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ABSTRACT
The Jacobian for finite chiral rotations which preserve the
topology is computed using {-function regularization when the
Dirac operator of the theory is singular. The full generating
functional, including fermionic sources, is used in the definition
of the Jacobian which is shown to be algebraically identical to
the Jacobian which would be obtained if the Dirac operator was

non-singular.
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The investigation of chiral gauge theories in their non-
trivial topological sector has been a source for some hew
interesting results concerning their dynamics and consistency. We
could quote the works of Bardakci and Crescimanno {1] and Manias,
Naén and Trobo [2,3], which found modifications on correlation
functions when compared with the case of trivial topology.
Banerjee et al [4] investigated the consistency of a gauge theory
of SU(2) Weyl fermions, taking into account a modification in the
anomaly when computed in the non-trivial sector. It would also be
interesting to study anomaly cancelation [5,6,7] in the presence
of zero modes. The common point to some of these problems is the
need of calculating the Jacobian for finite chiral rotations in
order to proceed with bosonization [2,3] or to calculate Wess-
Zumino terms [6,7] necessary to ensure gauge invariance.

In a previous paper (8), we computed the Jacobian for
infinitesimal chiral rotations using {-function regularization
(9)]. We showed that it was the same as the one computed in the
trivial sector, at least to first order in the infinitesimal
chiral parameter. In obtaining this result, it was crucial to take
into account the residual coupling between the fermionic sources
and the zero modes of the singular Dirac operator, and that the
orthogonality of its zero eigenfunctions is not preserved by the
chiral rotation. As we were forced to choose one definite way to
orthonormalize the set of new zero modes, it was also not obvious

if our result would be invariant with respect to the way of doing
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this.

In this letter we prove explicitly the invariance mentioned
above, giving a generalization of the procedure followed in [8].
Besides, we prove the algebraic coincidence of the Jacobians
calculated in the trivial and non-trivial topological sectors for
finite chiral rotations which preserve the topology. We finally
remark the equivalence between this result and the one obtained by
adding a small mass to the fermions in the original Dirac
operator.

Let us briefly review some basic facts stated in [8]
concerning the computation of the Jacobian in the presence of zero

modes. We start from the generating functional
2 = [DyoFexp(-<FDy>+<iu>tcins,

where < > denotes integration over a d-dimensional Euclidean space
and the fermions transform under a given representation of SU(N).

If we change the integration variables as

(X} 7,
V(x) — e ¥(x) = Q_(x)¥(x) , (2a)

- - a(x)y
¥(x) — ¥(x)e

S

=¥ (x)a_(x) (2b)

where a(x)= a® T , then Z must remain unchanged ,
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= J(ot) I Dy DY axp[- <P DAy > + < p(a)y > + < ¥ n(a)>] .

In (3) we used the definitions

a(X)7, a(x) 7,
D(a) = € D e p

and

- - a(x)¥, a(x) 7,

n(x;a)= n(x)e ¢, M(Xja)E e n(x) .

If D would be invertible, we could construct
$_(x) ¢ ()
s(x,y) =)
n 1!1

where

D¢n = hn¢n
and

Yo 6 ) =sx-p1 , [ el o0 =
such that

D_ S(x,y) = S(x,y) D = &(x-y¥)1 .
Then, performing in (1) the shift
vy = wx + [ sy ww) ay

¥(x) — P(x) + J' aAY) S(y,x) dy

.]
Ny

(3)

(4a)

(4b)

(5)

(6a)

(6b)

(7)

(8a)

(8b)
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we would obtain
- <uSTH>
Z(7, n]1=e"" petpD, (9)

where < 3Sn > = I dxdy n(y)S(y,x)n(x).
To calculate the r.h.s of (3) in a similar way, we shift

variables in a similar fashion (8], using

-a(X) ¥, —a(Y)7,
S(x,y;x)=e S(x,y)e ’ (10)

instead of S(x,y) to get
2 m,m,a] = 3(a) e pet D(a) . (11)

The Jacobian would be given by

Det D
Det D(a)

J(a) = (12)
However, if we are in the non-trivial topological sector we
have to be more careful ([8]. If the operator D has N zero
eigenvalues, any meaningful definition of Det D must vanish, which
turns (12) ill-defined. If we go further back we remember that in
this case the inverse of S(x,y) does not exist because some of its
terms are divided by zero (the ones corresponding to the 2zero-

eingenvalues). Nevertheless, we can still define

¢_(x) 87 (¥)
S(x,y) =) ' (13)

n*0 a'n
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which satisfies "

1 80x-y) =F ¢, (%) 65, (¥)

1=1

D 8(x,Y}

1 8(x-y) - P (X,Y)

S(x,¥y) b, . (14)

where Po(x,y) is the projection operator on the sub-space

generated by the zero eigenvectors of D.

Using this S(x,y) to perform the translation (8) in (1) we
obtain [10]}

= N
z [7,1] = e pet/p T < 9os MO T B> (15)

where Det’D stands for a given regularization of the product of
non-null eigenvalues of D [9]. To compute the generating
functional after the change of variables (2), we translate the

fermions using

¢ (x;a) ¢:(y:a)
S(x,y;a) =) ' (16)
n#*0 1lrl(“)

where ¢n(x;a) satisfy

D(a) 6 (x7a) = A_(a) @, (xia) (17)

and we are assuming that the basis {¢n(x;a)} is also orthonormal.

The analogue of (14) is now
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Dx(d) S(x,y;a) = S(x,¥,iqa) Dy(a) =
N

=1 8(x-y) - ¥ ¢, (x;@) ¢, (via)
i=1

= { §(x-y) - P, (x,¥ia) , (18)

and Po(x,y;a) is the projection operator on the subspace spanned
by the zero eigenvectors of the rotated Dirac operator.

We must remark that, if ¢°i(x) is a zero eigenvector
- (%) 7
of D, woi = e s ¢oi is a zero eigenvector of D(a). However,

this set of zero modes is not orthonormal,

-2(17
v >=<¢. e ¢

0} 01

+

o1 (19)

< ¥ > * 3

0} S
We use an orthonormal set given by linear combinations

of elements of the previous one,

" - (X)7

¢, (x;x) =) B [a] e ® 8,,(%) (20)
j=1

After the translation on 2 [7, %; «], we get

- N
2 (7, n; a) = J(a) eSHASEIMA> peripia) T <97, (@) m(a)> .
i=1

<Ca@e,, (@)> . (21)

It must be noticed that the method employed to obtain (21) is

slightly different from the one used in (8]. There, we used a
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S(x, y; «) given by

—a ()7, 6. (X) SI(y)  —a(¥)v
S(x, yi o) = e Y e , (22)

n#0 Al'l

and ¢n(x) are eigenfunctions of D.

The difference is in the exponential term. In [8] it is

_ E (a) & (a)
exp(cisay+ ] —L—1— ], (23)
A, (a)
3 J
with £, E] given by
- + + i
£,(@ =Y <o, m> () e ", > (24a)
k=1 '
N
= - P
E (@) =) <M, >, e ° o (a). (24b)
k=1

For an infinitesimal chiral rotation, the second term in the
exponential is of order «?, and it can be neglected if we keep
only the terms up to first order in a. However, it must be further

analysed if we want to consider a finite a rotation.

Let us call
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=): ¢ (x; a) ¢:(y: o)

S(x, ¥; «) = < x|S(a) |y >
n#0 An(a)
and
+
-a(x)7 ¢ (x) ¢ (¥) -a({y)7
(X, Yi &) = e Ty - e s
A
n¥0 n

So, the following relations are satisfied:

D(a) S(a) = S(@) D(a) =1 = Po(%) ,
D(a) §'(x) =1 - P (a) ,

S’(a) D(a) =1 = P (a) ,

where
N

CxX|P (@) ¥ > =) &,,(x;a) ¢:, (y;i «) ,

i=1

a(x)y N

¢x|p (@] y>=e  °F ¢ (x) ¢, (¥) e

1=1

-x(Y) 7

-a (X) 7 N
Cx[P (@) Y> =e Y e, (x) 6, () e

1=1
Thus, S(a) obeys the consistency equations
S(a) = §/(x) - S’ (a)Py(a) + P (o) S(a) ,
and

S(a) = §/(a) - P_(x) S’ () + S(a)P (a)

L4

L4

a(y) 7,

(25)

® < X|8'(a) |y >

(26)

(27a)
(27b)

(27¢c)

(28a)

(28b)

(28c)

(29a).

(29b)

which follow from the application on the right and on the left of
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S’ (a) to (27a). Then,

exp < n(a) S(a) n(a) > = exp < N(a) S’ (a) n(a)d> .

. exp - ¢ n(a) S’ (a) P (a) n(a)>. exp< n(x) P («) S(x) n(x)> =

N
=exp{ M STm)>. exp { -z < n(a) S/(a) ¢, (@)> < ¢:,(a) n(¢)>} .

i=3

di's

N
. EXP{ Y B jlal < n(a) ¢ (a)> < o7 e

i=1

S () n(a»}

N
mexp <S> . exp( T M <9y (@ n@)> + <A g, (@)> N,

J=1
(30)

Now we remember that ¢ ¢:J(a)n(a)> and < i(a)¢ojux)> are
Grassmann numbers and that the exponential (30) in the expression

of Z[W, M; «] is multiplied by the product

N
T < oy, () n(a)> < A(@) @, (@)> . (31)
J=1

Therefore, the only contribution from (30) to (21) is

exp <% S n>, and Z(7%, m; «] becomes

- N
<M S 7> Det/D(a) M < ¢, (x) M(a)> < A(x) @, (2)>:
i=1

Z{w, M; a] = J(a) e

(32)

In reference [8), if we identify
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E (¢, ()

A (@)

= { n(a) P (a) S(a) P (a) n(a)> , (33)

we see that a similar reasoning conducts us to the same result.

Before we continue, we mnust consider the problem of
performing arbitrary chiral rotations in a non-trivial topological
sector. These arbitrary transformations are 1ill- defined in -
general at some points of the (compactified) base space,
introducing difficulties in the compactification procedure (1,3].
We shall avoid these difficulties performing chiral rotations
parametrized by an a(x) which obeys trivial boundary conditions so
that the base manifold can be compactified in the same way which
is done for the infinitesimal case. This prevents changes in the
topology of the fiber bundle in which sections D is supposed to
act and enables us to apply the methods stated in references [9)
and [11]). We will have no great loss of generality, as we shall
discuss in the conclusions.

We can now proceed with the computation of the finite

Jacobian. We use the method stated in [11] where one performs a

finite rotation parametrized by r, 0 s r s 1

ra(x)y _ ro(x)7
v — e v , o Pe , a{x) finite. (34)
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The generating functional becomes
N

Z{M, M; r]=J(ra) exp< 1 S M > Det’D (ra) M < ¢:} n > < ﬁ¢m> N(ra),
i=1

(35)
and we should stress that ¢01 are the zero eigenfunctions of D,

and m and 7 are the unrotated external currents. The factor N(ra)
comaes from the Grassmanian nature of the sources and will be -
computed later.

Imposing the invariance of 2 with respect to the change of

variables (34), we get

9z | 5 =2 (nI(ra)) + -2 (tn Det’D(ra)) + -3~ (fn N(ra)),
dr dr dr dr _
(36)
from where we read the finite Jacobian,
1 1
J(a) = exp[ - J' dr o’ (ra)] (N(e)) (37)
o
with
w’ (ra) = —9—-£n Det’D(ra}.
dr
It can be shown that w’/(ra) can be written as
w’ (r) = tim Tr[(DE(ra))-s_" Ai(ra)] ' (38) -
>0 g=0
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=-12=
where
ro(x}7, ra{x)7,
D.(ra) = @ (D+e€1) e ' (39.a)
and
Ax(ra) = {aws, D(ra)} ={a15, De(ra)} - 25«15 . (39.b)

Evaluating the trace in (38), as in [9], we come to

w/(r} = tim [ 2 I dx tr [ K, (D (ra); x, x) 15a(x)]] -
€—0

- 2 z tr[f dx ¢:l (x; ra) 15a(x) ¢°1(x; ra)], {40)
i

where ¢m(x; ro) belongs to the orthonormal set of zero modes of
the operator D(ra)}. The first term in (40) gives the usual result
[11] in the absence of zero modes, K° is the analitical extension
at s=0 of the Kernel K“(De(ra); X,x)), and can be computed using
Seeley’s coefficients [12). Thus, if we call J. the algebraic

expression of the Jacobian in the trivial sector, we can say that

3 _(a) = J (a) exp [I: dr tr [Zfdx oL (x; ra) a(x)18, (x; ra)].
i
. [u(m)]:l (41)

Let us consider first the ternm (N(a))q. It comes from (21),
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|
T ¢ 97 (@) m(a)> < A(a) ¢, (x)> =

1=1

N N
.- (T )@ <oy, ][ T B (@ ¢Foy) =
J=1 k=1

i=1

] N
= IDet BI® T <47, > < g = N(@ T < g, m><m ey,

(42)
as is proved in the Appendix. If we consider the orthonormality

condition of ¢01 (x¢), we have

=207y
<Ol (@) #, (> =3 =Y B (@) (o e "6, DB, (43)
k,1

we see that, in matrix notation, it can be expressed as

gB'c et = =8B ct B , (44)
with
-2ay
+ 5
ckl=<¢0ke ¢01>'

For any choice of the Bufs ,

1
Det C

| Det B |* = = N(a) . (45).

Keeping (44) in mind, it is straightforward to evaluate the

second term in (41), that is
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exp [ 2 I: dr tr [ ZI dx ¢:l(x; roa) oz(x)'a'5 ¢m(x; ra)]] -
i

-21‘(‘175

1 * +
= exp [ L dr tr [ Y B, < ¢,207 e ¢, > B”]] =

1,k,1
= exp [ - J'; dr tr [a %r c%) a*]].
From (44) we obtain,

c¢t= 8* B »

%
r—
[
—

[y
ﬂ
La |
p—
-}
n-ln.
H
—
(x]
ot
St
..}
+
S
A
i

d t t, ! 1 -
dr[ trznc]]=Det(C)-—'
dr Det €

Combining (45) with (48) we obtain

J}T(a) = J&(a).

(46)

(47)

(48)

(49)

where a(x) is now a finite parameter of the chiral local rotation,

obeying trivial boundary conditions.

Oof course, the equivalence is only algebraic, because the

fields involved in Joer obey different boundary conditions than

that of the trivial sector. The index theorem [13)

I dx tr [ KO(D; x,x)rs] =n_-n

(50) -
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gives us immediately the Jacobian associated to global (a =

constant) chiral rotations, from (49)
ngobal = exp (—2a(n+ -n))). {51)

Our result for finite chiral rotations agrees with that
obtained by the addition of a small mass to the Dirac operator
(8]. In this case, the sources still couple to the zero modes, but '
only in the limit of vanishing mass. Before taking this limit, the
operators D and Da are non singular and the Jacobian is

Det(D + m 1)

m0 Det(QS(D +n 1)!‘!s

which is clearly different from {9],

Det (D + m1)
J’(a) = ¢im . (53)
m=>0 Det(nsb Qs+ m1}

Since there is no singularity in (52) as m is non-zero, it
gives exactly the same result that we have obtained.

As we have previously stated, our result is general enough to
handle with many interesting cases as, for example, bosonization
and anomaly cancelation. One can follow the method used in (13},

(2] and (3] where is always possible to decompose

(N} {c)
= +
A A a , (54)

where Aﬁm is an arbitrary point in the space of gauge connections
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{c)

with topological charge N, Au is a fixed point in this space and

a, obeys trivial boundary conditions. One is left, at the end,
with the simpler problem of calculating determinants in the
‘presence of fixed external fields A;”.

Finally, we would 1like to stress the great importance of
working carefully with the sources when we are in non-trivial
topological sectors. This observation enables our work to make
contact with other works [14,15] were the sources are equally
important in the definition of the theory.

We would 1like to thank Alvaro de Souza Dutra and Cesar
Augusto Linhares for  helpful discussions and continuous
encouragement, and Elcioc Abdalla for useful observations.

One of us (M.T.T.) would like to acknowledge CNPg and FAPERJ

for partial financial support.
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APPENDIX
We will now prove that N(a) = | Det B(a)lz. Let us first define
+
M T <oy > (A1)
and
M= <N B> . (A2)

N
Now we will evaluate T <« ¢:‘ (a) n(x) > < (a) ¢, (@) > for
=1

=2:
= ; + > N > = ﬁ B*
PRIl <47 (@) @) > < W) 6, (@) 1.1[ I B, m) .
J=1
2 2 2
[ ) By, ] = -1Ex [ ) BIJIFJ 151 [ ) B "J] - (A3)
j=1 1=1 =1
We can calculate separately each product to obtain
X _k &k _% --
F=- (BuBn-BianJntnz(BnBzz- BByt mn, =

— 2 o~ -
=|Det B| M, .

(A4)
We take as hypothesis that the result is valid for N-1 and

prove its validity for N. So,
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=18~

N
Fe I < ¢ (a) n(a) > < A(a) ¢, (a)>=(-1)° [z B, ].

f=1

||:dl

[ Z B, -,] ' (AS)

with P being an even or odd number, according to the number of .
permutations of the 7m’s necessary to bring F} to the form (AS5).

We consider now one of the products

Z B, 1—'.l]- (A6)

Applying the hypothesis made for N-1 to each of the terms of

the sum (A6), we get
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=-19-
N
N B_B_....B
- - 22 23 2N - =
Il:l’1 [Z BiJ “3] -311“1 Det . Myeeeemy +
= yo1 B

+ Bu 1. Det

B OtCOB
- + 21 22 2,N-1
+ B .1 Det . ! - = _ - = -
1NN . 'n"nz...‘nu_1 Det B Moo oMo
B"i B"lzl...Bu'u-1

(A7)

Because the same algebra is valid for the other product in
(A5},

_ g_4sP 2 - = = _
. F= (-1) |Det B| L IERRY B R IR N (A8)
— 2 - -~

The permutation of the 7n’s and 7’s from (A8) to (A9) is

exactly the opposite to that performed in (A5), giving us then the
same factor (-1)P.
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