attracted into the subspace t = D = J = 0
with U < —1. Therefore, for U < 0 the ground state of the system is composed by a gas
of bosons {(bounded pairs of electrons) with hard cores and long-range interactions (see
Subsec. IV-B).

In d = 2 we find for the phase diagram structure which is similar to that for d = 1.
All points in the U = 0 axis are attracted by the fixed point (0,0,0,0,0, 0). Hence, for
U = 0 the system is a normal metal. For U > 0 all points are attracted by the fixed point
{4+00,0,0,0,0,0), which corresponds to a PUCI phase, as we have seen in Subsec. IV-A.
Since for U — oo the electrons are localized, the system is a paramagnetic insulator for
any value of U > 0 and finite temperatures. These results are in agreement with previous
ones obtained by 2 different RG technique [22] and by Monte Carlo calculations [18]. For
U < 0 all points are attracted by the fixed point (—00,0,0,0,0,0). As we have seen in
Subsec. IV-B, in this case there is neither superconductivity nor charge density waves, and
the system is in a PM phase (uncorrelated pairs of electrons).

For d = 3 the calculated phase diagram is shown in Fig. 6, where, instead of the U, 1)
variables, we have used the more appropriate ones, namely: 1/t (dimensionless tempera-
ture) and U/t. For U/t > 0 the system is always an insulator and there is a second order N

transition line. Points below this line are associated with the antiferromagnetic fixed point
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(U,K,J,1,t,D) = (400, K, J4,0,0,0), while points above this line are associated with the
paramagnetic fixed point (400,0,0,0,0,0). The critical line is associated with the critical
fixed point (400, K., J;,0,0,0), so it describes a second order para-antiferromagnetic phase
transition; the corresponding correlation length exponent v; is given in Table IL

For U/t < 0 there is a second order phase transition from the PM phase at high
temperature to the mixed phase CDW/SS (see Subsec. IV-B). The coexistence of CDW
and SS in the negative-U Hubbard model is a particular degeneracy of the half-filled
band case. This degeneracy is removed in the non-half-filled band case [41,43]. The
corresponding transition line is associated with the critical fixed point (U, K, J,I,t,D) =
(—o0, K,,0,I.,0,0), and the correlation length exponent for such transition is v; = vy.
The two critical lines for U/t > 0 and U/t < 0 meet at a point 1/t, # 0in the U/t = 0
axis (pure tight-binding limit). For U/t = 0 and 1/t > 1/t, all the points are attracted
by th‘e (0,0,0,0,0,0) fixed point, s.e., that region corresponds to a normal metallic phase.
For 1/t < 1/t. we found an anomalous behavior in the renormalisation flow. All the points
are attracted by limit cycles of order 2 rather than being attracted by normal fixed points.
More precisely, the points are attracted by one or the other of two different cycles related
among them through the transformation (¢, D) — (—%,—D). The basins of attraction of
these two cycles alternatively appear along the U/ = 0 axis in the region 0 < 1/t < 1/i..
At the time it is not clear the physical meaning (if it exists) of these limit cycles, but they
might be related to the fractal character of the hierarchical lattice. The general structure
of the limit cycles and its possible relation with fractality is discussed in Ref. [23]. This
anomalous behavior disappears (1/t, — 0), for dimensionalities d < d,., where d, ~ 2.41,
which is the same value found in Subsec. IV-A for the lower critical dimension of the
para-antiferromagnetic transition for U/t » 1. This suggests that the whole critical line
disappears at d = d..
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IV-D Hubbard model with biquadratic interactions

We now consider the section I = J = D = 0 of the phase diagram in d = 2 and 3 (the
d = 1 case presents no novelties with respect to the d = 1 case of Subsec. IV-C. In this
case the Hamiltonian (19) describes a half-filled band Hubbard model with biquadratic
interactions between electrons in nearest-neighboring sites:

Het T (docie+clocio) + AU (nig —negP — K (81 (87)° (36)

(i) (i)

We first consider the d = 2 case. The sections of this pha.sé diagram with the planes
t = 0 and K = 0 were already analyzed in Subsections IV-A and IV-B respectively. We
now discuss the section of this phase diagram with the plane K = U/2. As we have seen
in Sec. III the subspace I = J and K = U/2 of the complete (U, K, J, I,t, D) parameter
space is invariant under RG. In particular the I = J = 0 points flow into J = J # 0 ones.
The l;ha.se diagram we obtain for K = U/2 is shown in Fig. 7. The normal metallic phase
is associated with the fixed point (U, K, J,I,¢,D) = (0,0,0,0,0,0). For U < 0 thereisa
coexistence region of the PUCI phase {associated with the fixed point (+00,0,0,0,0,0)),
and the PM phase (associated with the fixed point (—o0,0,0,0,0,0)). This region is
attracted by the first order fixed point (—oc0, —0,0,0,0,0)|x_y/, and ends at the critical
line a't’ (Fig. 7), which is associated with the fixed point (Uy, Ka/,0,0,0,0). For U > 0
there is a PDCI phase, which is associated with the fixed point (400, +00,0,0,0,0)|x_y/,.
The line ab (Fig. 7) corresponds to a second order metal-insulator phase transition and it
is associated with the relevant fixed point (U,, K,,0,0,0,0) (see Table I for the location of
the relevant fixed points). '

Let us now consider the rest of the phase diagram in the space (U, K, 1), i.e., for
K # U/2. For K > 0 and U > 0 there is a critical surface, whose sections with the planes
t = 0 and K = U/2 are shown in Figures 3 and 7 respectively. For K > U/2 this surface
is associated with the fixed point (Uy, Ks,0,0,0,0), while for K < U/2 it is associated
with the fixed point (U, K.,0,0,0,0). For K > U/2 this surface describes a second order
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metal-insulator phase transition separating the PDCI and the PM phases. The PM phase
extends over the whole region K > U/2, outside the region enclosed by the critical surface.
For K < U/2 the surface corresponds to a second order phase transition separating the
PDCI and the PUCI phases. All points with K < U/2, outside the region enclosed by
the critical surface belong to the PUCI phase. In Fig. 8 we show a section of the phase
diagram for K > 0 with a constant-U plane (U = 8).

For K < 0 and U < 0, the PUCI and PM phases are separated by the first order surface
shown in Fig. 7, where the system undergoes a discontinous metaj-instﬂator transition. This
surface ends at the isolated critical line a’t’. Outside this surface, and for K = U/2, the
system changes smoothly (i.e. without phase transition) from the PM phase (K > U/2) to
the PUCI phase (KX < U/2), passing through a normal metallic state at K = U/2,. where
the pairs break.

Finally, we consider the phase diagram for d = 3, whose section with the plane K = U/2
is shown in Fig. 9. For low values of the parameter t, the phase diagram shows the same
qualitative structure as the d = 2. For higher values of t new features appear. First, wé find
that the limit cycles already observed for U = K = 0 extend over the plane K = U/2 for ¢
above the line h¥'b. The basins of attraction of the two cycles appear as alternated fringes of
complex shape. The appearance of limit cycles occurs only for K = U/2. Second, between
the coexistence region of the PUCI and the PM phases, and the limit cycles region a new
region appears, two ordered phases (namely AFI and CDW /SS} coexists. Such region is
associated with the fixed point (—o0, Ky, J1, I1,0,0). This coexistence can be understood
if we note that for K = U/2 the second and third terms of the Hamiltonian (36) can be
rewritten for the hierarchical lattice as

1wy [0t - ()7
{i.g)
For U < —1 the configurations that predominate are those for which S7 = 0 or those for
which §7 = +1 for all sites i. Both types of configurations (i.e., §; = 0 or §} = +1)
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are degenerate and so they have the same occurence probability. For low values of t, this
degeneracy leads to the coexistence of the two disordered phases (PM + PUCI) we have
already seen for d = 2. As the parameter t increases each one these phases undergoes
a second order phase transition to the corresponding ordered phase at the line gb’. This
degeneracy could also be related to the occurrence of the fixed cycles for K = U/2.

For K < U/2 there is a second order transition surface separating the PUCI phase (low
values of t) and the AFI phase (high values of ¢); this surface is associated with the fixed
point (U, K, J,1,t,D) = (+00, K., J,,0,0,0). For K > U/2 there is a second order surface
separating the PM phase (low values of t) and the CDW/SS mixed phase (high values of
t); this surface is associated with the fixed point (—o0, K, 0, 1,,0,0). Both K < U/2 and
K > U/2 second order surfaces join at the line gb'd of the plane K = U/2 (see Fig. 9). The
AFI and CDW/SS phases are separated, on the K = U/2 plane, by limit cycles excepting
a small region (enclosed by gb'h in Fig. 9) where these two phases coexist. In Fig. 10 we

show some sections of the phase diagram with constant-U planes, for typical values of U.

V Conclusions and remarks

We have discussed a very general Hamiltonian Eq. (24) which contains the Hubbard one as
a particular case. This general Hamiltonian remains invariant under a specific real space
RG scheme in which the d-dimensional Bravais lattices are replaced by d-dimensional
hierarchical ones. This Hamiltonian, besides including the Hubbard Hamiltonian as a
particular case, contains several interaction terms that allow the study of the critical
properties of a great variety of interacting fermionic systems; indeed these terms account
for charge fluctuation, magnetic order as well as hopping. The complete phase diagram
presented in Sec. IV for the half-filled Hamiltonian (19) shows the richness of this model.
Among other applications of the general Hamiltonian (24), the most interesting seems to

be the study of high-T, superconducting compounds. This Hamiltonian contains many .
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of the basic interactions that have been proposed to explain this phenomenon. Indeed,
we have shown that adding a nearest neighbor interaction term to the half-filled Hubbard
Hamiltonian (like the biquadratic term in Hamiltonian (36}) a superconductiong phase can
é.ppear, even for repulsive snira-site interactions (see Fig. 10). The use of the generalized
Hubbard Hamiltonian Eq. (24) together with the RG formalism appear as a powerful
tool to analyze the combined effects of different types of interactions. The numerical
results in d = 1 and 2 for the Hubbard model are encouraging in this sense, since they
reproduce the expected qualitative aspects of the correspondiné phase diagrams. Ind =3
the method works well in the strong interaction region [U/t| » 1. For |U/t| €« 1 the
appearance of limit cycles makes the applicability of this method questionable in the sense
that the results for Bravais lattices might be quite different from those in hierarchical
lattices (see also [23]). The fact that this phenomenon occurs only for some region of the
K = U/2 subspace , suggests that it could be due to a particular degeneracy of the ground
state of the hierarchical lattice. Indeed, limit cycles of order 2 in the RG flow have been
encountered for Ising systems with competing interactions, where such behaviour reflects
certain degeneracies of the ground state of the model [44]. Excepting for this JU/t| <« 1
region, the results herein obtained seem to be encouraging towards the final understanding
of this complex quantum many-body problem. Further developments, in particular the
non-half-filled band case, will be presented elsewhere.
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Captions for figures and tables

Fig. 1: Renormalization group cell transformation. L stands for the set of parameters
of the Hamiltonian (e.g., (U, 1, u) for Hy). a)d=1;b)d=2;¢) d=3.

Fig. 2: Hierarchical sequence of the present Hamiltonians. The rectangular blocks
refer to sequences of symmetries (which not always coincide with sequences of particular
values of H,). The circle indicates the position of the Hubbard Hamiltonian Hy (Eq. (2));
notice that it is contained in Hg but not in Hep.

Fig. 3: Flow diagram in the plane (U, K) for d = 2. The relevant fixed points
are labeled q; a’; ¢ and d. The paramagnetic dimerized-charge insulating (PDCI) phase is
characterized by the attractor (U, K) = (400, +00)|xy, While the paramagnetic uniform-
charge insulating (PUCI) and the paramagnetic metal (PM) (with uncorrelated pairs of
electrons) phases are characterized respectively by the attractors (+o0,0} and (—o0,0).
The line eaf is a second order critical line, while the line K = U/2 for K < K,/ is a first
order one. The dashed line between points a’ and a corresponds to a smooth continuation
between the PM and the PUCI phases.

Fig. 4: Asymptotic recurrence relation J' = f;(J) for the JKU model (21) in the
limit U —+ oo, for dimensionalities d = 2 and d = 3.

Fig. 5: Phase diagram of the JKU model {J > 0) for K = 0 and in d = 3. The solid
line is second order critical line while the dashed line is a first order one. Both lines join
at the tricritical point Tp.

Fig. 6: Phase diagram of the half-filled Hubbard model in d = 3 (1/¢ : dimensionless
temperature).

Fig. T: Phase diagram for the d = 2 half-filled Hubbard model with biquadratic
interactions for K = U/2. There is a coexistence region of the PUCI phase and the PM
phase (uncorrelated pairs of electrons).

Fig. 8: Phase diagram for the d = 2 half-filled Hubbard model with biquadratic

interactions for constant I/ = 8.

Fig. 9: Phase diagram for the d = 3 halffilled Hubbard model with biquadratic
interactions for K = U/2. See text for details.

Fig. 10: Phase diagram for the d = 3 half-filled Hubbard model with biquadratic
interactions for constant U. See text for details. a) U =~4. b) U =2. ) U = 4.

Table I: Location of the relevant fixed points and critical exponents for J = 0 and
K > 0. The location of the fixed point a' is U, = —U,, K, = —K, and the corresponding
critical exponent is v, = v,

Table II: Critical coupling and critical exponent for the antiferromagnetic JKU model
(21) in a hierarchical lattice (U > 1), compared with those obtained through high tem-
perature series expansions for the antiferromagnetic Heisenberg model in the face centered

(fcc), body centered (bcc) and simple cubic (sc) lattices {37).
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Table 1
vy =Jc B
1.241 0.353

Heisenberg model (series)

0.753 fcc : 0.232

bee : 0.357
sc : 0.520

Table I1
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